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ABSTRACT. These are the lecture notes of a master course given at Ecole
Normale Supérieure during 2023-2026. In this master course, we give
an introduction to topological dynamics and ergodic theory, and we dis-
cuss examples of dynamical systems arising from group theory, symbolic
dynamics, geometry and homogeneous spaces. Topics include: Topolog-
ical dynamics (topological transtivity and recurrence, Ramsey theory,
topological entropy); Ergodic theory (recurrence, ergodicity, weak mix-
ing, ergodic theorems, random walks, measure entropy); Homogeneous
dynamics (locally compact groups, lattices, SL,(Z) < SLn(R), Howe—
Moore’s property, Moore’s ergodicity theorem).
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CHAPTER 1
Topological dynamics

In these lecture notes, all topological spaces are assumed to be Hausdorff.
For any topological space X, a continuous map T : X — X is called a
topological dynamical system. If T': X — X is moreover a homeomorphism,
then 7 : X — X induces an action Z x X — X : (n,z) — T"(x) by
homeomorphisms.

A subset Y C X is (forward) T-invariant if T(Y) C Y. When T': X —
X is a homeomorphism, a subset Y C X is T-invariant if T(Y) =Y. For
every z € X, define the (positive) T-orbit 0 (z) = {T"(x) | n € N}. When
T : X — X is a homeomorphism, for every x € X, define the (negative) 7-
orbit O (z) = {T~"(x) | n € N} and the T-orbit Op(z) = 05 (z)UOF (z) =
{T™(z) | n € Z}. We say that € X is T-fized if 0 (z) = {z} and
T-periodic if there exists k > 1 such that T%(z) = .

For every i € {1,2}, let T; : X; — X; be a topological dynamical sys-
tem. We say that T is a topological factor of Ty or that 17 is a topological
extension of Th if there exists a surjective continuous map « : X7 — X5 such
that m o Ty = T3 o m. We say that T and T, are topologically conjugate if
there exists a homeomorphism 7 : X7 — X such that o7} = Ty om. Topo-
logically conjugate dynamical systems have identical topological properties.
Therefore, all properties and invariants we introduce in this chapter includ-
ing minimality, topological transitivity, topological recurrence, topological
mixing, topological entropy are preserved by topological conjugacy.

For this chapter, we follow the presentation given in [BS02, EW11].

1. Examples of topological dynamical systems

1.1. Rotations. Denote by T = {z € C | |z| = 1} the unit circle,
which is a compact metrizable group. For every o € R, define the rotation
To: T — T: 2z +— exp(i27a)z which is a homeomorphism. For every o € R,
we have (T,,)~! = T_,. Endow T with the metric defined by d : T x T —
[0,1) : (21,22) = min(f,1 — 0) where 6 € [0,1) is the unique element such
that 2027 ' = exp(i276). Then T, : T — T is an isometry in the sense that
d(Ta(Zl),Ta(Zg)) = d(zl, 22) for all 21,729 € T.

If a = % € Q, then (T,)? = idr and so every point z € T is T,-periodic.
If a ¢ Q, then for every z € T, the positive T,-orbit ﬁ’;fa(z) is dense in
T. In that case, we say that T, is a minimal topological dynamical system.
Indeed, let z € T and N > 2. Since (exp(i2man)), are pairwise distinct in
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6 1. TOPOLOGICAL DYNAMICS

T, the pigeon-hole principle implies that there exist 0 < m < n < N such
that d(exp(i2ran), exp(i2ram)) < +. This means that the rotation 77 ~™
has an angle § = d(T72"™(1),1) < %. Since n —m > 1, it follows that the
positive T,-orbit @_,'fa (z) comes within distance + of every point in T. Since
this is true for every N > 2, the positive T,-orbit ﬁ;a (z) is dense in T.
Rotations on the unit cercle are particular examples of group transla-
tions. Let G be a (Hausdorff) topological group. For every g € G, define
the homeomorphism Ty : G — G : x +— gx. If G is first countable, that is, if
the identity element e € G admits a countable neighborhood basis, then by
Birkhoff-Kalutani’s theorem, GG possesses a left-invariant compatible metric
d: G x G — Ry. In that case, T, : G — G is an isometry for every g € G.

1.2. Bernoulli shifts. Let Y be a topological space and I an at most
countable index set (e.g. I = {1,...,n} forn > 1, or I =N, or I = Z).
Consider the product space Y! = {(y;)icr | Vi € I,y; € Y} endowed with the
product topology. For every nonempty finite subset % C I and every family
of open sets (U;);ce of Y, define the cylinder open set € (%, (U;)icz) =
[Lic; Zi where Z; = U; ifi € # and Z; =Y if i ¢ .#. Then the family
(€ (F,(Us)iez)) 71,7 finite 15 a basis of open sets for the product topology
on Y. If Y is a compact space, then so is Y/ by Tychonov’s theorem.
If Y is a Polish space, meaning that Y is a separable complete metrizable
topological space, then so is Y.

Consider the product space YN endowed with the product topology and
define the (nonminvertible) forward Bernoulli shift S : YN — YN (y,), =
(Yn+1)n, which is a topological dynamical system. Likewise, consider the
product space Y7 endowed with the product topology and define the (in-
vertible) Bernoulli shift T : Y% — Y” : (yn)n = (Ynt1)n, which is a homeo-
morphism.

1.3. Toral automorphisms. Let d > 1 and consider the d-dimensional
torus T¢ = R9/Z4, which is a compact metrizable group. For every A €
GL4(Z), since A(Z%) C 7%, we may consider the continuous automorphism

Ty: T =T 2+ 7% — Az + 7.

Then Ty : T — T? naturally preserves the Haar (Lebesgue) probability
measure on T¢.

Toral automorphisms are particular examples of compact group auto-
morphisms. Let G be a compact metrizable group and denote by mg its
unique Haar probability measure (see Chapter 3). Let T € Aut(G) be a
continuous group automorphism. Then Tymg = mg and so the topologi-
cal dynamical system T : G — G preserves the Haar probability measure
mq € Prob(G).

1.4. Homogeneous dynamical systems. Let G be a locally com-
pact second countable group and I' < G a lattice, meaning that I' < G
is a discrete subgroup for which the homogeneous locally compact second
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countable space G/I" carries a (unique) G-invariant Borel probability mea-
sure v € Prob(G/T') (see Chapter 3). Let g € G and consider the left
translation homeomorphism 7, : G/T' = G/I" : hI' — ghI'. Then Ty v = v
and so the topological dynamical system T, : G/T' — G/T" preserves the
Borel probability measure v € Prob(G/T).

2. Topological transitivity, recurrence, minimality, mixing

Let X be a topological space and 7' : X — X a topological dynamical
system. For every x € X, the w-limit set of x with respect to T is the closed
subset

wr(@) = () {T7(@) [i = n}.

If X is compact, then wp(z) # (. For every y € X, we have y € wr(z)
if and only if there exists a net (n;);es such that lim; ,oon; = 400 and
y = lim;_,oo T™ (x). Note that wp(z) is T-invariant. We say that a point
x € X is (positively) T-recurrent if x € wr(x). For every z € X, we
have that x is T-recurrent if and only if there exists a net (n;);c; such that
lim; ,00 n; = 400 and = = lim;_,oo 7™ (). The set of all T-recurrent points
is T-invariant. Any T-periodic point is T-recurrent.

DEerFINITION 1.1. Let X be a topological space and T : X — X a topo-
logical dynamical system. We say that T is topologically transitive if there
exists x € X such that ﬁ}r(aﬁ) is dense in X.

Let X be a topological space. We say that X is locally compact if every
point x € X possesses a compact neighborhood. We say that X is second
countable if there exists a countable family of open sets (V;);en that gener-
ates the topology of X. We say that X satisfies the Baire property if any
countable intersection of dense open subsets is dense. Examples of topologi-
cal spaces with the Baire property include Polish spaces and locally compact
topological spaces. We record the following useful sufficient condition that
implies topological transitivity.

PROPOSITION 1.2. Let X be a second countable topological space with
the Baire property and T : X — X a topological dynamical system. Assume
that for any nonempty open sets U,V C X, there exists n € N such that
T~™(U)NV #0. Then T is topologically transitive.

PROOF. By assumption, for every nonempty open set V C X, the
open set J,cy 7" (V) intersects any nonempty open set U C X and so
Unen T7"(V) is dense in X. Choose a countable family of open sets (V;)ien
that generates the topology of X. Since X satisfies the Baire property,
the intersection (V;cn(UpenZ " (Vi) is not empty. Choose a point y €
Nien(Upen T7™(Vi)). Then for every i € N, we have 0 (y) N'V; # 0, which
implies that &7 (y) is dense in X. Thus, T is topologically transitive. O
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In compact metrizable spaces without isolated points, we show that the
existence of a dense orbit implies the existence of a dense forward orbit.

PROPOSITION 1.3. Let X be a compact metrizable space without isolated
points and T : X — X a homeomorphism. Assume that there exists x € X
such that Or(z) is dense in X. Then there exists y € X such that OF (y) is
dense in X, that is, T s topologically transitive.

PRrOOF. Fix a compatible metric d : X x X — R,. Since X has no
isolated points, for every k > 1, we may choose ny € Z such that T (z) €
B(z,+) and |ng| — 4o00. Note that for every ¢ € Z, we have T (x) —
T*(z). Firstly, assume that there are infinitely many k € N such that ny > 0.

Then we have 0(z) C 0 (z) and so 0 () is dense in X. Then we are done.
Secondly, assume that there are infinitely many k € N such that ng < 0.

Then we have 0(x) C 05 (x) and so O (x) is dense in X. Since X has no
isolated points, this implies that for any nonempty open sets U,V C X, we
can find integers i < j < 0 such that T%(z) € U and T7(x) € V. This implies
that T7(x) € T"=H({U) NV # (. By Proposition 1.2, there exists y € X such
that 07 (y) is dense in X. We are done. O

Next, we discuss a strengthening of topological transitivity.

DEFINITION 1.4. A closed nonempty forward T-invariant subset Y C X
is a minimal set for T if Y contains no proper closed nonempty forward
T-invariant subset. If X itself is a minimal set for T, then we say that
T: X — X is a munimal topological dynamical system.

Any minimal topological dynamical system is topologically transitive. In
the following proposition, we record some useful properties of minimality in
the setting of topological dynamical systems defined on compact topological
spaces.

PROPOSITION 1.5. Let X be a compact topological space and T : X — X
a topological dynamical system. The following assertions hold:

(i) There exists a minimal set Y C X for T.
(ii) Let Y C X be a closed nonempty forward T-invariant subset. Then
Y is minimal for T if and only if wr(y) =Y for everyy € Y.
(iii) The topological dynamical system T : X — X is minimal if and
only if for every x € X, the positive T-orbit OF () is dense in X.

PROOF. (i) Denote by % the collection of all closed nonempty forward
T-invariant subsets Y C X with the partial ordering given by inclusion.
Then for all Y7,Ys € &, we have Y < Y5 if and only if Y5 C Y;. Note that
% is not empty since X € #. Let J# C % be a totally ordered subset.
For any nonempty finite subset .# C %, we have ) # (yc 2 Y € % . Since
X is compact, the finite intersection property implies that Ny, Y # 0
and so [}y Y is un upper bound for #". By Zorn’s lemma, ¢ contains a
maximal element Y € %, which is a minimal set for T'.
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(ii) Assume that Y is minimal for 7. For every y € Y, since wp(y) C
X is a closed nonempty forward T-invariant set and since wrp(y) C Y, it
follows that wp(y) =Y. Conversely, assume that for every y € Y, we have
wr(y) =Y. Let Z C Y be a closed nonempty forward T-invariant subset.
Choose z € Z C Y. Since wr(z) C Z C Y and wr(z) =Y, it follows that
zZ =Y.

(iii) Assume that 7' : X — X is minimal. For every x € X, since

Of (z) C X is a closed nonempty forward T-invariant, we have 0 (z) = X.
Conversely, assume that for every x € X, the positive T-orbit @_,'f () is
dense in X. Let Y C X be a closed nonempty forward T-invariant subset.
Choose y € Y. Since & (y) CY C X and since 07 (y) = X, it follows that
Y =X. O

As an application of Proposition 1.5, we derive Birkhoff’s recurrence
theorem.

COROLLARY 1.6. Let X be a compact topological space andT : X — X a
topological dynamical system. Then there exists a T -recurrent point x € X.

REMARK 1.7. We may also define the notion of a minimal set for a
homeomorphism T : X — X. A closed nonempty T-invariant subset Y C X
is a minimal set for T if Y contains no proper closed nonempty T-invariant
subset. If X itself is a minimal set for 7T, then we say that T : X —
X is a minimal homeomorphism. If 7" : X — X is a homeomorphism
and is minimal as a topological dynamical system, then it is minimal as a
homeomorphism. The converse does not hold in general (consider the map
T:Z—7Z:n— n+1). However, when X is a compact topological space
and T': X — X is a homeomorphism, then 7' is minimal as a topological
dynamical system if and only if 7" is minimal as a homeomorphism.

We say that a subset A C N is syndetic if there exists k > 0 such that
for every n € N, we have {n,n+1,...,n+k} N A # 0. For every k > 0,
observe that the periodic set {km | m € N} is syndetic.

We say that x € X is T-almost periodic if for every neighborhood U C X
of # € X, the set Ay = {i € N|T"(z) € U} is syndetic. Observe that any
T-periodic point is T-almost periodic.

ProPOSITION 1.8. Let X be a compact topological space, T : X — X a

topological dynamical system and x € X. Then ﬁ’;f(x) is minimal for T if
and only if x is T-almost periodic.

PROOF. Assume that z is T-almost periodic. Let y € 07 (). We need

to show that z € & (y). Let U C X be a neighborhood of z € X. We show
that 0 (y) NU # 0. We may choose an open set Uy C U such that = € Uy
and an open set V' C X x X such that Ay = {(z,2) | x € X} C V and such
that whenever x; € Uy and (x1,22) € V, we have xo € U. Since z is T-
almost periodic, we may choose k > 0 with the property that for every n € N,
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there exists 0 < j < k such that 7"/ (x) € Upy. Set Vo = ﬂ?ZO(T xT)~/ (V)
and observe that Vj C X x X is an open set such that Ax C V4. Choose
an open set W C X such that y € W and W x W C Vj. Since y € ﬁ;(x),
there exists n € N such that T"(z) € W. Choose 0 < j < k such that
T (x) € Up. Then (T"(z),y) € WxW C Vy and so (T (z), T (y)) € V.
Since T (x) € Uy, we have T7(y) € U. This shows that & (z) is minimal
for T'.

Conversely, assume that x is not T-almost periodic. Then there exists a
neighborhood U C X of z € X such that the set Ay = {i € N |T%(x) € U}
is not syndetic meaning that for every k > 0, there exists n; € N such that
{ng,ne +1,... ;0 +k} N Ay = 0. Choose y € (50 {T™(x) | j > k} and
note that y € ﬁ;f (z). Then there exists a net (k;);c; in N such that k; — oo
and T™i(z) — y. For every £ € N, we have T *¢(z) — T*(y). For every
¢ € N, there exists iy € I such that for every ¢ > iy, we have £ < k; and
so T™iT¢(x) ¢ U. This implies that T%(y) ¢ U for every £ € N and so

z ¢ 0F (y). This shows that &7 (z) is not minimal for T O

Next, we discuss yet another strengthening of topological transitivity.

DEFINITION 1.9. Let X be a topological space and T': X — X a topo-
logical dynamical system. We say that T is topologically mizing if for any
nonempty open sets U,V C X, there exists ng € N such that for every
n > ng, we have T-"(U) NV # 0.

By Proposition 1.2, for any second countable topological space X with
the Baire property, any topologically mixing dynamical system is topolog-
ically transitive. The converse is not true. An (irrational) rotation is not
topologically mixing. More generally, for any metric space (X,d) that is
not a singleton and any isometry 7' : (X,d) — (X,d), the topological dy-
namical system 7T is not topologically mixing. Indeed, by contradiction,
assume that T is topologically mixing. Let x1,z5 € X such that x1 # 9
and set k = d(x1,22) > 0. Define the open sets V3 = B(l’l,%lﬁ) and
Vo = B(xo, %Ii) and set U = Vi. Then we can find n € N large enough
such that T"(U)NVy # 0 and T-™(U) N Vo # (. Choose y; € V5 and
ya € Vi such that T"(y;),T"(y2) € U = V4. Then we have

1 1
5“ <d(y1,y2) = d(T"(y1), T"(y2)) < 5”-

This is a contradiction.
We show that Bernoulli shifts are topologically mixing.

PROPOSITION 1.10. Let Y be a topological space. Then both the forward
Bernoulli shift S : YN — YN (y.)n = (Yni1)n and the Bernoulli shift
T:Y% Y% (yp)n = (Yns1)n are topologically mizing.

PROOF. We only prove that the Bernoulli shift 7 : Y% — Y2 : (y,),
(Yn+1)n is topological mixing. The proof that the forward Bernoulli shift
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is topologically mixing is completely analogous. Since the family of cylin-
der open sets forms a basis of open sets for the product topology, we may
assume that U and V' are cylinder open sets. Let ni,n2 € N, (Uj)jj<n,
and (Vg)k|<n, be families of nonempty open sets in Y such that % =
C{-n1,...,m},U_pny,....Up) and ¥ = C({—na,...,n2}, Vory, oo, Vi)
For every n > n; + ng + 1, we have

T7"(%)=¢{n—n1,...,n+nm1},U_p,,...,Up,)

and so T~™(% )NV # (). This shows that the Bernoulli shift 7 : Y% — YZ .
(Yn)n — (Yn+1)n is topological mixing. O

3. Applications to combinatorial number theory

The main result of this section is Furstenberg—Weiss’ multiple recurrence
theorem, which strengthens Birkhoff’s recurrence theorem (see Corollary
1.6). Throughout, we assume that X is a compact metrizable space.

THEOREM 1.11 (Furstenberg—Weiss). Let T : X — X be a homeomor-
phism. Then for every £ > 1, there exist x € X and a sequence (nk)k in N
such that ny, — +00 and for every 1 < j < {, we have T?" (x) — .

Before proving Theorem 1.11, let us derive van der Waerden’s theorem,
which is a Ramsey-type result in combinatorial number theory.

COROLLARY 1.12 (van der Waerden). Let v > 1 and Z = | |;_; C; be a
partition of the integers into r nonempty subsets. Then for every £ > 1, there
exists 1 < j < r such that C; contains an arithmetic progression of length
L+ 1. In particular, one of the sets C; contains arbitrarily long arithmetic
Progressions.

PROOF. Let £ > 1. Set Y = {1,...,r} and consider the Bernoulli shift
T:Y? Y% (y)n = (Yns1)n. Define the compatible metric d : Y7 x
Y% — Ry by the formula d((yn)n, (2n)n) = 27 where k = min{|n| € N |
Yn 7 2n}. Observe that for all (y,)n, (2n)n € YZ, we have d((yn)n, (2n)n) < 1
if and only if yg = 2o.

Define the point y € YZ by the formula y,, = i for every 1 < i < r and
every n € C;, and set X = Or(y) C Y%, Consider the homeomorphism
T :X — X. By Theorem 1.11, there exists ¢ € X and n € N large enough
such that for every 1 < j < ¢, we have d(T7"(z),z) < 1. By definition of T :
X — X, this implies that g = x,, = - - - = xp, and we denote this common
value by j € {1,...,r}. Since X = Op(y), by definition of the metric d,
there exists m € Z large enough such that 7" (y) and x agree on the interval
[—¢n, ¢n]. In particular, we have ¥, = Ymin =+ = Ymatn = To = j. By
definition of y € Y2, this implies that m,m +n,...,m+{n € C;. Thus, by
pigeon-hole principle, it follows that one the of sets C; contains arbitrarily
long arithmetic progressions. ([
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Before proving Theorem 1.11, we need to introduce some further termi-
nology. Fix a compatible metricd : X x X - R;. Let T : X — X be a
topological dynamical system and Y C X a nonempty closed subset. Denote
by Homeor(X) the group of all homeomorphisms of X that commute with
T. We say that

o Y is T-recurrent if for every € > 0, there exist n > 1 and (z,y) €
Y x Y such that d(T"(x),y) < €.

e Y is T-homogeneous if there exists a subgroup G < Homeor(X)
such that S(Y) = Y for every S € G and the action G ~ Y is
minimal.

Firstly, we prove a preliminary result on recurrent homogeneous sets.

LEMMA 1.13. Let T : X — X be a topological dynamical system and
Y C X a nonempty T-recurrent T-homogeneous closed subset. Then for
every € > 0, there exist n > 1 and z € Y such that d(T™(z),z) < €.

Proor. Let Y C X be a nonempty T-recurrent T-homogeneous closed
subset. Denote by G < Homeor(X) the corresponding subgroup. We start
by proving the following claim.

CrAM 1.14. For every y € Y and every € > 0, there exist n > 1 and
x € Y such that d(T"(x),y) < €.

Indeed, consider the subset Z C Y of all the elements z € Y with the
property that for every € > 0, there exist n > 1 and € Y such that
d(T™(z),z) < e. Since d(T™(S(x)),S(z)) = d(S(T™(x)), S(z)) for every
S € G and every n € N, it follows that Z C Y is a closed G-invariant
subset. Since Y is T-recurrent, we may find sequences (ry), in N* and
(n)ns (Yn)n in Y such that lim, d(T""(zy),yn) = 0. Since Y is compact,
upon passing to a subsequence, we may assume that there exists y € Y such
that y, — y. Then y € Z and so Z # (). Since Y is T-homogeneous, it
follows that Z =Y. This finishes the proof of Claim 1.14.

Let € > 0 and fix 29 € Y. Letting e1 = 5, using Claim 1.14, there
exist n1 > 1 and z; € Y such that d(T™ (z1),20) < €1. By continuity, there
exists 2 < e1 such that for every z € Y that satisfies d(z,21) < &2, we
have d(T™(z),z9) < €1. Using Claim 1.14, there exist no > 1 and 29 € Y
such that d(T™2(z2),21) < €2. Then we also have d(T"27"1(z3), 2z0) < &1.
Proceeding by induction, if d(T™* (zx), 2zxk—1) < €k for k > 1, by continuity,
there exists g1 < € such that for every z € Y that satisfies d(z, z,) < €41,
we have d(T™(z), zx—1) < ;. Using Claim 1.14, there exist ng+; > 1 and
zk+1 € Y such that d(T"™+1(2k41), 2k) < €x+1. Then for all i < j, we have
d(T"+ i (25), ;) < €i41. Since Y is compact, there exist ¢ < j such
that d(z;,2;) < 1. Then we obtain

d(Tnj+"‘+ni+l(Zj)’ z) < d(Tnj+"'+ni+1(zj)7 zi) + d(zi, 2j) < €i41+¢e1 < €.

Letting z = z;, we are done. O
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Secondly, we prove the following key result regarding the existence of
recurrent points.

THEOREM 1.15. Let T : X — X be a topological dynamical system and
Y C X a nonempty T-recurrent T'-homogeneous closed subset. Then there
exists a T-recurrent point y € Y.

PrOOF. Let Y C X be a nonempty T-recurrent T-homogeneous closed
subset. Denote by G < Homeor (X) the corresponding subgroup. Define the
function F': X — Ry : & — inf,>1 d(T™(x),x). Observe that x € X is T-
recurrent if and only if F'(z) = 0. By Lemma 1.13, we have inf,cy F(x) = 0.
By construction, the function F' is upper semicontinuous in the sense that
for every x € X and every sequence (), in X such that x,, — x, we have
limsup,, F'(zy,) < F(z). Consider the restriction Fly : Y — R;. We claim
that F|y has a point of continuity. Indeed, denote by & the set of all y € Y
where F|y is not continuous at y. If y € 2, then there exist r € Q and
a sequence (yp)n in Y such that y, — y and F(y,) < r < F(y) for every
n € N. Define the closed subset .%, = F~([r,+00)) N'Y. Then we have
y € 0.7, = %, N X \ %,. This shows that Z C UTGQ 0%,. Since Y has the
Baire property and since 0.%, has empty interior for every r € Q, it follows
that & has empty interior and so Y \ Z is not empty.

Let y € Y be a point of continuity for F|y. We claim that F(y) = 0.
By contradiction, assume that F'(y) > 0. Then there exist ¢ > 0 and an
open set U C Y such that y € U and F(z) > ¢ for every x € U. Since
Y is T-homogeneous, the nonempty G-invariant open subset | Jg.o S(U) is
necessarily equal to Y. By compactness, there exist Si,...,S5, € G such
that (J;_, Si(U) =Y. We may choose § > 0 such that for all 21,22 € X,
if d(z1,22) < 6, then d(S;'(21),S;  (22)) < ¢ for every 1 < i < r. This
further implies that for every z € X and every 1 <i < r, if F(x) < ¢, then
F(S;Y(z)) = inf,>1d(S;*(T™(2)), S; () < e. By the choice of ¢ > 0
and since Y = |Ji_; S;(U), it follows that F(x) > ¢ for every z € Y. This
contradicts the fact that inf ey F(x) = 0. Therefore, we have F(y) = 0 and
soy € Y is a T-recurrent point. O

We are now ready to prove Theorem 1.11. We will actually prove the
following slightly more general result which implies Theorem 1.11.

THEOREM 1.16. Let ¢ > 1 and (T; : X — X )i<;<¢ be a family of pairwise
commuting homeomorphisms. Then there exist x € X and a sequence (ng)k
in N such that ny, — +o0o and for every 1 < j < £, we have Tjn’“ (x) — z.

PROOF. We proceed by induction on £ > 1. For £ = 1, the result follows
from Birkhoff’s recurrence theorem (see Corollary 1.6). Assume that the
result holds for £ > 1 and let us prove that it holds for £+ 1.

Let (T : X — X)i<j<e+1 be a family of pairwise commuting homeomor-
phisms. Denote by G the abelian group generated by 71,...,7p+1. Upon
passing to a nonempty closed G-invariant subset, we may assume that the
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action G ~ X is minimal. Set X = XZJr1 A={(z,...2)eX]|zeX}
and for every S € @, set § = X — X : (xj); — ( ( 7). Then we

may consider the natural action G ~ X. Observe that A C X is a
closed G-invariant subset and that the action G~ A is minimal. Define
T = Ty x -+ x Tpyq : X - X. ForeverySeG we have SoT = T o S.
Thus, the closed subset A C X is T- homogeneous. Next, we show that
A C X is T-recurrent. Applying the induction hypothesis to the family
(S; =15 OTHI1 X — X)i<j<s, there exist z € X and a sequence (ng)y in N
such that n;, — +o0o and for every 1 < j </, we have S;lk () — x. There-
fore, for every & > 0, there exists n > 1 such that the points (z,...,z) €
A C X and T7( ng1( z),..., T, () € X are within distance ¢ of one an-
other. Since (z,...,x) € A and (T, (z),...,T,1(z)) € A, it follows that

the closed subset A C X is T-recurrent. By Theorem 1.15, there exists a
T-recurrent point (z,...,x) € A. This implies that the result holds for £+ 1
and finishes the proof of Theorem 1.16. ([l

4. Topological entropy

In this section, we introduce the notion of topological entropy. It is a
topological invariant that measures the complexity of the orbit structure of
a dynamical system. Topological entropy is analogous to measure entropy
we will introduce in the next chapter. Throughout, we assume that (X, d)
is a compact metric space. Fix a topological dynamical system T : X — X.

Firstly, we recall the following elementary lemma on subadditive se-
quences.

LEMMA 1.17 (Fekete). Let (an)n>1 be a subadditive sequence in R, mean-
ing that amin < am + an for all m,n > 1. Then the sequence (arf Yn 1S
convergent in [—o0o,+00) and we have

PROOF. Set ¢ = inf,>; 9». Let £y > ¢ and choose m > 1 such that
aﬁ < £y. Set ag = 0. For every n > m, write n = gm + r with ¢ > 1 and
0<r<m. By subadditivity, we have

< qa—m+— < —+ 1 max {ag,...,am—1} -

n n n m n
Next, choose ng > m large enough such that for all n > ng, we have
%max{ao, coyamo1} < lp — %=, Then for all n > ng, we have £ < &2 < /.
Therefore, lim,, 7* = /. O

We define the topological entropy of T' : X — X using open covers.
We say that a set % consisting of open subsets of X is an open cover if
X = UUG% U For every open cover % and every j € N, define the open
cover T9(%) = {T7(U) |U € %}. For all open covers %,V define the
join open cover @/\/7/ {UNV |Ue%,V € ¥}. For every open cover %,
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using compactness, we may define N(%) € N* as the minimum cardinality
of a finite subcover. It is plain to see that for all open covers %, %, we
have N(% vV V) < N(Z)N(V). For every n > 1, define the open cover
Uy =UN---NT" (). Then the sequence (log(N(%,)))n is subadditive

and by using Lemma 1.17, we may define
1 1
hiop(T', % ) = lim - log(N(%,)) = 1r;f1 - log(N(%,)) > 0.

The topological entropy of T': X — X is defined by the formula
hiop(T') = sup {hiop (T, % ) | % open cover} .

Next, we define the topological entropy of T': X — X as the exponential
growth rate of the number of essentially different orbit segments of length
n € N. We show that the two notions coincide. This second definition of
topological entropy will be very convenient to work with. For every n > 1,
define the metric d,, : X x X — Ry : (2,9) — max{d(T*(z),T"(y)) | 0 <
k <n—1}. For every (z,y) € X x X and every n > 1, dy,(z,y) measures the
maximum distance between the first n iterates of x and y. We claim that d is
equivalent to d,, for every n > 1. Firstly, observe that d(z,y) < dy(z,y) for
every n > 1 and every (z,y) € X x X. Secondly, let (z;);en be a sequence in
X and z € X such that lim; d(zj,2) = 0. Fixn > 1. Forevery 0 < k <n-—1,
since T% : X — X is continuous, we have lim; d(T*(z;), T*(z)) = 0 and so
lim; dy,(z;,2) = 0. Thus, for every n > 1, the metrics d and d,, induce the
same topology on X. We denote by By(z,r) = {y € X | dn(z,y) <7} the
open ball, with respect to the metric d,, of center x € X and radius r > 0
in X.

Fix n > 1 and € > 0. A subset .# C X is said to be (n,¢)-spanning if
X = Uyez Bn(z,€). By compactness, there exists a finite (n,¢)-spanning
subset % C X. We then denote by span(n,e,T) the minimum cardinality
of an (n,e)-spanning set. Likewise, we denote by cov(n,e,T') the minimum
cardinality of a covering of X by sets of d,,-diameter less than . Again by
compactness, we have cov(n,e,T) < +oo. A subset .# C X is said to be
(n,e)-separated if for any z,y € .Z such that x # y, we have d,(z,y) > €.
By compactness, any (n, e)-separating set is finite.

LEMMA 1.18. Keep the same notation as above. Let n > 1 and e > 0.
The following assertions hold:
(i) For every (n,e)-separating set F C X, we have |.F| < cov(n,e,T).
We may then denote by sep(n,e,T) the maximum cardinality of an (n,e)-
separating set.

(ii) We have
cov(n,2¢e,T) < span(n,e,T) < sep(n,e,T) < cov(n,e,T).
PROOF. (i) Assume that .# is an (n, €)-separating set and ¥ is a covering

of X of minimal cardinality by sets of d,-diameter less than €. For every
z € &, denote by ¥, the nonempty set of all sets V € ¥ such that z € V.
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Since .Z is an (n,e)-separating set and since each V' € ¥ has d,-diameter
less than ¢, it follows that the sets (¥;).c# are pairwise disjoint. Therefore,
we have || =3 21 <> 5|%| <|¥V| = cov(n,e,T). Then we have
sep(n,e,T) < cov(n,e,T).

(ii) Assume that .# is an (n, €)-spanning set of minimal cardinality. Then
we have X = J,c 7 Bn(z,€). By compactness, there exists § < e such that
we still have X = (J,c# Bn(z,6). Then (B,(z,d))sc# is a covering of X
by subsets of d,,-diameter at most 20 < 2e. It follows that cov(n,2¢,T) <
span(n, e, T).

Assume that ¢ is an (n,€)-separating set of maximal cardinality. Then
by maximality, we have X = J .y Bn(z,¢) and so ¢ is an (n, €)-spanning
set. It follows that span(n,e,T) < sep(n,e,T). O

LEMMA 1.19. For every € > 0, the sequence (log(cov(n,e,T)))n is sub-
additive.

PROOF. Let m,n > 1 and € > 0. Let % (resp. ¥') be a finite covering
of X of minimal cardinality by elements of d,,-diameter (resp. d,-diameter)
less than e. Then # ={UNT"™(V)|U € %,V € ¥} is a covering of X.
Moreover, for every U € % and every V € ¥, the set UNT™(V) has
dm+n-diameter less than . Thus, we infer that

cov(im+n,e,T) < cov(m,e,T) cov(n,e, T).
This finishes the proof of the lemma. ([l

A combination of Lemmas 1.17 and 1.19 implies that the quantity

he(T) = limllog(cov(n,s,T)) = inf 1 log(cov(n,e,T)) >0
n n n>1ln
exists and is finite. Moreover, for every n > 1, the function (0,+o00) —
[0,400) : € + log(cov(n,e,T)) is non-increasing. This implies that the
function (0,+o00) — [0,400) : € — h(T') is non-increasing. Then we may
define the entropy of the topological dynamical system T : X — X by the
formula

hT) = lim he(T) =suph.(T) € [0,40o0].

e—0t e>0
It follows from Lemma 1.18 that

1
h(T) = lim lim —1 T
(T) lim lim — og(cov(n,e,T))

£

1 1
= lim limsup — log(span(n,e,T)) = lim liminf — log(span(n,e,T))
n

e—0t n e—0t n n

1 1
= lim limsup — log(sep(n,e,T)) = lim liminf — log(sep(n,e,T)).
n

e—0t n n e—0t n

We now prove that the two notions of topological entropy coincide.

THEOREM 1.20. For every topological dynamical system T : X — X, we
have hiop(T) = h(T).
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PrOOF. Firstly, we show that h(T") < hop(T). Let € > 0 and n > 1.
Let % be an open cover whose all elements have d-diameter less than e.
Then %, is an open cover whose all elements have d,-diameter less than &
and so cov(n,e,T) < N(%,). This implies that

he(T) = lim % log(cov(n,e,T))
< lim%log(N(%n)) — hion (T, %) < huop(T).

By taking the limit as & — 07, this further implies that A(T) < hyop(T).

Secondly, we show that hiop(T') < h(T'). Let % be an open cover of X.
We may then choose € > 0 such that the Lebesgue number of % with respect
to d is at least 2e, that is, for all x € X, there exists U, € % such that
B(xz,e) C U,. For every n > 1, %, is an open cover of X whose Lebesgue
number with respect to d,, is at least 2. Choose an (n,e)-spanning set
# C X of minimal cardinality. For every z € .#, we may choose Uy, , € %,
such that B, (z,e) C U,,. For every y € X, there exists € .# such that
dn(z,y) < e. It follows that (U, ,)zcs is an open subcover of X and so
N(%,) < |#| = span(n,e,T). This implies that

1
hiop (T, % ) = thn - log(N (%))
1
< lim sup - log(span(n,e,T)) < ho(T) < h(T).

By taking the supremum over all open covers of X, this further implies that
htop(T) < h(T'). This finishes the proof. O

Theorem 1.20 implies that the topological entropy h(T') = hiop(T') of
the topological dynamical system T : X — X only depends on the topology
on X and does not depend on the compatible metric d on X. In particular,
the topological entropy is an invariant of topological conjugacy.

EXAMPLE 1.21. Let T': (X,d) — (X,d) be an isometry. Then we have
R(T) = 0. Indeed, let ¢ > 0. For every n > 1, we have d, = d and
so cov(n,e,T) = cov(l,e,T). Then h.(T) = lim, Llog(cov(n,e,T)) = 0.
Therefore, we have h(T) = lim,_,o+ he(T) = 0.

We collect some useful properties of topological entropy.

PROPOSITION 1.22. Let (X, d) be a compact metric space andT : X — X
a topological dynamical system.
(i) For every m € N, we have h(T™) = m h(T).
(i) If T : X — X is a homeomorphism, then h(T~') = h(T). Thus,
for every m € Z, we have h(T™) = |m| h(T).
For every i € {1,2}, let (X;,d") be a compact metric space and T; : X; — X;
a topological dynamical system.
(iii) We have h(Ty x Tz) = h(Th) + h(T).
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(iv) If Ty : Xo — Xo is a topological factor of Ty : X1 — Xy, then we
have h(T2) < h(Ty).

PRrROOF. (i) Let m € N, n > 1 and € > 0. For all z,y € X, we have

d(T™ (z), T™ (y))} < d(T?(z),T? .
0gitn1 Ld( )} 0<jn§1%z)'ri—1{ (7 (), T/ ()}

Let Y C X be an (mn, )-spanning set for 7' of minimal cardinality. Then
Y C X is also an (n,e)-spanning set for 7. Thus, span(n,e,7™) <
span(mn, e, T). This further implies that

h(T™) = lim hmsup log(span(n e, T™))

e—0*t
1
<m lim lim sup log(span(mn, e, T)) < mh(T).
e—07t mn

Conversely, for every € > 0, set
3(e) = sup {d(T" (), T'(y)) | (x,y) € X x X, 0 <i<m—1,d(x,y) <e}.

Then we have §(¢) — 0 when ¢ — 07. Choose a decreasing sequence
(er)r in R% such that (6(ex))r is decreasing and limy e, = limy §(ex) =
0. For every k € N, let Z; C X be an (n,eky1)-spanning set for T of
minimal cardinality. Then by construction, Z; C X is also an (mn,d(eg))-
spanning set for 7. Thus, span(mn,d(eg),T) < span(n,egiq,7™). This
further implies that

mh(T) < mliin lim inf % log(span(mn, d(ex),T"))

1
< 111?1 lim inf — log(span(n, ex+1,7™)) = h(T™).
non

Therefore, we have h(T™) = m h(T).

(ii) Assume that 7' : X — X is a homeomorphism. For every n > 1
and every ¢ > 0, Y C X is an (n,e)-separating set for T if and only if
T=D(Y) € X is an (n,e)-separating set for 7!, Thus, sep(n,e,T) =
sep(n,e, T~1). This further implies that

h(T) = lim lim sup log(sep(n e, T))

e—0t

1
= lim limsup — log(sep(n,e, T71)) = h(T™1).
n

e—0t n

For every i € {1,2}, let (X;,d') be a compact metric space and T} :
X; — X, a topological dynamical system.
(iii) Set X = X1 x Xoand T'= T x Ty : X — X. Define the compatible
metric d : X x X — R, by the formula
Vo = (z1,22),y = (y1,52) € X, d(z,y) = max {d" (z1,31),d*(x2,92) } -

Moreover, for every n > 1, we have

Vo = ($1,$2),y = (ylayZ) € X, dn(‘r’y) = max{dk(xlayl)udi(x%yQ)}'
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Let n >1and e > 0. If U; C X7 has d,ll—diameter less than € and Uy C X
has d%—diameter less than e, then U = Uy x Uy C X has d,-diameter less
than e. This implies that

cov(n,e,T) < cov(n,e,Th) cov(n,e, Tb).
This further implies that
1
h(T) = lim limsup — log(cov(n,e,T))
n

e—0t n

1
< lim limsup — (log(cov(n,e,T1)) + log(cov(n, e, T3)))
n

e—0t n

1 1
< lim limsup — log(cov(n,e, T lim limsup — log(cov(n, e, T:
< lim limsup —log(cov(n, e, T3)) + lim lim sup - log(cov(n, &, T3))

— h(TY) + h(TR).

Conversely, let n > 1 and ¢ > 0. If Y] C X is an (n,e)-separating set for
Ty and Yy C X5 is an (n, €)-separating set for 7o, then Y =Y x Yy C X is
an (n,e)-separating set for 7'. This implies that

sep(n, e, T1) sep(n, &, Tz) < sep(n, e, T).
This further implies that
h(T1) + h(T3)

1 1
= lim liminf —log(sep(n,e,T1)) + lim liminf — log(sep(n,e,T3))
n

e—0t n n e—0t n

1
< lim liminf — (log(sep(n,e,T1)) + log(sep(n, &, T2)))
n

e—0t+ n

1
< lim liminf — log(sep(n, e, T))
n

e—0t n

= W(T).

Therefore, we have h(T) = h(T1) + h(T5).

(iv) Assume that T : Xy — X5 is a topological factor of T : X1 — Xj.
Then there exists a surjective continuous map m : X; — Xs such that
Toom=moT. For every € > 0, set

d(g) = sup {dz(w(az),w(y)) | (z,y) € X1 x X, dl(:c,y) < s}.

Then we have §(¢) — 0 when ¢ — 07. Choose a decreasing sequence
(er)r in R such that (6(ex))r is decreasing and limy e, = limy 0(e;) = 0.
For every n > 1, choose a covering %, ;, of X; of minimal cardinality by
elements with d}l—diameter less than e41. Since 7 : X1 — Xo is surjective
and since X; = UUe%n,k U, we have Xy = n(X;) = UUe%,k m(U). Thus,
(1) is a covering of Xy. Moreover by construction, for every U € %, .,
the d2-diameter of 7(U) is at most d(ex.1) < 6(ex). This implies that
cov(n,d(eg), Tr) < cov(n,egy1,T1). This further implies that

1
hT2) = lilgn lim - log(cov(n,d(ex), T2))
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1
< lilrcn lim — log(cov(n, ex+1,11)) = h(T1).
non

This finishes the proof of the proposition. O

Next, we plan to compute the topological entropy of the (forward)
Bernoulli shift. Before doing so, we introduce the following terminology.
Let T : X — X be a topological dynamical system. We say that 7" is (pos-
itively) expansive if there exists k > 0 such that whenever z,y € X and
x # y, there exists n € N for which d(T"(z),T"(y)) > k. Assume moreover
that T : X — X is a homeomorphism. We say that T is expansive if there
exists k > 0 such that whenever z,y € X and x # y, there exists n € Z for
which d(T™(z),T"(y)) > k. We call k > 0 a constant of expansiveness.

Observe that the notion of expansiveness does not depend on the choice
of the compatible metric d on X. Indeed, let d and p be compatible metrics
on X and assume that T': X — X is expansive with respect to the metric
d with constant of expansiveness k > 0. We claim that T : X — X is also
expansive with respect to the metric p. Indeed, for every € > 0, set

5(5) = Sup {d(xay) ‘ (x,y) € X xX, p(a:,y) < 6}'

By compactness and since p and d are equivalent compatible metrics on
X, we have §(¢) — 0 when ¢ — 07. Choose € > 0 small enough so that
d(e) < k. For all z,y € X such that x # y, there exists n € N such that
d(T™(z), T"(y)) > k > d(¢) and so p(T™(x),T™(y)) > . This shows that
T : X — X is expansive with respect to the metric p with constant of
expansiveness € > 0.

EXAMPLE 1.23. Let 7 > 2. Set Y = {1,...,r} and consider the forward
Bernoulli shift S : YN — YN : (3,), = (Yni1)n. Define the compatible
metric d : YN x YN - R, by the formula d((yn)n, (2n)n) = 27 where k =
min{n € N | y, # 2z, }. Then S is expansive with constant of expansiveness
k = 1. Likewise, the Bernoulli shift T : Y% — YZ : (y.)n = (Yni1)n is
expansive with constant of expansiveness k = 1.

The expansiveness property turns out to be useful when computing the
topological entropy.

PROPOSITION 1.24. LetT : X — X be an expansive topological dynamsi-

cal system with constant of expansiveness k > 0. Then for every 0 < € < K,
we have he(T) = h(T).

The same statement holds true for homeomorphisms.

PrOOF. Fix 0 < 7 < € < k. By monotonicity, it suffices to prove that
hoy(T') < he(T). This clearly implies the statement of the proposition.

By expansiveness, for all x,y € X such that x # y, there exists n € N for
which d(T™(z), T™(y)) > Kk > €. Since the set {(z,y) € X x X | d(z,y) >~}
is compact, there exists k = k(v,e) € N such that if d(x,y) > =, then
d(T’(x), T/ (y)) > ¢ for some 0 < j < k. It follows that if Y C X is an



4. TOPOLOGICAL ENTROPY 21

(n,~y)-separating set, then Y is an (n + k, e)-separating set. Using lemma
1.18, this implies that

cov(n,2v,T) <sep(n,v,T) <sep(n+k,e,T) < cov(n+k,e,T)
and so ho (1) < he(T'). This finishes the proof of the proposition. O

We can now compute the topological entropy of Bernoulli shifts.

PROPOSITION 1.25. Let r > 2. Set Y = {1,...,7} and consider the
forward Bernoulli shift S : YN — YN : (y,)n = (Yns1)n and the Bernoulli
shift T: Y% = Y% : (yp)n = (Yns1)n- Then h(S) = h(T) = log(r).

PRrROOF. We prove that h(S) = log(r). The proof that h(T) = log(r) is
completely analogous. Set X = YN, Define the compatible metric d : X x
X — R, by the formula d((yn)n, (20)n) = 27% where k = min{n € N | y,, #
zn}. By Example 1.23, S is expansive with constant of expansiveness k = 1.
Choose 3 < e < 1. For every j € {1,...,r}, set U; = {(2y)n € X | 20 = j}
and note that U; C X is both open and closed and has d-diameter equal to %
Moreover, Z = (Uj)i<j<r is a partition of X and for any j # k, any x € U;
and y € Uy, we have d(x,y) = 1. This implies that cov(1,e,S) = r. More
generally, for every m > 1, we may consider the partition \/2:01 S~H(w) =
(U ))(ioserssim—1)€{L,....rym Of X defined by

905--slm—1

Ulio,sim—1) = 1(@n)n € X [ 20 =0, -+, Tm-1 = im—1}

=U;, NS~ U,)N--- NS~ D, )

for all (ig, ... ,im-1) € {1,...,7}™. Then U, i,,_,) C X is both open and
closed and has d,,-diameter equal to % Moreover, for any (ig,...,im-1) 7#
(Joy - -+, Jm—1), any « € Ulio,...sim—1) and y € Uy, . j,._), We have dm(z,y) =
1. This implies that cov(m,e,S) = r™. Therefore, using Proposition 1.24,
we have

h(S) = he(S) = lim % log(cov(m,e,S)) = lim % log(r™) = log(r).

This finishes the proof of the proposition. ([l






CHAPTER 2

Ergodic theory

Throughtout this chapter, a probability space (X, 2", v) is a triple where
X is a nonempty set, 2 is a g-algebra of subsets of X and v is a probability
measure defined on 2°. We refer to elements in 2~ as measurable subsets
of X. A Borel space Z is a space endowed with a o-algebra 2 of Borel
subsets. A topological space X is naturally a Borel space endowed with
the o-algebra 2" generated by open sets. A Borel space Z is standard if Z
is Borel isomorphic to a Borel subset of a Polish space. A standard Borel
space is either finite, countable or Borel isomorphic to the segment [0, 1].
A standard probability space (X, Z,v) is a standard Borel space (X, Z")
endowed with a Borel probability measure v € Prob(X). Any standard
probability space (X, 2", v) such that v is atom-free is measurably isomor-
phic to ([0, 1], #([0,1]), Leb) where Leb denotes the Lebesgue measure on
[0,1]. This means that there exists a measurable map = : (X, Z,v) —
([0,1],4(]0,1]), Leb), conull measurable subsets Y C X, Z C [0, 1] such that
nly : Y — Z is bijective, (7]|z)™! : Z — Y is measurable and 7,v = Leb.
Recall that a collection of subsets .7 C &(X) is said to be a semi-algebra

if the following properties hold:

e e

e Forall A, Be ¥, ANBe.Y.

e For all A € ., the complement X \ A is finite union of pairwise

disjoint elements in .&.

A collection of subsets &7 C (X)) is said to be an algebra if o7 is a semi-
algebra and if moreover for all A € &7, we have X \ A € &

EXAMPLE 2.1. Let (X, Z",v) = (X1 x X2, 21® 22,1 ®1s) be a product
probability space. The collection

y:{leU2|U1€%,UQE%}C%®%-2

that consists of all measurable rectangles is a semi-algebra. The collection
o C Z1® %5 that consists of all finite unions of rectangles forms an algebra.
Moreover, we have o(.%) = o() = 21 @ Z3.

We will use the following result without comment (see [EW11, Theorem

A.1.10)).

THEOREM 2.2. Let (X, Z,v) be a probability space and of C Z an
algebra for which o(</) = 2. Then for every e > 0 and every U € X,
there exists A € o/ such that v(UAA) < €.

23
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For more information, we refer the reader to [EW11, Appendix A] and
[KL16, Appendix A].

A measurable dynamical system is amap 7 : X — X for which T=1(U) €
Z for every U € 2. We denote by T,v the pushforward probability mea-
sure of v by T defined by (T,.v)(U) = v(T~1(U)) for every U € 2. We
say that T is nonsingular if the probability measures T,v and v are equiv-
alent on X. We then say that the quadruple (X, 2",v,T) is a nonsingular
dynamical system. We say that T is probability measure preserving (pmp)
if T,v = v. We then say that the quadruple (X, 2",v,T) is a probability
measure preserving (pmp) dynamical system. In these lectures notes, we
will be mostly interested in pmp dynamical systems.

For every i € {1,2}, let (X, Zi,v;,T;) be a pmp dynamical system.
We say that (X9, Z2,1v9,T3) is a pmp factor of (X1, 21,v1,T1) or that
(X1, Z1,v1,T1) is a pmp extension of (Xo, Za,v2,Ts) if there exists a mea-
surable map 7 : (X1, 21,v1) — (Xo, Z2,12) such that muw; = vy and
Ty om = 7o Ty vi-almost everywhere. We say that (X, 2%,v9,T5) and
(X1, Z1,v1,T1) are measurably conjugate if there exists a measurable map
7w (X1, Z1,v1) — (X9, Z2,1v2), conull measurable subsets Y1 C X3, Y C
X5 such that 7|y, : Y1 — Y3 is bijective and (n|y,)~! : Yo — Y3 is measur-
able, m,1y = 1o and T o m = 7 o 11 vi-almost everywhere.

In this chapter, we follow the presentation given in [BS02, EW11,
KL16].

1. Ergodicity and recurrence

Firstly, we prove a useful result in order to check that a measurable
dynamical system T : X — X is pmp. We will use this result without
reference in what follows.

LEmMMA 2.3. Let T : X — X be a measurable dynamical system. Let
€ C A be a collection of measurable subsets that is stable under finite
intersection and such that o(€¢) = Z . Then T preserves the probability
measure v if and only if v(T~Y(U)) = v(U) for every U € €.

PROOF. Assume that v(T~1(U)) = v(U) for every U € €. Set
Y ={UeZ |v(T'(U))=vU)}.

We have that € C % and that % is a monotone class. By the monotone
class lemma, we obtain 2" = 0(¢) = #(€¢) C # and hence & =%. O

Secondly, we show that pmp dynamical systems behave well with respect
to LP-spaces.

LEMMA 2.4. Let T : X — X be a measurable dynamical system. Then
T preserves the probability measure v if and only if for every measurable
function f: X — R4, we have

/dey:/Xfony.
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Moreover, if T preserves the probability measure v, then for every p €
[1,+00) and every f € LP(X, 2 ,v), we have f o T € LP(X, 2 ,v) and
1f o Tllp = [£1p-

PROOF. Assume that T : X — X preserves the probability measure v.
Then for every U € 27, we have

/1UdV=I/(U):V(T1(U))Z/ 1y o T'dv.
X

X
By linearity, the above equality also holds for every simple measurable func-
tion f: X — C. Let now f : X — Ry be a measurable fonction. Then there
exists an increasing sequence (fy), of finite linear combinations of simple
nonnegative measurable functions on X such that f,, — f. By monotone
convergence theorem, we have

/ fdl/:lim/ fndV:lim/ anTdV:/ foTdv.
X noJX nJX X
Let now f € LP(X, 2", v). Using the first part of the proof, we obtain

||f|r§=/Xdeu:/X|f|Ponu=/X|foT|pdu=||foT|r§.

This shows that foT € LP(X, 2",v). Note that foT € LP(X,2Z,v) only
depends on (the class of) f € L”(X, 2", v). O

For any topological space X endowed with its o-algebra 2" = Z(X) of
Borel sets, any topological dynamical system T : X — X and any Borel
probability measure v € Probp(X), we may consider the pmp dynamical
system (X, 2", v, T).

1.1. Ergodicity.

DEFINITION 2.5. Let (X, %2 ,v,T) be a pmp dynamical system. We
say that T is ergodic if for every measurable subset U € 2 such that
T-Y(U) = U, we have v(U) € {0,1}.

For every pmp dynamical system (X, 2",v,T), define the Koopman op-
erator k : L2(X, 2 ,v) — L3(X, 2, v) by the formula r7(¢) = € o T. For
all £,m € L2(X, 2 ,v), we have

(k7 (&), k() = (§0T,noT)

= EoT -noTdv
X
X

= (&)

It follows that wp : L2(X, 2 ,v) — L*(X, 2 ,v) is an isometry, that is,
kyep = 1. If (X, 27,1, T) is an invertible pmp dynamical system, then
kr @ LA(X, 2 ,v) — L%(X, 2 ,v) is a unitary, that is, khkr = 1 and
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krk}p = 1. Observe that rkr(1x) = 1x and so 1 is always an eigenvalue
for Kk with eigenvector given by 1x. The next proposition provides useful
characterizations of ergodicity.

PROPOSITION 2.6. Let (X, 2 ,v,T) be a pmp dynamical system. The
following assertions are equivalent:
(i) T is ergodic.
(i) For all U € 2 such that v(T~Y(U)AU) = 0, we have v(U) €
{0,1}.
(iii) For allU € 2 such that v(U) > 0, we have v(,en T "(U)) = 1.
(iv) For allU,V € 2 such that v(U)v(V) > 0, there exists n > 1 such
that v(T~™(U)NV) > 0.
(v) Ewvery measurable function f : X — C satisfying f = foT v-almost
everywhere is constant v-almost everywhere.
(vi) The eigenvalue 1 is simple for k.

PRrOOF. (i) = (ii) Let U € 2 be such that v(T~}(U)AU) = 0. Define
V =NpenUgsn T7(U)) € 2 and observe that T~(V) = V. By ergodic-
ity, we know that v(V) € {0,1}. For every n € N, set V;, = >, T7*(U) €
Z . Observe that the sequence (V;,),, is decreasing and (o Vi, = V. For
every n € N, we have UAV,, C Uy, UAT¥(U) and v(UAT™(U)) = 0
since

o UAT™(U) C UiZy THU)AT-U+)(U) and

o (T HU)AT-UD(U)) = 0 for all j > 0.
It follows that v(UAV,,) = 0 for every n € N and hence v(UAV') = 0. Since
v(V) € {0,1}, we obtain v(U) € {0,1}.

(ii) = (iii) Set V = U,ey T "™(U). Then we have T-'(V) C V and
v(T=Y(V)) = v(V) since Thv = v. Then v(T~1(V)AV) = 0 and hence
v(V) € {0,1}. Since U C V and v(U) > 0, we obtain v(V) = 1.

(ili) = (iv) Since v(U) > 0, we have v(J,yT "(U)) = 1. Since
v(V) = v(Upen(T™™(U) NV)) and v(V) > 0, there exists n € N such
that v(T-"(U)NV) > 0.

(iv) = (i). Let U € 2 be such that T~1(U) = U. Then for every n € N,

0=v(UNX\U)=v(T™U)NX\U).

It follows that v(U) =0 or v(X \ U) = 0, that is, v(U) € {0,1}.

(i) = (v). Upon taking the real and imaginary parts of f, we may
assume without loss of generality that the measurable function f is real-
valued. For every t € R, define U, = {z € X | f(z) >t} € 2. Since
foT = f v-almost everywhere, we have v(T~}(U;)AU;) = 0. Therefore,
v(Us) € {0,1}. Since t — v(U;) is decreasing and f is real-valued, there
exists ¢t € R such that v(Us) = 0 for all s > ¢ and v(Us) = 1 for all s < ¢.
This implies that f = ¢ v-almost everywhere.

(v) = (vi) This is trivial.
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(vi) = (i) Let U € 2 be such that T~ (U) = U. Set f = 1y €
L2(X, 2 ,v). Since foT = f, f is constant v-almost everywhere. Therefore,
v(U) € {0,1}. O
We use Proposition 2.6 to give examples of ergodic pmp dynamical sys-
tems. Denote by (T, %, Ar) the probability space that consists of the torus
endowed with its o-algebra of Borel subsets and its Haar (Lebesgue) mea-
sure. For every a € R, consider the rotation T, : T — T : z — exp(i27a)z.
Since Ty AT = Ar, the dynamical system (T, &, At, Ty,) is pmp.

PROPOSITION 2.7. The rotation (T, B, Ar,Ty) is ergodic if and only if
acR\Q.

PROOF. Firstly, assume that o € R\ Q. For every k € Z, define ey, : T —
T : z +— 2. It easy to check that (e;)rez forms an orthonormal basis of the
Hilbert space L?(T, %, At). Let f € L*(T, %, \r) be a function satisfying
foT, = f. Write f = >, ., arer for the Fourier expansion of f where
ar € C for all £k € Z. By uniqueness of the Fourier expansion, we have
cr = cpexp(i2nka) for all k € Z. Since aw € R\ Q, we have ¢, = 0 for all
k € Z\ {0}. Then f is a constant function. This shows that (T, Z, A, Ty)
is ergodic.

Secondly, assume that o € Q. Write o = p/q with p € Z and ¢ €
N\ 0. The function x — x? is T,,-invariant and is not Ap-almost everywhere
constant. This shows that (T, %, At, T, ) is not ergodic [l

Let (Y,%,n) be a probability space. Consider the product probabil-
ity space (YN, N 5n®N) together with the forward Bernoulli shift S :
YN = YN ()0 = (Yna1)n. It is plain to see that S.n®N = n®N and
SO (YN, ON n@N G is a pmp dynamical system. Likewise, consider the
product probability space (Y%, #®% n®Z) together with the Bernoulli shift
T:Y% Y% (yn)n = (Yns1)n. It is plain to see that Tun®” = n®% and so
(Y2, 9% n®2 T is a pmp dynamical system.

PROPOSITION 2.8. The forward Bernoulli shift (YN, &SN n®N ) s er-
godic. Likewise, the Bernoulli shift (Y%, %% n®Z T) is ergodic.

Proor. We only give the proof of ergodicity of the forward Bernoulli
shift. The proof of ergodicity of the Bernoulli shift is completely analogous.
Set (X, 2",v) = (YN, &N Ny Note that the o-algebra 2" is generated
by cylinder sets of the form € (Uy,...,Uy,) = [1,, Zn where Z, =U, € ¥
for n <ng and Z, =Y for n > ny.

Let U € 2 satisfying S~1(U) = U. For every ¢ > 0, there exists a finite
union of cylinder sets V' such that v(UAV) < e. Then there exists m € N
large enough such that

v(STMVNV) = v(STH(VINXAV) = w(ST(V))r(X\V) = v(V)r(X\V).
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We have v(S™™(V)AU) = v(S™™(V)AS™™(U)) = v(VAU) < e and so
v(ST™(V)AV) < 2e. Therefore, we have

v Uw(X\U) < @(V)+e)(w(X\V)+e)
<v(V)u(X\ V) + 2 + €2
<v(ST(V)AV) + 2 4 €2
<de+ €2
Since € > 0 is arbitrary, we have v(U)v(X\U) =0 and sov(U) € {0,1}. O

Let G be a compact abelian metrizable group. Denote by #(G) its
o-algebra of Borel subsets and by mg its unique Haar Borel probability
measure (see Chapter 3). Let T € Aut(G) be a continuous automorphism
group. Then we have Tymg = mq and so (G, B(G), mq,T) is a pmp dy-
namical system. We denote by G the Pontryagin dual of G that consists of
all continuous group homomorphisms (characters) x : G — T.

THEOREM 2.9. The pmp dynamical system (G, B(G),mq,T) is ergodic
if and only if the identity x o T™ = x for some n > 1 and character x € G
implies that x = 1qg is the trivial character.

ProOF. Firstly, assume that there is a nontrivial character x € G such
that x o T™ = x for some n > 1. We may choose n > 1 to be minimal with
this property. Then the continuous function f = x4 xoT +- - -+xoT" lis T-
invariant. We claim that f is not constant. Indeed, for every i € {0,...,n},
set xo = 1lg and y; = yo TP ! € G for every 1 < ¢ < n. Then the
characters (xi)o<i<n are pairwise distinct and so the family (x;)o<i<n is
linearly independent. This implies that f is not constant. This shows that
the pmp dynamical system (G, #B(G), mg,T) is not ergodic.

Secondly, assume that there is no nontrivial character y € G such that
xoT" = x for some n > 1. Let f € L?(G, %(G), mg) be a function that
is invariant under T. Write f = er@ cyx for the Fourier expansion of

f € LG, %B(G), mg). We have eré lex|? = || f]13. Since f = foT, we

have ¢, rx = ¢y for every x € G and every k € Z. Let xy € G. Then
either ¢, = 0 or there are finitely many distinct characters among (x o
T*)rez. In the latter case, there are p > ¢ such that y o TP = y o T9 and
so x o TP7% = x. By assumption, this implies that y = 1g. Therefore,
f=cy,lg € L%(G, B(G), mg) is constant mg-almost everywhere. This
shows that the pmp dynamical system (G, #(G), mqg,T) is ergodic. O

As a corollary to Theorem 2.9, we obtain a characterization of ergodicity
for toral automorphisms. Let d > 1 and A € GL4(Z). Regard T¢ = R?/Z4
and denote by Ara the Haar (Lebesgue) probability measure on T¢. Consider
the continuous group automorphism T4 : T¢ — T : z+7Z% — Az +7Z¢ which
satisfies Ty, Ape = Apa. Then (T%, %, A\pa, T4) is a pmp dynamical system.
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COROLLARY 2.10. The pmp dynamical system (T¢, B, Apa, Ta) is ergodic
if and only if no eigenvalue of A is a root of unity.

PROOF. For every (x1,...,1q) € R we denote by [z;]; the correspond-
ing column vector. We simply denote by (-,-) the canonical inner product
on R?. The homomorphism

74 T (ny, ... ng) — ((a:l, o wa) + 2% s exp(izn{ind:, [mi]>))

is an isomorphism that allows to identify Z? with the Pontryagin dual T¢9.
Firstly, assume that there exists an eigenvalue A of A that is a root
of unity. Then there exists n > 1 such that 1 = A" is an eigenvalue of
A™ Then 1 is also an eigenvalue of (A™)*. Regarding (A™)* € GL4(Q),
we infer that there exists a nonzero vector & € Q¢ such that (A™)*¢ = €.
Upon multiplying by a nonzero integer, we may assume that & € Z% and
(A™)*¢ = €. Write & = [n;]; and consider the corresponding character xy =

(n1,...,nq) € Z¢ = Td. Then for every g = (x1,...,1q) + Z% € T¢, we have

xX(Tk(g)) = exp(i2m (€, A" [z]:))
= exp(i2m((A")"¢, [x:]:))
= exp(i2m (¢, [z:):))
= x(9)-
By Theorem 2.9, the pmp dynamical system (T¢, %, Apa, T4) is not ergodic.

Secondly, assume the pmp dynamical system (T¢, &, Apa, T4) is not er-
godic. By Theorem 2.9, there is a nontrivial character x = (ni,...,nq) €

Z* = T4 such that x o T% = y for some n > 1. Write £ = [n;];. For every
g=(z1,...,24) +Z% € T? we have

exp(i2m((A")"¢, [xi]i)) = exp(i2m (¢, A"[xi]:))
= x(T4(9))
= x(9)
= exp(i2m (¢, [zi]:))-
This further implies that (A")*¢ = £ and so 1 is an eigenvalue of (A™)*

as well as of A™. This shows that A has an eigenvalue that is a root of
unity. [l

1.2. Recurrence and applications. We prove Poincaré’s recurrence
theorem and we investigate some applications. Poincaré’s recurrence theo-
rem is a measurable analogue of Birkhoff’s recurrence theorem in topological
dynamics (see Corollary 1.6).

THEOREM 2.11 (Poincaré). Let (X, Z°,v,T) be a pmp dynamical system
and U € Z . Then v-almost every point of U returns to U infinitely many
times. That is, there exists a conull measurable subset V. C U such that
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for every x € V, there exists an increasing sequence (ng)i>1 in N for which
T (x) € U for every k > 1.

PROOF. For every n € N, set W,, = U, T ¥(U) € 2 and observe
that W, = T~"(Wy). Moreover, the sequence (W,,),, is decreasing. Since T’
is pmp, we have v(W,,) = v(W)y) for every n € N. Since v(Wy) < +o0, it
follows that v((,,cy Wa) = lim, v(W,,) = v(Wy). Letting V' = UN(,,cxy Wh,

(]

we are done.

Let (X, 2",v,T) be an invertible pmp dynamical system and U € 2~
with v(U) > 0. By Poincaré’s recurrence theorem, the first return time
defined by

ry(z) =inf{n >1|T"(z) e U}

is finite v-almost everywhere on U.

DEFINITION 2.12 (Induced transformation). The map Ty : U — U de-
fined v-almost everywhere by

Ty(z) = T (x)
is called the transformation induced by T on the measurable subset U.

Observe that ry : U — N and Ty : U — U are measurable. Indeed, for
every n > 1, set X,, = {x € X | ry(z) =n}. We have X1 =T 1U) € &
and

Vn>2, X,=T"U)\ |J Xie2.
1<i<n
This implies that riy : U — N is measurable. For every n > 1, set U, =
UN X,. Since T is invertible, we have T"(U,) € Z for every n > 1.
Therefore, the map

Ty :U—=U= |_|(T”:Un—>T"(Un))

n>1

is measurable. The measurable subset U, LIT(U,)U---UT" Y(U,) is called
the nth Kakutani tower and | ,>1 [ Jy<j<p—1 T7(U,) is called the Kakutani
skyscraper.

Set 7 ={VnU|VeZ}and vy(V) = %U)I/(V) for every V € % .
Observe that % is a o-algebra on U and vy is a probability measure defined
on (U, % ). We have the following result.

PROPOSITION 2.13. The induced dynamical system (U, % ,vy,Ty) is
pmp. Moreover, if (X, 2" ,v,T) is ergodic, then so is (U, % ,vy,Ty).

PROOF. Since (X, Z",v,T) is pmp and invertible and
Ty :U = U = |_| (T":Up — T™(Uy)) ,

n>1

it follows that (U, % ,vy,Ty) is pmp.
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If (U, % ,vy,Ty) is not ergodic, then there exists a Ty-invariant subset
V'€ % such that 0 <v(V) <v(U). Then W = | |~ [ lo<jcn_1 T (VNU,)
is T-invariant. Moreover for every 0 < j < n — 1, we have v((U \ V) N
T/(V NU,)) = 0. This implies that W is nontrivial and so (X, 2",v,T) is
not ergodic. O

PROPOSITION 2.14 (Kac). Let (X, 2 ,v,T) be an invertible ergodic pmp
dynamical system and U € 2~ with v(U) > 0. Then

/rUdy: 1.
U

PRrROOF. Since (X, 2", v,T) is ergodic and since | |, [ ly<j<p_1 T/ (U,)

is T-invariant, we have
L] || Tw.)=Xx
n>10<5<n—1

up to a v-null measurable subset. By the monotone convergence theorem,
it follows that

n—1
L=v(X) =) u(T/(Un) =Y mv(U,) = / ry dv.

n>1j=0 n>1 U
This finishes the proof. O

We prove now Kakutani—Rokhlin’s tower theorem.

THEOREM 2.15 (Kakutani-Rokhlin). Let (X, Z2",v,T) be an invertible
ergodic pmp dynamical system and assume that v is atom-free. For every
€ >0 and every n > 1, there exists V € Z such that

e the measurable subsets V,T(V),...,T" " Y(V) are pairwise disjoint
o and v(X \ Upcp<n 1 TF(V)) < e.

PROOF. Let € > 0 and n > 1. Since v is atom-free, we may choose a
measurable subset U € 2 such that 0 < v(U) < £. Consider the Kakutani
skyscraper over U. By ergodicity, we know that

|| || 7w =X
E>10<j<k—1

up to v-null measurable subset. Define the measurable subset

k/n]-1
v=1[] ] 7Ww.
k>n  5=0

Observe that & = |k/n] -n +r with 0 < r < n — 1. We obtain that
V,T(V),...,T" (V) are pairwise disjoint. Then we obtain

viXxX\ || T'O) | £n) v(lr) <nvU) <e.
0<k<n—1 k>1
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This finishes the proof. U

We use Theorem 2.15 to infer that invertible ergodic pmp dynamical
systems are not strongly ergodic.

COROLLARY 2.16. Let (X, Z,v,T) be an invertible ergodic pmp dynam-
ical system and assume that v is atom-free.

Then there exists a sequence (Uy)y, in 2 such that v(Uy,) = 3 for every
n € N and lim,, v(T(U,)AU,) = 0.

ProOF. For every n > 1, we apply Theorem 2.15 to e = % and 2n. Then
there exists a measurable subset V;, € 2" such that V,,, T(V,,), ..., T?"~1(V},)
are pairwise disjoint and v(X \ |ycpcon_1 T%(Va)) < L. Set W,, = V;, U
T(V,)U---UT"1(V,). Then we have

1 1 1 1

—— —< < — T A <2 < —
For every n > 1, define U,, € £ so that W,, C U,, and v(U,) = 5. Since for
every n. > 1, v(U, \ W,,) < 5=, we have lim,, v(T(U,)AU,) = 0. O

2. Invariant measures and unique ergodicity

In this section, we assume that X is a compact metrizable space. We fix
a compatible metric d on X. Denote by (.#Z(X),|| - ||) the Banach space of
all complex Borel measures on X where the norm of v € .Z(X) is given by
il (x) = [u[(X). Here [u| denotes the modulus or absolute value of the
Borel measure v € .#(X). Hence |v| is a finite positive Borel measure on
X. By Riesz representation theorem, the mapping

(X)) = CX) v <fr—>/de1/>

is isometric and surjective. We can define the weak-* topology on . (X):
a net (v4)ier in A (X) converges to v € .#(X) with respect to the weak-x
topology if for every f € C(X), we have

hm/ fdyz_/xfdy.

Observe that the unit ball Ball(.#Z (X)) is a metrizable compact space
hence separable. Indeed, since (X, d) is a compact metric space, the uni-
tal Banach algebra C(X) is separable by Stone—Weierstrass theorem. Let
(fn)n>1 be a uniformly dense sequence in C(X). For all v,n € Ball(.Z (X)),
define
ii |fondV_fxfnd77|

— 2" 1+ | [x fadv = [x fudn]
Then d is a metric on Ball(.# (X)) that induces the weak-* topology.

Denote by 2~ = #(X) the o-algebra of Borel subsets of X and by
Prob(X) C .#(X) the convex subset of all the Borel (positive) probability
measures on X. Since Prob(X) is contained in the unit ball of .#Z(X) and

d(an) =
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since Prob(X) is weak-* closed, it follows that Prob(X) is weak-* compact.
For any topological dynamical system T : X — X, define the map T :
Prob(X) — Prob(X) : v+ Tyv by the formula

/de(T*l/):/XfOTdV.

here T,v is the pushforward Borel probability measure of v by T'. It is easy
to check that T : Prob(X) — Prob(X) is affine and weak-* continuous.

2.1. Invariant measures. Let T': X — X be a topological dynamical
system. Denote by

Probr(X) = {v € Prob(X) | T,v = v} .
the weak-* convex subset of T-invariant Borel probability measures on X.

LEMMA 2.17. We have Proby(X) # 0.

PROOF. Choose v € Prob(X) any Borel probability measure on X. For
every n > 1, define

1
Vn = ﬁ (V + T+ + (Tn_l)*y) = PI’Ob(X)

For every n > 1, we have
1 2
1Tevn = vall. ey = S IT™)wv = Vi) < —
and so limy, ||Tivn — vnl|.z(x) = 0. Since Prob(X) is weak-* compact, there
exists an increasing sequence (ny)x in N and € Prob(X) such that v, — 7
weak-+ as k — oo. Since limy, || Tsvp,, — vn, ||z (x) = 0, we also have T.vy,, —
Up, — 0 weak-x as k — oo and so Tyn = 1. Therefore, n € Proby(X). O

Let T': X — X be a topological dynamical system and v € Probp(X).
We say that v is T-ergodic if the pmp dynamical system (X, 2", v,T) is
ergodic. We give a characterization of ergodic measures.

ProposITION 2.18. Let T : X — X be a topological dynamical system
and v € Probp(X). Then (X, 2 ,v,T) is ergodic if and only if v is an
extreme point of the convez set Proby(X).

PROOF. Let v € Probr(X) be a measure that is not T-ergodic. Let U €
Z be such that v(U) € (0,1). Define 11 = ﬁyw and vy = WV]X\U.
Then we have vy, € Probp(X), v1 # v # v and v = v(U) vy + (1 —
v(U)) va. Thus, v is not an extreme point of the convex set Probr(X).

Conversely, let v € Probyp(X) be a T-ergodic measure and let v =t vy +
(1 —t) 2 be a convex combination with ¢t € (0,1) and vy, 2 € Probp(X).
Since t > 0, v; is absolutely continuous with respect to v and we may
consider the Radon—Nikodym derivative f = % c LYX, 2 ,v).

Define U = {z € X | f(z) < 1}. We have

n(U) = (UNTYHU))+vi(U\THD))
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N /UmT—l(U) fdv+ /U\T—l(U) fdv
v (T HU) =i (T 1 U)NU) + (T~ (U)\ V)

= / fdv+ / fdv.
T-1(U)NU T-YU)\U
Since v1(U) = v1(T~Y(U)), we have

/ fdv = / fdv
U\T-1(U) T-LU)\U
Moreover, we have

v(T-HU)\U) = (T~ (U)) = (T~ (U)NT)
=v(U) —v(T7H(U)ND)
=v(U\THU)).

Finally, observe that f(x) < 1 for all x € U \ T~Y(U) while f(z) > 1 for
all z € T~Y(U) \ U. Therefore v(T~Y(U)\ U) = v(U\T~Y(U)) = 0 and so
v(T~Y(U)AU) = 0. Since v is ergodic, we have v(U) € {0,1}. If v(U) = 1,
then 1 =11 (U) = [, fdv and so f(z) = 1 for v-almost every = € U. This is
a contradiction. Thus, v(U) = 0 and so we have f(z) > 1 for v-almost every
x € X. Likewise, we have f(z) < 1 for v-almost every z € X. Therefore,
f=1in LYX, 2 ,v) and so v; = v. Thus, v is an extreme point of the
convex set Probp(X). O

Recall that two positive measures v and 1 on a measurable space (E, <)
are mutually singular if there exists a measurable subset U € & such that
v(U) = 0 and n(U) = 1. The above characterization of ergodic measures
allows to obtain an interesting dichotomy result for such ergodic measures.

PrOPOSITION 2.19. Let T : X — X be a topological dynamical system.
Let vi,vy € Probp(X) be two T-ergodic measures. Then either vy = vy or
v1 and vo are mutually singular.

Proor. Using Radon—-Nikodym’s theorem, there exists a unique pair
({1, (o) of finite positive Borel measures on X such that 4 = (3 + (2, where
(1 is absolutely continuous with respect to v» and (o and v, are mutually
singular.

If (1 =0, then v = {» and so v and vy are mutually singular.

If (o = 0, then v; = (4 and so v is absolutely continuous with respect
to vo. The same reasoning as in Proposition 2.18 shows that vy = vs.

Finally, by contradiction, we show that (; = 0 or (s = 0. If not, then
we may write v; = tn; + (1 — t)ne with 11,72 € Prob(X), t € (0,1), m
is absolutely continuous with respect to v, and 79 and v, are mutually
singular. Observe that 1y # ny and vy = Ty = t T + (1 — t) Tune. It
is clear that T,n; is absolutely continuous with respect to Tyvo = vo. We
claim that T,no and Tyvs = v are mutually singular. Indeed, let U € 2~
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be a measurable subset such that 72(U) = 1 and v5(U) = 0. Then we have
n(U) = 0 and so v1(U) = (1 — t)no(U) = (1 —t). Since vo(T~1(U)) = 0,
we also have 7 (T~Y(U)) = 0 and so vi(T~1(U)) = (1 — t)n(T~H(U)).
Since v1(T~H(U)) = v1(U), we have no(T~1(U)) = n2(U) = 1. Therefore,
Tyn2 and v are mutually singular. By uniqueness of the decomposition
in Radon-Nikodym’s theorem, we have Ty = n; and Tyn2 = 12, that is,
M1,M2 € Probp(X). This however contradicts the fact that 14 € Probp(X) is
an extreme point by Proposition 2.18. Therefore, we have (; =0 or (2 = 0
and the proof is complete. O

2.2. Unique ergodicity. We say that a topological dynamical system
T : X — X is uniquely ergodic if Probp(X) is a singleton. We start by
proving a general result on weak-* compact convex subsets.

LEMMA 2.20 (Krein-Milman). Let (E,||-||) be a normed complex vector
space. Let K C (E*)1 be a nonempty weak-+ closed convex subset of the unit
ball of E*. Then K has an extreme point.

PROOF. Observe that K is weak-x compact. We say that a nonempty
subset A C K is extreme if whenever z,y € K and t € (0,1) are such that
tr+ (1—t)y € A, we have x,y € A. Define the nonempty set

¢ ={A C K | A is weak-x closed, extreme and nonempty}
with order relation < given by
Ay < Ay if and only if Ay C A

It is easy to check that (¢, <) is an inductive set. Indeed, let {A; | i € I} C
% be a totally ordered subset. Set A = (\,.; A;. Then A C K is weak-*
closed, extreme and nonempty by compactness. Therefore, we have A € €.

By Zorn’s lemma, % has a maximal element B € ¥. We show that
B is a singleton. If not, let fi, fo € B with f; # fs. Let v € E be such
that fi(v) # fa(v). We may assume that Rfi(v) < Rfz(v). Since B is
weak-* closed and hence weak-*x compact, there exists fy € B such that
Rfo(v) =sup{Rf(v) | f € B}. Let B ={f € B|Rf(v) =Rfo(v)}. Then
By is a weak-x closed extreme subset of K. Indeed, let ¢g1,90 € K and
t € (0,1) be such that tg; + (1 —t)g2 € By. Since B is extreme, we have
g1, 92 € B. Next, by definition of By, we moreover have g1,g2 € Bp. Then
By is a weak-* closed extreme subset of K such that B < By and By # B.
This contradicts the maximality of B. Therefore B = {f} is a singleton and
so f € K is an extreme point. O

THEOREM 2.21. Let T : X — X be a topological dynamical system. The
following assertions are equivalent:
(i) T is uniquely ergodic.
(ii) There is only one ergodic T-invariant Borel probability measure in

Pl"ObT(X) .
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iii) For every f € C(X), there exists a constant \¢ such that uniformly
f
for all z € X, we have

tim - (f(e) + -+ T @) = Ay

(iv) There exists a uniformly dense subspace &/ C C(X) such that for
every f € 4, there exists a constant Ay such that for all x € X,
we have

tm - (f(@) 4+ F(T (@) = Ay

If any of the above assertions holds, then we have Ay = fX fdv,
where Probp(X) = {v}.

PRrROOF. (i) = (ii). If Proby(X) = {v}, then v is an extreme point of
the convex set Proby(X). Thus, v is ergodic by Theorem 2.18.

(ii) = (i). We show that if Probp(X) is not a singleton, then it has
at least two extreme points. This will prove the implication by Propo-
sition 2.18. Let vi,v9 € Probp(X) be such that vy is an extreme point
(see Lemma 2.20) and vy # v1. Let f € C(X) be such that [, fdry #
Jx fdri. We may assume that f is real-valued and that [ fdvy < [ fdra.
Since Probp(X) is weak-* compact, there exists v € Proby(X) such that

[x fdv=sup{[y fdn|n € Probp(X)}. Set

K—{neProbT(X)]/den—/deu}.

Then K C Probp(X) is a nonempty weak-x closed convex subset. By
Lemma 2.20, K has an extreme point 7. Since K C Probp(X) is moreover
an extreme subset, 1 is an extreme point in Probr(X). Since [y fdv <
Jx fdn, we have vy # 1.

(i) = (iii). Using the proof of Lemma 2.17, we have that for every
z € X, the sequence (% (51 +Tybp + -+ (T7"‘_1)>,<5:L«))n>1 converges with
respect to the weak-* topology to the unique invariant Borel probability v.
Then for all f € C(X) and all x € X, since (T%),6, = Ok (), we have

tm (2 4 f(z) + -+ (T @) = /dey.

If the above convergence is not uniform on X for some f € C(X), then there
exist € > 0, an increasing sequence (ng)x in N* and x,, € X such that for
all k € N,

1 _

— (T, + f(@n,) + -+ F(TT Y(@n,))) —/ fdv

Nk X

> e.

By weak-x compactness of Prob(X), upon choosing a further subsequence
(nk)r in N, we may assume that the sequence nik(éxnk + 07w, T F
5T"k‘1(xnk)) converges to 1 € Prob(X) with respect to the weak-* topology.
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The same reasoning as in the proof of Lemma 2.17 shows that 7 is invariant
and hence n = v. We obtain

.1 ng— _
hmn—k (xnk + flzn,) + -+ f(T 1(xnk))) = /deu

k

which is a contradiction.

(iii) = (iv). It is trivial.

(iv) = (i). By applying Lebesgue’s dominated convergence theorem, for
every v € Probr(X), we have A\ = [ fdv for every f € o/. Therefore, for
all v1,19 € Probp(X) and all f € &7,

/deulz)\f:/xfdyg.

By uniform density of & in C(X), we have [, fdv; = [, fdip for all
f € C(X) and so v; = vp. Therefore, Proby(X) is a singleton. O

The sum .y rn(z) = L (f(z)+ -+ f(T"!(2))) is sometimes called
the nth Birkhoff sum of the function f € C(X) at the point z € X. Theorem
2.21 shows that the Birkhoff sums of f € C(X) converge everywhere and
uniformly in X to the space average fX fdv.

Recall that for o € R, the circle rotation T, : T — T is the topological
dynamical system defined by T, (x) = exp(i2ra)x for all z € T.

PrOPOSITION 2.22. The circle rotation T, : T — T is uniquely ergodic
if and only if « € R\ Q.

PROOF. First, assume that o € R\ Q. Let k € Z and put f(z) = 2* for
all z € T. Then with x = exp(i2nt), for all n € N, we have

Lr1am(@) == (f(@) + f(Ta(@)) + -+ F(T2(2)))

— 3|~

n—1
=— Zexp (i2wk(t 4+ ja))
7=0

3

[

ith=0
T\ Lexp(iznkt) FERE) i £ 0

N 1 k=0 .
0 ifk£0 & "X

:/deAT.

Since the linear span of {T — T : z + z¥ : k € Z} is uniformly dense in C(T)
by Stone—Weierstrass theorem, T, follows uniquely ergodic by Theorem 2.21.

Next, assume that a € Q. Then the Lebesgue measure Ar is invariant
but not ergodic for Ti,. Since there must exist ergodic measures in Probz, (T)
by Lemma 2.20 and Theorem 2.18, T, is not uniquely ergodic. O
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DEFINITION 2.23. Let v € Prob(X) and (x,,), a sequence in X. We say
that the sequence (z,,), is equidistributed with respect to v if the sequence
of empirical measures (1 (85, + -+ + 5%_1))" converges to v with respect to
the weak-* topology, that is,

V€ CWX). Tim s (flan) 4o+ fan) = [ Fam

For every x € R, write {z} = z— |z] € [0,1) for the fractional part of x.
As a consequence of Theorem 2.21 and Proposition 2.22, we deduce Weyl’s
equidistribution theorem.

COROLLARY 2.24 (Weyl’s equidistribution theorem). Let o € R\ Q be
irrational. Then the sequence ({an}), is equidistributed with respect to the
Lebesgue measure Leb on [0, 1].

PrOOF. Using the continuous mapping [0,1] — T : =z — exp(i27z),
we may identify [0, 1]/~ with T as compact spaces, where 0 ~ 1 in [0, 1].
Moreover, we may identify the Lebesgue measure on [0, 1]/~ with the Haar
measure At on T.

Let a € R\ Q be irrational. We can write the rotation T, : T — T : z
{z+a}. Then for every n € N, we have {na} = T}*(0). Using a combination
of Theorem 2.21 and Proposition 2.22, we infer that

VF €CM), tim(F(0) -+ f(latn— D)) = [ fla)dda(a).

Therefore, ({an}), is equidistributed with respect to the Lebesgue measure
Leb on [0, 1]. O

Finally, we obtain the following general result about unique ergodicity
for rotations on compact metrizable groups.

THEOREM 2.25. Let G be a compact metrizable group. Denote by %B(G)
its o-algebra of Borel subsets and by m¢ its unique Haar Borel probability
measure. Let g € G and consider the rotation Ty : G — G : x — gx. Then
the following assertions are equivalent:

(i) The rotation Ty is uniquely ergodic and Probr, (G) = {mg}.
(ii) The Haar measure mgq is Ty-ergodic.
(iii) The subgroup g* is dense in G.
(iv) The group G is abelian and x(g) # 1 for every x € G\ {1¢}.

Proor. Fix a compatible metric d : G x G — Ry. Define the new
compatible metric dg : G X G — R4 by the formula

Ve,y e G, dg(z,y) :/ d(hx, hy) dmg(h).
G

Then dg : G x G — R is left invariant.
(i) = (ii) This is obvious.
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(ii) = (iii) Denote by H the closure of the subgroup g% in G. Then
H < G is a closed abelian subgroup. Consider the continuous function
fro : G — R, defined by the formula

Ve e G, fu(zx)=inf{dg(z,y)|yec H}.

Observe that fg : G — Ry is indeed continuous since |fg(z) — fu(y)| <
dg(z,y) for all z,y € G. Since dg is left invariant, it follows that fi o T, =
fr. By contraposition, if the subgroup ¢% is not dense in G, then H # G
and so fp is not constant. This implies that the pmp dynamical system
(G, %(G),mq,Ty) is not ergodic.

(iii) = (i) Let v € Probr,(G) be a Ty-invariant Borel probability mea-
sure. Then v is Tyn-invariant for every n € Z. We show that v is T, -invariant
for every x € G. Indeed, let f € C(G) be a continuous function and x € G.
Choose a sequence (ng)i in Z such that limg dg (g™ ,z) = 0. Then by
Lebesgue’s dominated convergence theorem, we have

| e at) =t [ fam vt = [ s )

Then v is Ty-invariant for every z € G. By uniqueness of the Haar probabil-
ity measure on G, it follows that v = mq. Therefore, T} is uniquely ergodic
and Probr, (G) = {mg}.

(iii) = (iv) Since ¢gZ is dense in G, it follows that G is abelian. Let
X € G such that Xx(g) = 1. Then for every n € Z, we have x(¢") = 1. By
continuity and density, we have y = 15.

(iv) = (ii) Let f € L*(G, %(G), mq) be a Ty-invariant function. Write
f = er@ cyx for the Fourier expansion of f € L%(G, B(G),mg). Since
foTy = f, we have ¢, x(g) = ¢, for every x € G. Using the assumption, we

obtain ¢, = 0 for every x € CA}\ {1¢}. It follows that f = ¢q1,1¢ is constant
mg-almost everywhere. Therefore, (G, #(G), mqg,T,) is ergodic. O

Keep the same notation as in Theorem 2.25. Simply denote by kg, =
KT, : L3(G,%(G),mg) — L*(G,B(G),mg) : f — foT, the Koopman
unitary operator. For every y € G, we have kg(x) = xoTy = x(g9)x. It
follows that (X)xe@ forms an orthonormal basis of eigenvectors of k4 on

L2(G, #(G), mg). In that case, we have that the pmp dynamical system
(G, AB(G),mq,Ty) has discrete spectrum.

3. Ergodic theorems

3.1. von Neumann’s mean ergodic theorem. In this subsection,
we prove von Neumann’s mean ergodic theorem.
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THEOREM 2.26 (von Neumann). Let (X, 2" ,v,T) be an ergodic pmp
dynamical system. Then we have

=0.
2

(2.1) VfeLX(X, 2 ,v) hmH ZfoTk /fdu

ProOOF. Denote by sy : L3(X, 2",v) — L3(X, 2" ,v) the Koopman op-
erator associated with (X, 27,1, T). Denote by % the closed subspace of
L*(X, 2 ,v) generated by {xr(9) —g|g€L*X,2,v)}. Since T is er-
godic, we have # 1 = Clx. Indeed, forall f € #* andall g € L*(X, 2", v),
we have

0= {(f,rr(g) —9) = (sx(f) = f.9)
and so k(f) = f. Then

1f = w2 (HIIZ = 113+ 113 = 2R(f, 5 (f))
= 713 + IkT(N)13 = 2R3 (F), f)
=|If = &2(HIE = 0.
Since T is ergodic and since kp(f) = f, we have f € Clx. Therefore,
H =1%X, 2 ,v) e Cly.
If f =Aly € Cly, we have 1 770 kk(f) = AMx = ([, fdv)1x for all
n > 1 and so lim,, Lo RE(f) = (Jx fdv)ix = [y fdv.
If f=krr(g) — g, we have

1 & 1

— k — n —

n Z k7 (f) n("&T(g) 9)

k=0

and so hmn e By S RE(f) = 0in L2(X, 2, v). By density of the linear span
of {IiT —glgel®X, 2 ,v) } in J and since the operator 1 - Z;é /ﬁ:’%
is a contraction for every n > 1, we have lim, 1 Zk o K5(f) = 0 for every
f € . This finishes the proof of the theorem. O

Using Theorem 2.26, we obtain a new characterization of ergodic pmp
dynamical systems.

COROLLARY 2.27. Let (X, Z",v,T) be a pmp dynamical system. Then
(X, Z,v,T) is ergodic if and only if
n—1
1
(2.2) VU,V e, lim-— S vUnTHW)) = v(U)(V).
k=0
PROOF. Assume that (X, 2",v,T) is not ergodic. Then there exists
U € % such that T~1(U) = U and v(U) € (0,1). Then we have

n—1
Vn € N, % > vUNTHU)) =vU) #v(U)
k=0
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Therefore, (2.2) does not hold.
Assume that (X, 2,1, T) is ergodic. Let U,V € 2. Using Theorem
2.26, we obtain

n—1 n—1
1 —k T k
hTannkZ:OV(UmT (V))-hm—Z<1U, VoT>
= <1U,hm Zlv oTk>
v(V)1
= ( ) (V)-
Therefore, (2.2) holds. O

3.2. Birkhoff’s pointwise ergodic theorem. In this subsection, we
prove Birkhoff’s pointwise ergodic theorem.

THEOREM 2.28 (Birkhoff). Let (X, Z,v,T) be an ergodic pmp dynami-
cal system. Then for every f € L} (X, 2", v), the sequence (% Zz;é foT*),
converges to fX f dv v-almost everywhere and in LY(X, 27, v).

Before proving Theorem 2.28, we prove a useful inequality known as the
mazimal inequality.

LEMMA 2.29 (Maximal inequality). Let (Y, %', n,S) be a pmp dynamical
system. Let (on)n>1 e a sequence of real-valued functions in LY (X, 2, v)
that satisfy the subadditivity relation @, 1n < @moS™ 4+, for allm,n > 1.
Set p = 1 and ©* = sup,,>; Yn- Then

/ pdn > 0.
{p*>0}

PROOF OF LEMMA 2.29. Set ¥g = @9 = 0. For every n > 1, set ¢, =
max{0,1,...,¢on} and Y, = {y €Y | ¢n(y) > 0}. For every y € Y,,, we
have 1, (y) = @iy (y) for some k(y) € {1,...,n} and so

Un(Y) = Priy)(¥) < (Pry)-1°5)(Y) +@(y) < Wn-105)(y) +@(y)-
For every y € Y\ Y,,, we have ¢,(y) = 0 and (¢,—1 0 S)(y) > 0. Therefore,

/ o) dnly) > / n(y) dn(y) — /Y (1 0 §)(y) dn(y)

/ Un(y) dn(y /Y (-1 0 8)(y) dn(y)
—/w — 1)) dily) > 0.
Y
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Since (Y3,), is increasing and since {p* > 0} = {51 Yn, Lebesgue’s domi-
nated convergence theorem implies that

/ godn:/ 1{§0*>0}g0d77:11m/ ly, pdn =lim pdn > 0.
{p*>0} Y nJy " JY,
This finishes the proof. O

Proor orF THEOREM 2.28. Upon taking real and imaginary parts, we
may assume that f is real-valued. For every n > 1, set f, = ZZ;& foTk.
Then for every n > 1, we have [, 1 f,dv = [, fdv € R. In order to prove
that lim, % fn(x) exists v-almost everywhere, it suffices to show that for all
rational numbers a < 3, the measurable subset

1 1
Xop = {x € X |liminf — f,(z) < a < f < limsup fn(x)} e
n n n n

is v-null. Observe that for every = € X, we have lim,, 2(f,, — fo—107T)(z) =
lim,, %f(x) = 0. This implies that T7%(X, ) = Xa . Since (X, 27,v,T) is
ergodic, we have v(X, g) € {0,1}. Assume by contradiction that v(X, g) =
L. If we apply Lemma 2.29 to Y = X, 3, S = T'|x,, ;, and (¢n)n = (fn—Bn)n
(resp. Y = Xo 5, S = T'|x, , and (¢n)n = (an — fu)n), we obtain

/ (f—B)dv>0 and / (a— f)dv > 0.
Xa,8 Xa,p

It follows that fXa ﬁ(a — B)dv > 0 and so v(X, g) = 0, which is a contra-
diction. ’

Define the measurable function Af : X — R by the formula \f(z) =
lim, L f,(x) for v-almost every z € X. Since for every z € X, we have
lim,, %(fn — (fn—10T))(x) = 0, we obtain Ay oT = Ay v-almost everywhere.
Since T is ergodic, Ay is a constant function v-almost everywhere. We
moreover have |[A¢| < [|f|li. Indeed, upon taking positive and negative
parts, we may assume that f = f* > 0 (resp. f = f~ > 0). By Fatou’s
lemma, we have

05/\f—/ liminflfndygliminfl/ fndy—/ fdv.
x non noonNJx X

It remains to show that Ay = [, fdv and that lim, ||f, — Af[l1 = 0.
To do this, we firstly assume that f € L>(X, 2", v) (which is indeed con-
tained in Ll(X , 2", v) since v is a probability measure). Then by Lebesgue’s
dominated convergence theorem, we obtain limy, [[Af — 2 f,]1 = 0 and so
A = [y fdv. Secondly, assume that f € LY(X, 2 ,v) and fix ¢ > 0. By
Ll-density of L>°(X, .2 ,v) in LY(X, 2", u), choose g € L®°(X, 2 ,v) such
that || f — gll1 < /3. We have 1| f,, — gn|l1 < /3 for every n > 1 by triangle
inequality and |A; — Ag| < || f — g|li < &/3 by the observation above. Using
again the triangle inequality, we obtain limsup, |[Af — 2 f,|l; < . Since
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e > 0 is arbitrary, we have lim,, [Ay — L f,|l1 = 0 and so Ay = [y fdv. This
finishes the proof. O

As a consequence of Birkhoff’s pointwise ergodic theorem, we can deduce
the strong law of large numbers.

COROLLARY 2.30 (Strong law of large numbers). Let (X,)p>1 be an
infinite sequence of iid integrable real valued random variables. Then almost

surely, we have
1

PROOF. Denote by (€2, 47, P) the underlying probability space and con-
sider the measurable map 7 : @ — RY" : w s (X, (w)),. Since (X,)n is
iid, there is a unique Borel probability measure n € Prob(R) such that
P = n®Y. Consider the forward Bernoulli shift S : RY" — RN .
(Yn)n + (Yn)n+1. Then the pmp dynamical system (RN, Z(R)®N" n®N" 9)
is ergodic. Consider the function f € LY(RY", Z(R)®N" n®N") defined by
f((yn)n) = y1 which satisfies [y, fdn®" = E(X1). Then for every n > 1
and every y = (gn)n = 7(w), we have L SITL(f 0 SF)(y) = L(Xy(w) +

-+ 4+ X, (w)). Therefore, Theorem 2.28 implies that almost surely, we have
LXi+- 4+ X,) > E(Xy). O

3.3. Kingman’s subadditive ergodic theorem. In this subsection,
we prove Kingman’s subadditve ergodic theorem.

THEOREM 2.31 (Kingman). Let (X, 2 ,v,T) be an ergodic pmp dynami-
cal system. Let (f,)n>1 be a sequence of real-valued functions in L' (X, 27, v)
that satisfy the subadditivity relation fi4n < froT™ + fp for all m,n > 1.
Then the sequence (%fn)n converges to inf, > %fX fndv v-almost every-
where.

PRrROOF. Set fo = 0. For every n > 1, set g, = fn — ZZ;& fioT*. Then
(gn)n is a sequence of real-valued functions in L!(X, .27, v) that still satisfy
the subadditivity relation gmin < gm o T™ + g, for all m,n > 1. Moreover,
gt = 0 and so g, < 0 for all n > 1. By Theorem 2.28, the sequence
(L 125 f1 0 TF), converges to [  J1dv v-almost everywhere. Therefore,
we may assume without loss of generality that f, < 0 for every n > 1. Set
{= infnzl %fX fn dv.

Firstly, since the sequence ( [y fn dv), is subadditive, Lemma 1.17 im-
plies that ¢ = lim, 1 [\ f, dv.

Secondly, we show that the sequence (% fn)n converges v-almost every-
where. For all a, 8 € Q, define

1
Xo = {a:EX]liminffn(x) <a} ez
non

Ygz{xeXllimsupTllfn(x)>ﬁ} eZ.
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Assume that o < . Since f,11 < f,oT + f1 for every n > 1, we have
T Y(Xq) C X4 and Yz C T71(Y3). Since (X, 2°,v,T) is ergodic, we have
v(Xa),v(Yg) € {0,1}. Assume by contradiction that v(X,) = v(Y3) = 1.
If we apply Lemma 2.29 to ¥ = X, NY3, § = T|XQQYBQT_1(XQHYB) and
(Pn)n = (fa — Bn)n (resp. Y = Xo NY3, S = Tlx,nysnr—1(Xanys) and
(¢n)n = (an — fn)n), we obtain

/ (fi—B)dv >0 and / (a— f1)dv > 0.
XaNYs XaNYs

It follows that fXamYB(O‘ — f)dv > 0 and so v(X, NY3) = 0, which is a

contradiction. Therefore, we have v(X,NYg) = 0 for all a, 5 € Q satisfying
a < (. This implies that the sequence (fy,), converges v-almost everywhere.
Define (z) = lim,, £ f,(z) < 0 for v-almost every z € X.

For every n > 1, since —f,, > 0, Fatou’s lemma implies that

/—z/;dz/—/ liminf—lfndygliminf/ —lfndyz—é.
X x n n n X

n

Next, we show that ¢(z) < ¢ for v-almost every = € X. Recall that f,, <0
for every n € N. Let ¢ym > 1 and 0 < &k < m — 1. By iterating the
subadditivity relation, we have

Farvym < Famak + e 0 T < frrnik < fio + fqm o TF
< famoTF
< figmtym O T* + fn o TVt
< f(q—2)m oTF + fim 0 T(a—2)m-+k + o T(a—1)m+k

<.
q—1
< Z fm o T,
i=0
Summing over k € {0,...,m — 1} these inequalities and dividing by m, we

obtain

1 qgm—
< = E m O T,
Q+1 = m par

Dividing both sides by gm and letting ¢ — oo, by applying Theorem 2.28
to fm € LY(X, 2", v), we obtain for v-almost every = € X,

1 1
P(x )—h;anqum )Sm/xfmdy.

Since this holds true for every m > 1, we obtain ¢(z) < ¢ for v-almost every
reX.
If £ = —oc0, then ¢(z) = £ = —oo for v-almost every x € X.
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If —0o < £ <0, then —¢(x) + ¢ > 0 for v-almost every x € X and
Jx (=¥ +£)dv < 0. This implies that ¢ (z) = ¢ for v-almost every z € X.
This finishes the proof. U

4. Strong and weak mixing

Let (X, 2",v,T) be a pmp dynamical system. The convergence (2.2) in
Corollary 2.27 suggests the following strengthenings of the notion of ergod-
icity.

DEFINITION 2.32. We say that (X, Z",v,T) is

o strongly mizing if for all U,V € 2", we have
lmv(UNT™(V)) =v0)v(V).
n

o weakly mixing if for all U,V € 2, we have

n—1
hTILn - Z ‘V(U NT*WV) —vU)p(V)| =0
k=0

Observe that for any sequence (ay), in R, if lim,, a, = 0, then we have
lim,, % ZZ;(I) |ax| = 0. Therefore, strong mixing implies weak mixing. More-
over, weak mixing implies ergodicity by Corollary 2.27.

Firstly, we give examples of strongly mixing pmp dynamical systems.
Let (Y,% n) be a probability space. Consider the product probability
space (YN, ®N n®N) together with the forward Bernoulli shift S : YN —
YN (yn)n = (Yni1)n. Likewise, consider the product probability space
(Y2 y®L L) together with the Bernoulli shift 7' : Y% — YZ : (y,), —
(yn—i-l)n-

PROPOSITION 2.33. The forward Bernoulli shift (YN, N n®N ) js
mizing. Likewise, the Bernoulli shift (Y%, % ®% n®% T) is mizing.

PRrROOF. We only give the proof of strong mixing of the forward Bernoulli
shift. The proof of strong mixing of the Bernoulli shift is completely anal-
ogous. Set (X, 2 ,v) = (YN, #@N @y Note that the o-algebra 2
is generated by cylinder sets of the form €' (Uy,...,Upn,) = [[, Zn where
Zn=U, € % forn <ngand Z, =Y for n > ng. In order to check the
strong mixing condition, we may assume that U,V € £ are finite unions
of cylinder sets. Then there exists mg € N large enough such that for every
m > mg, we have

v(UNS™™V)) =vU)v(S™™(V)) =vU)v(V).
This finishes the proof. O
We make the following observation regarding the connection between
topological mixing and strong mixing. Let X be a compact metrizable space

and T : X — X a topological dynamical system. Let v € Probp(X) be a
T-invariant Borel probability measure such that supp(r) = X. If the pmp
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dynamical system (X, 2 ,v,T) is strongly mixing, then 7' : X — X is
topologically mixing.
Secondly, we prove the following characterization of weak mixing.

THEOREM 2.34. Let (X, 2" ,v,T) be a pmp dynamical system. The fol-
lowing assertions are equivalent:
(i) (X, Z,v,T) is weakly mixing.
(i) ( X xX, Z2Z,vev,T®T) is ergodic.
(iii) The Koopman operator kr : L*(X, 2 ,v) — L*(X, 2 ,v) has only
one eigenvalue, which is 1, and moreover, the eigenvalue 1 is simple
for k.

Proor. (i) = (ii) Let Uy,U,V1,Vo € 2. Set a = v(Uy)v(V1) and
b = v(Uy)v(Va). For every k € N, set ar, = v(Uy NT7%(V1)) and by =
v(Ua N T~*(V3)). For every n > 1, we have

n—1
1
=Y (wev) (Ui xU:N (T T) (Vi x 1))
" k=0
1 n—1 1 n—1 n—1
= - by = — —a)bp+— Y ab
Zakk nZ(ak a)k—i- Zak

Since (X, Z",v,T) is weakly mixing, we have lim,, % EZ;(I) lay —a| = 0 and
lim,, SPZ4 by — bl = 0. This further implies that

n—1
tim 3" (@ 0)(U1 % Va1 (T & T)H(V x 12)
k=0
= v(U1)v(V1)v(Us)r(Va)
= (v @)Uy x Us)(v @ v)(V; x Va).

Since the o-algebra 2" ® £ is generated by elements of the form U x V for
UV e Z, it follows that for all W, Z € 2" ® 4, we have

n—1

lim =3 (v @ ) (W N (T T)™(2) = (v & )W) 2 v)(2).

n n
k=0

Then (X x X, 2 @ Z,v®v,T®T) is ergodic by Corollary 2.27.
(ii) = (i) Let U,V € 2. Since (X x X, 2@ Z,vv,T®T) is ergodic,
Corollary 2.27 implies that

n—1 n—1
lim % S vUnTHWV))? = lim % Y wen)(UxUN(TeT) ™ (VxV))
k=0 k=0

(2.3) = v(U)?v(V)?
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Observe that by Cauchy—Schwarz inequality, for any sequence (ay), in R,
we have

n—1 2 n—1
1 132,
k=0 k=0
Applying (2.4) to the sequence a,, = [v(UNT (V) —v(U)v(V)|, we obtain

n

n—1 ?
(1 S mUNTHV)) - u(U)v(V)!>
k=0

|
—

n

w(UNT*V)) = v(U)(V)]?

S+
Sﬁ
= O

<V(U AT F (V)2 + w(U)2u(V)? — 20(U N T’k(V))I/(U)u(V))

S|

k

Il
=)

Since (X, Z°,v,T) is ergodic, a combination of (2.3) and Corollary 2.27
implies that

n—1

Y wUNTFW)) = v(U)p(V)| = 0.

k=0

Then (X, 2 ,v,T) is weakly mixing.

(ii) = (iii) Assume that A € T is an eigenvalue for k7 and choose a
nonzero A-eigenvector ¢ € L2(X, 2", v). We have kp(£) = \¢. Consider 6 :
XxX = C:(z,y) = &(x)E(y). Then we have § € L2(X x X, 2 @2 ,v®v)
and Krgr(0) = A0 = 0. Since (X x X, 2 @ 2 ,v@v, T®T) is ergodic, 0 is
constant (v ® v)-almost everywhere. This further implies that £ is constant
v-almost everywhere and so A = 1.

(iii) = (ii) By contraposition, assume that (X x X, 2°® 2", vev, T®T)
is not ergodic. Let § € L2(X x X, 2 ® 2",v ® v) © Clxxx be a nonzero
element such that krgr(#) = 6. Since 6 is not constant (v ® v)-almost
everywhere, it follows that one of the functions

° (z,y) = 0(z,y) + 0(y, z)
b (xay) = 1(9($7y) - 0(y7x))
is not constant (v®v)-almost everywhere. Without loss of generality, we may
assume that 6(z,y) = 0(y,z) (v ® v)-almost everywhere. Upon subtracting
Jxwx 0d(r ® v), we may further assume that [, 0d(r®@v)=0.
Using Fubini and Cauchy—Schwarz theorems, we may consider the well-

defined operator

S|

Ko : L2(X, 2 ,v) > LA(X, 2 ,v): £ /X 6(-,y)&(y) dv(y).
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Observe that Ky is nonzero, selfadjoint and satisfies ||Ky|| < ||0]]2. Note
that

155l = sup {[{Ko (&), m)| | &1 € L2(X, 27, v), [|€]l2. [In]]2 < 1}

= sup {‘/XX)(H(w,y)ﬁ(y)n(fﬁ)d(V® l/)(w,y)’ [ Ill2, lInlle < 1}.

Since the linear span of {(z,y) — &(x)n(y), &, n € L*(X, 27,v)} is ||-||2-dense
in L2A(X x X, 2 @ Z,v®v), it follows that Ky is a norm limit of finite rank
operators and so Ky is a compact operator. Then we may choose a nonzero
eigenvalue A of Ky whose A-eigenspace #, C L3(X, .2 ,v) is necessarily
finite dimensional. We claim that %) is kp-invariant. Indeed, let £ € 7).
Since Ky(§) = AE, for v-almost every x € X, we have

Ko(er(©)(@) = [ 0T ) avly)
_ / O(T (), T(y))E(T(y)) dv(y)

/ O(T(x), )€ (y) du(y)

= Kp(§)(T(x))
= X(T'(x))
= Aer(§)(T).

(
Thus, we have Ky(rr(£)) = Aer(€) and so ) is kr-invariant. By restric-
tion, we may now regard kp : £\ — ) as a linear operator defined on
the finite dimensional space J#\. Therefore, k7 has a nonzero eigenvector
n € J with respect to some eigenvalue p € T. Since [y, 0d(v @ v) =0,

n e L2(X,% ,v) is not constant v-almost everywhere. Therefore, either
w#1orpu=1and dimker(kp — 1) > 2. O

Using Theorem 2.34, we infer that rotations are never weakly mixing.
Indeed, let o € R and consider the rotation T, : T — T : z — exp(i27a)z.
Then the continuous function 6 : (z,y) — exp(i27(x — y)) is invariant un-
der T, ® T, and is not invariant. More generally, rotations on compact
metrizable groups are never weakly mixing.

5. Applications to random walks in SL;(R)

In this section, we give a brief introduction to the topic of matrix random
products. For more information, we refer the reader to [Fu00].

5.1. Definition of the first Lyapunov exponent. Let d > 2. De-
note by V' = R? the d-dimensional real vector space endowed with its canon-
ical euclidean structure. Denote by G = SL4(R) the special linear group.
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We define the norm || - || on G by the formula

ot =sup {202 o v g0y}

Then we have ||gh|| < ||g]| [|k] for all g,h € G.

Denote by K = SO4(R) < G the special orthogonal subgroup and ob-
serve that K < G is compact. Define the subset AT C G of diagonal
matrices by

+:{diag()\1,...,)\d) ’ A > > A >0, )\1"‘>\d:1} c@G
and by A < G the subgroup of diagonal matrices generated by A™.

LEMMA 2.35 (Cartan decomposition). We have G = K - AT - K

ProoOF. Let g € G be a matrix. By polar decomposition, we may write

= koh where kg € K and h € G is symmetric positive definite. By
diagonalization, there exists ko € K such that kohks l'— 4 € A*. Then
g = kiaky with k) = koky ' € K. O

As a consequence of Lemma 2.35, we infer that for every g € G, we have
lgll > 1 and flg~1] < g4,

Let u € Prob(G) be a Borel probability measure on G and denote by
G, = (supp(p)) < G the closed subgroup generated by the support of p.
We will assume throughout this section that p has a finite first moment
meaning that

/ log(|lgl)) dulg) < +oo.

Set (Q, %,P) = (G, (G)®N*, p®N"). Consider the forward Bernoulli
shift S : (Q,%4,P) — (Q,%8,P) : (yn)n = (Yn+1)n. Recall that the pmp
dynamical system (2, %,P,S) is ergodic (see Proposmon 2.8). For every
n > 1 and every w = (gi)r € 2, define S, (w) = g, ---g1. The sequence of
random products (Sy,), is called the random walk on G With law .

The following proposition provides a noncommutative analogue of the
strong law of large numbers (see Corollary 2.30).

PROPOSITION 2.36. There exists A\ = A\1(u) € Ry such that for P-almost
every w = (gn)n € €2, we have

1 . 1
A1(p) = lim —log(|lgn - -~ g1l]) = mf/ —log([lgn - - g1]|) dP(w).
n n n o Jon

PRrROOF. Forevery n > 1, set f, = log(||Sn(-)||) and observe that f, > 0.
Since p has a finite first moment, we have f; € L!(Q, %, P). Moreover, for
P-almost every w = (gr)r € 2 and all m,n > 1, we have

Smn = 10g([| Smrn (@) ) = log(|[Sm (5™ (w))Sn(w)]])
< log (|| (5™ (@))) + log([| Sn(w)l[)
= fm oS+ fn
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Then the sequence ( f,,), satisfies the subadditivity relation and in particular
(fn)n is a sequence in L'(©,%,P). By Theorem 2.31, there exists A =
A1(p) € R such that for P-almost every w = (gn)n € €2, we have

1
Ai(p) = Tim —log(llgn - -~ g1 1))
. 1
= hm/ —log(|lgn - - - g1]]) dP(w)
n Q n

- 1
= inf [ —log(|lgn---g1]]) dP(w) > 0.

n>l Jon
This finishes the proof. ([

DEFINITION 2.37. The nonnegative real number A;(u) is called the first
Lyapunov exponent of the random walk on SLy(R) with law .

Recall that for every n > 1, the convolution product u*™ € Prob(G)
is defined as the pushforward measure p*"* = 7,,u%", where 7, : G" —
G :(9gny---,91) & gn---g1. By definition of the convolution product, we
moreover have the formula

M) = tim - [ ox(lgl) du™9) = int = [ 1os(lgl) o).

5.2. Positivity of the first Lyapunov exponent. In this subsection,
we follow the exposition given by Emmanuel Breuillard.

DEFINITION 2.38. We say that a subgroup H < SL4(R) is

o irreducible if {0} and V are the only subspaces invariant under H.
e strongly irreducible if {{0}}, {V'} and {{0},V} are the only finite
sets of subspaces of V invariant under H.

The main result of this subsection gives a sufficient condition regarding
positivity of the first Lyapunov exponent.

THEOREM 2.39 (Furstenberg). Let p € Prob(G) be a Borel probability
measure with a finite first moment. Assume that G, is noncompact and
strongly irreducible. Then Ai(u) > 0.

Theorem 2.39 means that under the assumptions that G, is noncom-
pact and strongly irreducible, the norm of the random walk (S,,), grows
exponentially with exponential rate given by A1(u) > 0.

Firstly, we observe that it suffices to prove Theorem 2.39 under the
extra assumption that u({e}) > 0. Indeed, let u € Prob(G) be a Borel
probability measure with a finite first moment. Let € € (0,1) and define
pe = €0e + (1 — ) € Prob(G). Then p. € Prob(G) still has a finite first
moment and G, = G,,.

CLAIM 2.40. We A\ (pe) = (1 —e) A1 ().
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Indeed, for every n > 1, we have pi" = >7_, Ck e"=F(1 —¢)*p**. Using
Proposition 2.36, for every n > 1, we have

= toxtlalh auz" o)

—(1_ k-lon—k k-1 L o «k
—-93 e -2 7 toxlal) 4t )

> (1) Y Cloten (1 — o)1 M)

k=1
= (1 —e)A(p).
Since this holds true for every n > 1, we infer that A\ (pe) > (1 — ) A1 (p).
Conversely, let § > 0 and choose N € N, such that ¢ [ log(||g||) du**(g) <

A1(p) + 6 for every k > N + 1. For every 1 < k < N, we have C*~1 < plV
and so

1 X
hmZ et et [oa(lal an (o) =0,

Therefore, we obtain

M (1e) = lim ~ / log((lgll) duz"(g)

n — ]' *
<1—shmsupz et ey 1 [ toalal) dit )

+(1—¢ hmsup Z “lemTR(1 = )P (A (w) 4 6)
k=N+1

< (1-2)(Aa(u) +9).

Since this holds true for every ¢ > 0, we infer that Aj(ue) < (1 — &)1 (p).
Therefore, we have Aj(ue) = (1 —e)A1(p).

We endow the d-dimensional real vector space V' with the unique (up
to multiplicative constant) infinite Lebesgue measure Ay. Observe that
the linear action G ~ V preserves the Lebesgue measure \y. Set 5 =
L2(V,%(V),\y). We may then define the unitary representation 7 : G —
U () by the formula

Vge GV e, (n(9)f)(v) =E(g ).

Moreover, the map 7 : G — % (J€) is strongly continuous in the sense that
for every £ € A, the map G — 5 : g — w(g)& is continuous (see Chapter
3). Then we may define the Markov operator w(u) : £ — # by the formula

Ve e A, (n(u)en) = /G (n(9)€.m) dp(g).
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Observe that
Vene A, | §n|</! 9)6,m dutg) < €1l Il

This shows that ||7(u)|| < 1. We simply say that m(u) is a contraction.
The next proposition shows that under the assumptions of Theorem
2.39, the Markov operator m(u) has a spectral gap.

PROPOSITION 2.41. Let pu € Prob(G) be a Borel probability measure such
that p({e}) > 0. Assume that G, is noncompact and strongly irreducible.
Then (1) has a spectral gap, meaning that ||7(p)| < 1.

Let us prove Theorem 2.39 using Proposition 2.41.

PrROOF OF THEOREM 2.39. Recall that using Lemma 2.35, for every
g € G, we have ||g|| > 1 and [|g7 || < |lg||“"!. Moreover, using Claim 2.40,
we may assume that u({e}) > 0.

Fix ¢ > d/2 and define £ € S by the formula £(v) = min{1, ||v||~¢} for
every v € V. Then for every v € V such that 1 < ||v|| < 2 and every g € G,
we have

E(g~" ) = min{1, [lg~ ]| 7} > 27¢Ylg ™17 > 27| 7Y

Then using Fubini’s theorem, for every n > 1, we have 7(u)" = m(u
S0

(7 ()€, L1 pu<ay) = / y ”<2<w<u>"5><v> Ay (v)

/ /1<||v||<2 v) dAv (v) du™(g)

>0 / / gl 4y (g) dAv ()
G J1<|v|[<2

> 27 voly ({1 < [|vf| < 2}) /G gl du*"(g).

1) and

Therefore, we obtain

/G 195D d™(g) < wllm ()|

for some constant £ > 0 independent of n > 1. Since log is a concave function
and since (g — [lg]|~4* V) € LY@, B(G), 1*™), by Jensen’s inequality, we
have

/G log([lg]l~*@1) du* () < log ( /G gl du""(a))

< log(x) + nlog(|[m(x)l)-
Using Proposition 2.41, this finally implies that

M) =t [ ox(lgl) di™ 9) > ~ 55 oa( (1)) > 0.
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This finishes the proof. U

Recall that the projective space P(V') is a compact metrizable space.
Moreover, for every nonzero vector subspace W C V, P(W) C P(V) is a
closed subset. We simply denote by p : V \ {0} — P(V) : v — Ruw the
canonical map. The linear action G ~ V naturally induces the projective
action G ~ P(V). For every nonzero vector subspace W C V, denote by
Py : V. — W the canonical orthogonal projection. Denote by Gr(V') the
Grassmannian manifold that consists of all nonzero vector subspaces W C
V. Define the metric d : Gr(V) x Gr(V) — Ry : (W1, W2) — ||Pw, — Pw, |-
Then (Gr(V),d) is a compact metric space.

For the proof of Proposition 2.41, we need the following useful result.

LEMMA 2.42 (Furstenberg). Let n € Prob(P(V)) be a Borel probability
measure on the projective space P(V)). Then at least one of the following
assertions holds.

o The stabilizer group Stabg(n) is compact.
o The measure n is degenerate in the sense that n is supported on
P(V1) UP(Va) where Vi,Va C V' are proper nonzero subspaces.

PROOF. Assume that H = Stabg(n) is not compact. Then using Lemma
2.35, there exists a noninvertible matrix A € My(R) and a sequence (gp)n
in H such that lim, IITlan” = A. Upon passing to a subsequence, we may
further assume that g, (ker A) — V; in Gr(V) where V; C V is a nonzero
subspace. Set Vo = rng(A).

If p(v) € P(ker A), then any cluster point of the sequence g,p(v) neces-
sarily lies in P(V1). If p(v) € P(V) \ P(ker A), then

. . 1
lim g,,p(v) = lim p <”g”gnv> = p(Av) € P(V3).

Let ¢ € C(P(V)) be a continuous function such that supp(¢) C P(V) \
(P(V1) UP(Va)). Then for every v € V' \ {0}, we have lim,, ¢(gnp(v)) = 0
Then Lebesgue’s dominated convergence theorem implies that

/ o (p(v)) dn(p(v)) = / o (p(v)) d(gz ) (p(v))
P(V) P(V)

- / 2(gnp(©)) dn(p(v)) = 0.
P(V)

This shows that 7 is supported on P(V;) UP(V3). O
We are now ready to prove Proposition 2.41.

PROOF OF PROPOSITION 2.41. Assume that ||7(u)|| = 1. Denote by
7 € Prob(G) the pushforward measure of x4 under the inversion map G —
G : g+~ g~!. Then denote by 7 * 1 € Prob(G) the convolution product.
We may consider the contractions m(z) : & —  and w(p*p) : H — H.
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*

A straightforward computation shows that 7(z) = 7(u)
m(m)m(p) = 7w(p)*7(p). Then we have

(@ * )| = () 7 ()| = e ()] = L.

Moreover since p({e}) > 0, we clearly have Gy, = G,. Therefore, upon
replacing p by @ * p, we may assume that pu = iy * pp for some Borel
probability measure g and that ||7(u)|| = 1.

Since (1) is a selfadjoint positive operator, its spectrum o (7 (u)) is con-
tained in the segment [0, ||7(u)]|]. Since ||7(u)|| = 1, we have 1 € o(mw(u)).
Since 1 = ()| = sup {{(u)é,€) | € € A, ¢ = 1}, there exists a se-
quence (&), of unit vectors in 7 such that lim, (7(@)&n, &n) = 1.

For every n € N, we have

/G I7(@)6n — €2 dpalg) = 201 — (w()n, £0)-

and 7(@ * p) =

Then lim, [, |7(9)& — &l|*du(g) = 0. Upon passing to a subsequence,
we may assume that for p-almost every g € G, we have lim, ||7(9)&, —
&nll2 = 0. For every n € N and every g € G, simply write g§, = 7(9)&, €
Lz(vv‘@(v)v/\\/)v 9lén| = m(9)|énl € Lz(Vv‘@(V)a/\V> and g‘gn‘2 = ‘gfnP €
LY(V,%(V),\y). Then for u-almost every g € G, using Cauchy-Schwarz
inequality, we have

limsup [|gl&a|* = |& (|1 < limsup [|glén] + [€nlll2 - [lg1én] = €nlll2
n n

< 2limsup ||g€n — &nll2 = 0.
n

For every n € N, denote by v, € Prob(V') the Borel probability measure
on V whose density with respect to Ay is given by |£,|2 € LY(V, B(V), \v).
Then every n € N, g,v,, € Prob(V) is the Borel probability measure on
V whose density with respect to Ay is given by g|&,|? € LY(V, Z(V), \v).
Denote by (.#(V), || ||.#(v) the Banach space of all bounded complex Borel
measures on V. Then for p-almost every g € G, we have

194 — vl vy = 25 {1 (gev) (4) — va(A)] | A € B(V)}
= lim [[gl&a[? — [&n[?l11 = 0.

Recall that p : V '\ {0} — P(V) is the canonical map. For every n € N,
denote by 1, = p«v,, € Prob(P(V)) the pushforward measure of v, under p.
We have lim,, |gnn — 1.z p(v)) = 0 for p-almost every g € G. Since P(V)
is compact, choose n € Prob(P(V)) a weak-* limit point for the sequence
(Nn)n. We then have gn = n for u-almost every g € G. By continuity of the
G-action on P(V'), we have gn =7 for all g € G,. Thus, G, C Stabg(n).

By Lemma, 2.42, we obtain that GG, is compact or that there exist proper
nonzero subspaces V7,Ve C V such that the measure 7 is supported on
P(V1) UP(V2). In the latter case, set

r=min{dim W | {0} # W C V and n(P(W)) # 0} .
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We know that 1 < r < dim V. For all subspaces Wi # Ws of dimension r,
we have

n(P(W1) UP(Wa)) = n(B(W1)) +n(P(Wa)) — n(B(W1 N W2))
= n(P(W1)) + n(P(W2)).

More generally, for every family (W})i<;<y of pairwise distinct subspaces of
dimension 7, we have

k
NBW) U~ UP(Wy) = Y n(B(W;)).
j=1

Thus, for every € > 0, there are only finitely many subspaces W C V of
dimension 7 such that n(P(W)) > e. Set

0 =max {n(P(W)) | dim W =r}
and
F={WCV|dimW =r and n(P(W)) = 6}.
Then .# is a finite set of proper subspaces of V. Since 7 is G ,-invariant, for
every W € .# and every g € G, we have

n(B(g~'W)) = gn(B(W)) = n(B(W)) = 4.
Therefore g~'W € Z for every g € G, and so the set .F is G-invariant.
This implies that G, is not strongly irreducible. ([

6. Measure entropy

6.1. Information and Shannon entropy. Let (X, 2",v) be a prob-
ability space. Let & = {41,...,A,} be a finite measurable partition of X
(modulo v-null sets). Define the information function of £ by the formula

Ie == log(v(A))1a,.
=1

Intuitively, the value I¢(x) measures how much information we gain from
knowing that z € X belongs to one of the elements A; of the partition
§. Then define the Shannon entropy of £ as the integral of the function I¢
against the probability measure v, that is,
n
H© = [ Tedv == v(4) loglv(4).
X i=1
Intuitively, the Shannon entropy H(£) measures the average information
of the elements of the partition £&. When we want to emphasize that we
consider the Shannon entropy of £ with respect to the probability measure
v, we write H,(§) instead of H(§). When no confusion is possible, we simply
write H(§).
We can also define a conditional version of the information function and
of Shannon entropy. Let £ = {A4;,...,A,} and n = {By,...,B,} be two
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finite measurable partitions of X (modulo v-null sets). Define the conditional
information function of & with respect to n by the formula

ley = =33 log ( A“@)lm%.

j=11=1

Intuitively, the value I¢,(x) measures how much information we gain from
knowing that x € X belongs to one of the elements A; of the partition
§ given that we already know z € X belongs to one of the elements B;
of the partition 7. Denote by o(n) the o-subalgebra of 2~ generated by
n and denote by E,(-|o(n)) : L®(X, Z,v) — L*(X,0(n),v) the unique
v-preserving conditional expectation. Then we have

n n p
v(A; N B;
> - og (Bu(Lafol)) 1a, = >0 —log | - X0 )
i—1 i=1 =1 !
v(A; N B;
:—ZZlog< )])>13j1A1-
=1 j=1
= I¢y.

Then define the conditional Shannon entropy of & with respect to n as the
integral of the function I¢ , against the probability measure v, that is,

H({]n):/lgndy— ZZ (A; N Bj) log< (A(gf))

7j=11=1

Intuitively, the conditional Shannon entropy H(£|n) measures the average
information of the elements of the partition £ given the partition . When
we want to emphasize that we consider the conditional Shannon entropy
of ¢ given n with respect to the probability measure v, we write H,(&|n)
instead of H(&|n). When no confusion is possible, we simply write H (£|n).
For every j € {1,...,p} such that v(B;) > 0, define the probability measure

vj € Prob(X) by the formula v;(A) = V(:égf)j ) Then we have
p P n
Yo v(B)H, €)== Y v Ai)log(vj(Ai)) = H(E[n)-
J=1 J=11=1

If 7 = {X} denotes the trivial partition of X, then we have H({|T) = H (&)
for every finite measurable partition & of X.

Let £ = {A;,..., Ay} and n = {By, ..., Bp} be finite measurable parti-
tions of X (modulo v-null sets). We say that 7 is a refinement of £ and write
¢ < nif every element Bj of 7 is contained in some element A; of { v-almost
everywhere. The common refinement £V 7 is the finite measurable partition
{A;iNB;j|1<i<n,1<j<p}of X (modulo v-null sets). We say that £
and 7 are independent if v(A; N B;) = v(A;)v(B;) for every i € {1,...,n}
and every j € {1,...,p}. We say that a sequence (&), of finite measurable
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partitions of X is generating for X if the o-algebra o((&,),) generated by
Unen &n coincides with 2" (modulo v-null sets).

Define the continuous function ¢ : [0,1] — R4 by ¢(0) = 0 and ¢(z) =
—z log() for every x € (0,1]. For every z € (0,1], we have ¢"(z) = =1 < 0.
Then ¢ is strictly concave, that is, for all n > 1, all xy,...,2, € [0,1] and
all A,..., A, > 0 such that Y ;" | A; = 1, we have

® (Z Ail'i) > Z Aip(z;)
i=1 i=1

with equality if and only if z1 = -+ = z,,.
Next, we record the following elementary properties of (conditional)
Shannon entropy that we will use without comment.

PROPOSITION 2.43. Let £ = {A1,...,Ap}, n = {B1,...,Bp} and ( =
{C1,...,C4} be finite measurable partitions of X. Let (X, Z ,v,T) be a pmp
dynamical system. The following assertions hold:

(i) 0 < H(&) <log(n) and H(&) = log(n) if and only if v(Ay) = ---
v(A,) =1

(ii) If§ <m, then H(¢[C) < H(n|¢) and if ¢ < n, then H({|n) < H(&[C).
(iii) 0 < H(&n) < H(&) and H(&|n) = H(E) if and only if & and n are

independent.

(iv) H(&|n) =0 if and only if £ <.
v) H(EVn|¢) = H([C) + H(nlg V().
(vi) H(EVn) = H(E) + Hn|¢) < H(E) + H{n).
(vit) H(T=H()|T~ () = H(&|n) and H(T~1(§)) = H(&).

PROOF. (i) By definition, we have 0 < H({). Applying the strict con-
cavity of ¢ to x; = v(A4;) and \; = % for every i € {1,...,n}, we obtain

log ( Z%) > %Z@(xi) = %H(&
=1

Then we have H(&) < log(n) and H(§) = log(n) if and only if 2y = --- =
1
Ty =+
(v ) For every i € {1,...,n}, every j € {1,...,p}, every k € {1,...,q}

and every x € A; N B; N Ck, we have

v(A;,NB;NC
Teync(w) = —10g< ( 2 k)>

v(Cy)
— 1o <V(Ai NCy) ‘ v(A; N B ﬂCk)>
v(Cy) v(A;NCy)
C o (PANCHN (v(AiNB; N C)
= loe < V(Ck) ) log ( V(AZ ﬁCk) >
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This implies that ey, ¢ = I¢ ¢ 41y eve and so H(EVn|¢) = H(E|C)+H (€ V()
after integrating.
(ii) If £ <mn, then £ V= n and since H(n|{ V () > 0, we have

H(n|¢) = H(§Vnl¢) = H(E|C) + H(nl§ Vv ¢) = H(E[C).

Next, assume that ¢ < n. For every i € {1,...,n}, every j € {1,...,p},
every k € {1,...,q}, set z; ; = V(;j‘(igﬁj) and A\ = V(ijggk). Since ¢ < 7,
v(B;j N Cy) = v(By) if B C Cy v-almost everwhere and v(B; N Cy) = 0
otherwise. This further implies that for i, k fixed, we have Z?:l Aj ki =

v(A;NBj) _ v(A;NCy)
ZB CCr v(Cr) — u(Ck)k

>

14

. Using concavity of ¢, we infer that

H(&ln)

NE

v(Bj)e(wi;)

(Z V(Ck)Aj,k> o(@i)
k=1

P
v( Z jkP(Ti )

<.
Il
Il
=

I
'M“

<
Il
-
-
I
-

I
M:

@
Il
—

p
v(Coe | Y Nkt
Jj=1

2 <”“:z'25'”> :

(iii) By definition, we have 0 < H(&|n). Since 7 < 1, we have H(&|n) <
H(&|T) = H(§). If € and 7 are independent, then we have

H(¢&ln) = ZZVAWB 10g< (A(EJ)B)>

J=11i=1

N
Il
—

M- I I
N M:

H(E[C)-

i

Conversely, assume that H(¢|n) = H(§). Then we have

- u (A; N Bj) N
; ;y <(Bj) >+¢(V(Az)) = 0.

For every fixed i € {1,...,n}, set \; = v(B;) and z; = V(’Ll(lgﬁj) and apply

strict concavity of . Then the quantity (A( EE; 1) does not depend on j and
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V(AiﬂBj)
v(Bj)

p
Ai —Z)\V ZZ/A N Bj) = v(A;).
= 7=1

This further implies that & and 7 are independent.

(iv) If £ < n, then for every i € {1,...,n} and every j € {1,...,p}, we

. v Al B;
have either v(A4; N Bj) =0 or (u(T?j)J) = 1. Then we have

we set \; = . Then we have

P n
V(AZ NnB )
(A;N Bj)log [ ——=—2> | =0.
() = =353 otaen o (M) o
J=11i=1
Conversely, assume that
p n
(A; N Bj)
-3t (A0 )
o (Bj)
Then for every j € {1,...,p} and every i € {1,...,n} such that v(B;) > 0
and v(A4; N Bj) > 0, we have ()0(1/(;1(17];1;3;3-)) = 0 which further implies that
v(A; N Bj) = v(Bj) and so B; C A; v-almost everywhere. This shows that
£
(vi) We may apply (v) to {,n and ¢ = 7 the trivial partition and we
obtain

H(¢vn) = H(EVn|T) = H(E|T)+H(nl¢vT) = H(§)+H0lE) < H(§)+H(n).
(vii) Since Tyv = v, this is obvious from the definitions. O
6.2. Measure entropy of a pmp dynamical system. We fix a pmp

dynamical system (X, 2" ,v,T). For every finite measurable partition & of

X and every n > 1, define the finite measurable partition &, = ¢ VT ~1(¢) v
VTN, For all m,n > 1, we have

Hy(fm—l—n) = Hu(gm \ Tﬁm(é‘n))
= sz({m) + Hl/(gn)

Since the sequence (H,(&,))n is subadditive, Lemma 1.17 implies that the
sequence (%H,, (&n))n is convergent and we set

1 1
ho(T,€) = li7rln gHu(gn) = i%f ﬁHu(gn)

Then h,(T,£) is the measure entropy of T with respect to the finite measur-
able partition &.

The next proposition shows that h,(T,¢) is the average information
added by the present state on condition that all past states are known.

PROPOSITION 2.44. Let £ be a finite measurable partition of X. Then

ho (T, €) = limy, Hy (6T (60))-
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PROOF. Since the sequence (T~1(&,)), is increasing, it follows that the
sequence (H,(¢|T1(&,))n is decreasing and so it is convergent. For every
n > 1, we have H,(&,41) = H, (T71(&,)) + Hy, (€|T71(£,)) and so

Hl/(ﬂT_l(gn)) = Hu(fnJrl) - HV(T_I(gn)) = Hu(fnJrl) - HV(gn)

By summation, we obtain
Hy(gn) - HV(&) = Z HV(S‘Til(ék))
k=1
Dividing by n > 1 and passing to the limit, we obtain
R _
ho(T,€) =Tim =3 H, (€] (&))-
k=1

By Cesaro average, we necessarily have h, (T, &) = lim,, H,(¢|T-1(&,)). O

We record the following elementary properties that we will use without
comment.

PROPOSITION 2.45. Let & and n be finite measurable partitions of X.
Then the following assertions hold:
(i) ho (T, &) = h (T, T71€)). If (X, 2 ,v,T) is invertible, then we
have hy (T, &) = hy (T, T(£)).
(i) h(T,€) = m(T, Vg T7(€)) for every k € N. If (X, 2w, T) is
invertible, then hy,(T,&) = hy, (T, \/f:_k T7%()) for every k € N.
(iv) ho (T, &V ) < hy(T,€) + h, (T, n).

PROOF. (i) For every n > 1, we have T-(¢), = T (&) V- - VT (&) =
T-1(¢,). This implies that
(T, 7€) = lim (T (€)= lim ~ Hy (€) = hy (T, €).

Assume moreover that (X, 2", v,T) is invertible. Then with respect to the
transformation 77!, for every n > 1, we have T(¢),, = T(§) vV --- VT"(£) =
T'(&,). This implies that

1 1
hV(T,T(f)) = liTILn EHV(T(‘Sn)) = h%n ﬁHu(gn) = h,,(T,f)-
(i) For every k € N and every n € N, we have &, < (\/f:0 T7(€)), and

so H,(€,) < H,((V¥_, T7%(€))n). This implies that

k k

Hy(\/ T7())n) = hu(T, \] T7(€)).

=0 i=0

1

1
hy(T,€) = lim ~H,(&,) < lim ~
(T,€) = lim ~H, (&) < lim ~
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For the reverse inequality, for every £ € N and every n € N, we have

(Vi T ) =& VT ™€V - vT-E=1(£)) and so

k
Hyp\/ T7HE))n) = Hy(& VT ™€V - v T~ ED(g)))
< Hy(&) + H (T V- vT~ ()
< H,(&) + kH,(€).
This implies that

n n
= h,(T,§).

Assume moreover that (X, 2", v, T) is invertible. Then the exact same argu-
ment as above shows that h,(7T,&) = h, (T, \/f‘:_k T74(€)) for every k € N.
(iii) For every n > 1, we have

Ho ) < S HAT- ) < S HATHOIT () = n- Haleln)
i=0 i=0
and so
Hy(§n) < Hy(n V &) = Hy(n) + Hy(§nlnn) = Hy () +n - Hy(§]n).

This implies that

(T €) = ln ~ H, (€0) < lim = H, (1) + H (€ln) = ho(T,n) + H (€ln).

If ¢ <m, then H,({|n) = 0 and so h,(T.§) < h,(T,n).
(iv) For every n > 1, we have (£ V ), =&, V n, and so

Hy,((VN0)n) = Hy(&a V nn) < Hy(€n) + Hy(nn)-
This implies that

1 1
hy (T, € V) < lim —Hy (&) +lim —Hy (1) = ho (T, ) + ho (T, 7).
This finishes the proof. ([

DEFINITION 2.46. The measure entropy of (X, 2 ,v,T) is defined as
hy(T) = sup h, (T, €)
3

where the supremum is taken over all finite measurable partitions £ of X.
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The measure entropy is an invariant of measurable conjugacy meaning
that if two pmp dynamical systems (X1, 271,v1,T1) and (X, 22,19, T) are
measurably conjugate, then they must have the same measure entropy, that
is, hy, (Tl) = hu, (TQ)'

Let & be a finite measurable partition of X. If (X, 2", v, T) is noninvert-
ible, then we say that £ is a generator for T if the sequence &, = \/I_, T (£)
is generating for X. If (X, 2", v, T) is invertible, then we say that £ is a gen-
erator for T if the sequence &, = \/I__ T(£) is generating for X. The
following result due to Kolmogorov and Sinai allows in many situations to
calculate h, (7).

THEOREM 2.47. Let £ be a finite measurable partition of X. If € is a
generator for T, then h,(T) = h, (T, ).

Before proving Theorem 2.47, we need the following technical result.

LEMMA 2.48. Let & be a finite measurable partition of X and € > 0.
Then there exists 6 > 0 such that for every finite measurable partition n of
X with the property that for every element A of £, there exists an element
B of the o-algebra o(n) generated by n satisfying v(AAB) < §, we have

Hy(&n) <e.

PROOF. Write § = {A4,...,A,}. Let 6, p > 0 with 6 to be determined in
relation to p and p in relation to €. Let n be a finite measurable partition of
X and denote by o(n) the o-algebra generated by 1. Assume that for every
i €{1,...,n}, there exists an element B; of o(n) such that v(A;AB;) < é.
Define the finite measurable partition ( = {C1,...,C,} of X recursively by
Cy = By, Ciy1 = Biy1 \ (C1 U ---U ) for every i € {1,...,n — 2} and
Cp,=X\(C1U---UCp_1). Recall that

H,(£|¢) = ZZVA NnCy) log< (A(gj)c))

7j=11i=1

If we choose § > 0 small enough in relation to p, then by construction,
we have V(f(lggi) >1—pforallie{l,...,n}and v(4;NC;) < p for all
i,7 € {1,...,n} such that i # j. If we choose p > 0 small enough in relation
to g, it is clear that H,(£|¢) < €. Since 7 refines (, that is, ¢ < 7, we have

Hy(&ln) < Hy(€[¢) < e. O

We are now ready to prove Theorem 2.47.

PROOF OF THEOREM 2.47. Since the proofs of the noninvertible case
and the invertible case are completely analogous, we only prove the nonin-
vertible case. Let (X, 2 ,v,T) be a noninvertible pmp dynamical system
and £ a generator for T. For every n € N, set &, = \/:-L;Ol T7H¢). Let n
be a finite measurable partition of X. We show that h,(T,n) < h,(T,¢).
Let € > 0 and choose > 0 according to Lemma 2.48. Since the o-algebra
generated by J,,cy&n coincides with 2" (modulo v-null sets), there exists



6. MEASURE ENTROPY 63

n € N large enough such that for every element A of 7, there exists an
element B of the o-algebra o(&,) generated by &, satisfying v(AAB) < 4.
Then we have H,(n|¢,) < e. This further implies that

ho(T,n) < hy (T, &n) + Hy(n|€n) = ho (T, &) + Hy(1|6n) < ho (T, €) + €.

Since this holds true for every ¢ > 0, it follows that h,(T,7n) < h,(T,¢).
Since this holds true for every finite measurable partition 1 of X, it follows
that h,(T) = h,(T,§). O

An increasing sequence ((,)m of finite measurable partitions of X is
said to be generating if the o-algebra generated by |J,,cx (m coincides with
Z" (modulo v-null sets). Observe that any standard Borel probability space
possesses a generating increasing sequence ((p,)nm, of finite measurable parti-
tions of X (see [KL16, Appendix A]). By modifying the proof of Theorem
2.47, we can prove the following useful result.

PROPOSITION 2.49. Let (¢m)m be a generating increasing sequence of
finite measurable partitions of X. Then we have hy,(T') = limy, hy (T, Gn)-

PROOF. Since the sequence ((,)m is increasing, Proposition 2.45 implies
that (hy (T, (m))m is increasing and so limy, hy (T, Gn) = sup,, ho (T, (n) <
hy(T). Let £ be an arbitrary finite measurable partition of X. We show
that h,(T,&) < limy, hy (T, (). Let € > 0 and choose § > 0 according to
Lemma 2.48. Since the o-algebra generated by |J,,cx (m coincides with 2
(modulo v-null sets), there exists m € N large enough such that for every
element A of £, there exists an element B of the o-algebra o((,,) generated
by (p, satisfying v(AAB) < §. Then we have H,(|(y,) < €. This further
implies that

hy(T,&) < hy(T, (m) + Hy(§lGm) < liTILn ho (T, Cn) + €.

Since this holds true for every ¢ > 0, we have h,(T,&) < limy, h, (T, (r). By
taking the supremum over all finite measurable partitions & of X, we obtain
hy(T) < limy, hy (T, (). Therefore, we have h,(T) = lim, h, (T, Gn).- O

We collect some useful properties of measure entropy.

PROPOSITION 2.50. Let (X, 2 ,v,T) be a pmp dynamical system on a
standard probability space.
(i) For every m € N, we have h,(T™) = mh,(T).
(i) If (X, 2 ,v,T) is invertible, then h,(T~') = h,(T). Thus, for
every m € Z, we have h,(T™) = |m| h,(T).
For every 1 € {1,2}, let (X;, Zi,vi,T;) be a pmp dynamical system on a
standard probability space.
(111) We have hl,1®1,2 (Tl X Tg) = hz/1 (Tl) + hl,2 (Tg)
(iv) If (Xa, Z2,1v2,T5) is a pmp factor of (X1, Z1,v1,T1), then we have
hl/2 (TQ) < th (Tl)'
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PROOF. (i) Let m > 1. Let £ be a finite measurable partition of X. We
have

h(T™,€) = lim ~H, (€ V T () Vo v T ()

s -1 oy o
gmh?rlnmnHy(f\/T v---vT 6))

=mhy,(T,§)
<mhy,(T).

By taking the supremum over all finite measurable partitions & of X, we
obtain h,(T™) < mh,(T).

Conversely, let & be a finite measurable partition of X and set n =
EV - VTT™HL(E). We have

hAT,) = - lim = H (€ VTV -+ v T (g))

m n

1.1

= —lim—H,(nvVT ™)V .- v ™1
im —Hy, (g VI () VeV (m))

1
= I/Tma
—h (T, m)

1
< —h, (T™).
< —hy(T™)

By taking the supremum over all finite measurable partitions £ of X, we
obtain h,(T) < Lh,(T™). Therefore, we have h, (T™) = m h,(T).
(ii) Let & be a finite measurable partition of X. We have

BT, €) =l Hy(€V T HE) Vo v T4 (6))
—lim S H(T VTN Vv )

1
= lim ~H,(T"" (&) V- VT(§) V§)
n n
= hy (T_la 5)
By taking the supremum over all finite measurable partitions & of X, we
obtain h,(T) = h,(T71). '

(iii) For every ¢ € {1,2}, let ((},)m be a generating increasing sequence
of finite measurable partitions of X;. For every m € N, set ¢!, = ¢}, x X5 and
a = X3 x (2. Then (¢},)s and (¢},)nm are independent and (¢}, v ?fn)m is
a generating increasing sequence of finite measurable partitions of X; x Xo.
Using Proposition 2.49, we have

hV1®V2 (Tl X TQ) = hnlln hV1®V2 (Tl x T3, Zrln \ 27271)
oL 1

= lim lim *HV1®1/2((Zr1n \ &?n)n)
m n n

= timlim (o ((Gh)n) + Hi ((G2)n)

m n
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= hrgl (hul (Tl, C?Erz) + hl/z (T27 C’?n))
= hy, (T1) + ho, (T2).

(iv) Let n be a finite measurable partition of Xs. Then & = 771(n) is a
finite measurable partition of X;. For every n > 1, we have

Hyy(nV -V T () = Hy (n 7t V- vV T (1))
= H, (EV - VI ().
This implies that

1 -
s (T, m) = T —Hoy (V- V T34 ()

:@%mﬁvmVﬁ”%D

= hlll (Th 5)
< hl’l (TI)'

By taking the supremum over all finite measurable partitions 1 of Xy, we
obtain h,, (TQ) < hy, (Tl). O

We use Theorem 2.47 to compute the measure entropy of Bernoulli shifts.

PROPOSITION 2.51. Let r > 2. SetY = {1,...,r} and ¥ = 2(Y).
Let n € Prob(Y) be an arbitrary probability measure on Y. Consider the
forward Bernoulli shift (YN, N n®N S as well as the Bernoulli shift
(Y2, 9% n®Z T.). Then hpen(Sr) = hyez(Ty) = Yo ().

PROOF. We only prove the result for the forward Bernoulli shift. The
proof for the Bernoulli shift is completely analogous. Set (X, 2",v) =
(YN &N @) For every 1 < i < r, define the cylinder set

Ai:{(yn)neX’%:i}'

Then £ = {A;,...,A,} is a finite measurable partition of X that is a gen-
erator for S,. Moreover, we have v(A;) = n(i) for every 1 < i < r. By
Theorem 2.47, we have hy,(S,) = hy(Sy, &) = lim, H,(&,). By Proposition
2.43, we have H,(&,) = n - H,(&) for every n > 1. Therefore, we have
B (Se) = Ho(€) = 31, (n(i)) O

Observe that when n = 7, € Prob(Y’) is the uniform measure, meaning
that 0, (i) = L for every 1 < i < r, Proposition 2.51 implies that hen (Sr) =
h, ez (T;) =log(r). Since the measure entropy is an invariant of measurable
conjugacy, it follows that the Bernoulli shifts

{1, r}%2 2({1, ..., )2 02 T )es

are pairwise not measurable conjugate. Also, observe that in this case, the
measure entropy hn®N(Sr) = h ez (T},) = log(r) coincides with the topologi-
cal entropy h(S,) = h(T,) = log(r) (see Proposition 1.25).
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We also compute the measure entropy of rotations on compact metriz-
able groups. Before doing so, we need the following lemma.

LEMMA 2.52. Let &, ...,&n be finite measurable partitions of X. Then
we have

H (& V- V&m) < Hy(&) + Y Hy(§16).
j=2
Proor. Using repeatedly Proposition 2.43, we have
HV(€1 VeV §m> = HV(§1 VeV én—l) + HV(E’VI’E:[ VeV gn—l)

NE

= Hy(€) + ) Hu(§l& V-V &)

J

[|
N

NE

< H (&) + ) Hy(&l6).
i

This finishes the proof. ([

||
N

PROPOSITION 2.53. Let G be a compact metrizable group and denote
by B(Q) its o-algebra of Borel subsets and by mq its unique Haar Borel
probability measure. Let g € G and consider the rotation Ty : G — G : x
gx. Then hpy,(T,) = 0.

Proor. Simply write 7' = T, and v = mqg. Let ¢ > 0 and { =
{A1,..., Ay} be a finite measurable partition of G. We start by proving
the following key technical result.

CLAIM 2.54. There exists a finite partition Z = Cy U - - - U C}. such that
for every 1 < j <r and all p,q € C;, we have H,(T?(£)|T9(¢)) < e.

Fix a left invariant compatible metric dg : G x G — R,. Consider
the left regular unitary representation \g : G — % (L%(G, B(G), mq)) (see
Chapter 3). Then for every A € #(G), the map

G =Ry :h v(hAAA) = [ Ag(R)(14) — 143

is continuous. Choose § > 0 according to Lemma 2.48. Then choose p > 0
such that for every h € B(e,p), we have v(hA;AA;) < ¢ for every 1 <
i < m. Observe that for every n € Z, we have k7, = Ag(g"). Since
G = Upeq B(h,p), by compactness, there exist hi,...,h, € G such that
G = Uj_, B(hj, p). Define recursively the finite partition Z = C1---UC,
by Ci ={n€Z|g" € B(h,p)} and C; = {n€Z|g" € B(hj,p)}\ (C1 U
---UCj_1) for every 2 < j < r. Then using Lemma 2.48, for every 1 < j <r
and all p,q € Cj, we have H,(T?(£)|T%(§)) < e. This finishes the proof of
Claim 2.54.

For every n € Z, set &, = \i_, T(¢). Then for every 1 < j < r,

set & = Vie{—n,...,n}ﬂoj Ti(€) so that &, = €L v --- vV ¢ . Then we have
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H,(&) < Y51 Hy(&). If {-n,...,n} N C; = 0, then H,(&) = 0. If
{=n,...,n}NC; # 0, then choosing n; € {—n,...,n}NC; and using Lemma
2.52 and Claim 2.54, we have

H,(&) < H (T () + > H,(TP()T™(€))
pe{—n,..n}NC;\{n;}

<H,(§)+|{-n,....,ntNCj| e

n >

Then for every 1, we have

Hy(&) < Y H(€))

j=1

<D (HAO + H{-n,...,n}N Gl -e)
j=1
=rH,(&)+ (2n+ 1)e.
This implies that

ho(T.€) = litm ——— H,(T"(&,)) = lim %Hy(fgn) <e

2n +1 2n +
Since this holds true for every finite measurable partition & of X and every
e > 0, it follows that h,(T") = 0. O

6.3. The Shannon—McMillan—-Breiman theorem. In this subsec-
tion, we assume that (X, 2",v,T) is an ergodic pmp dynamical system. Let
¢ ={A1,...,An} be a finite measurable partition of X. For every n > 1,
set &, = £V --- VT 1(¢). The Shannon-McMillan-Breiman theorem
uses entropy to measure how large sets in the nth joint &, are. Typically,
they decrease exponentially and the exponential rate is exactly the measure
entropy. More precisely, we prove the following theorem.

THEOREM 2.55 (Shannon-McMillan-Breiman). Keep the same notation
as above. Then the sequence (L1 ), converges to h,(T,&) v-almost every-
where and in LY(X, 2 ,v).

For every n > 1 and every x € X, denote by &,(z) the unique element
of &, that contains x. Then Theorem 2.55 implies that for v-almost every
r € X, we have

lim — log (€ (x) = lim T, (2) = hu (T:)

Before proving Theorem 2.55, we need to introduce some further nota-
tion and prove some preliminary results.

Set 1 = 7 and for every n > 2, set 5, = T~ (&) vV --- v T " (€). For
every n > 1, denote by %, = o(n,) the o-subalgebra of .2~ generated by n,.
Denote by Foo = /| Fy the o-subalgebra of 2" generated by |J,2 | 7.

For every n > 1, set g, = I¢,,, = — > 1oy log(E,(14,%5))14,. Observe that
g1 =1Icr =1I¢. Set goo = — Y 10 log(Ey(14,[Fc)) 14,
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LEMMA 2.56. The following assertions hold:

(1) g* = Suanl gn € Ll(Xa 5{,’/,1/)_

(ii) gn — goo v-almost everywhere and in L*(X, 2", v).
(iii) fX Joo dv = hy (T, ).

PRrROOF. (i) Note that g, > 0 for every n > 1. Let 1 < i < m and
t € Ry. For every n > 1, define the measurable subset B;,; € Z as
the set of all x € X for which n > 1 is the smallest integer such that
—log(E,(14,]-%,)) > t. Then we have 4; N {g* > t} = |_|n21 A; N Bjnt.
Moreover, we have

V(AN Bing) = v (Eu(1a,18,,,,[F2))

v (1Bi,n,tEV(1Ai"g.n))
14 (]'Bi,n,t exp(—t))
— exp(—)V(Bin).

IN

This implies that
v(Ain{g" > t}) =D v(AiN Biny) < exp(—t) Y v(Bins) < exp(—t).

n>1 n>1

Thus, v(A; N {g* > t}) < min{v(A;),exp(—t)}. Since g* > 0, we have

/ g*dy:/ V(AN {g" > 1)) dt
A; 0

< min {v(A;),exp(—t)} dt
0
—log(v(A;)) 9)

< / V(A dt + / exp(—t) dt
0 —log(v(A;))

This further implies that
/X =3 /A g dv < S (—u(A) log(v(41)) + (A) = Hy(€) + 1.
=1 i =1

Therefore, g* € L1(X, 27,v).

(ii) Using the martingale convergence theorem (see Theorem A.1), for
every 1 < i <m, we have E,(14,|-%,) = E,(14,|%) v-almost everywhere.
This implies that g, — g~ v-almost everywhere. Since g* = sup,>;gn €
Ll(X , 2", v), Lebesgue’s dominated convergence theorem implies that g, —
Joo in LY(X, 27, ).

(iii) Combining Proposition 2.44 and (ii), we obtain

hy (T, &) = lim H,(&|nn) zlim/ gnduz/ Joo dr.

This finishes the proof. O
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We are now ready to prove Theorem 2.55.

PrROOF OF THEOREM 2.55. Using repeatedly Proposition 2.43, for ev-
ery n > 1, we have

Ig, (2) = I, () + gn(2)

= 9oo(T9(x)) + > (gn—j — goo)(TV()).
j=0 §=0
Using Theorem 2.28, for v-almost every = € X, we have that
n—1
1 A
i 5" g (29(0) = [ gowdv = (7,6,
n = X

It remains to show that %Z?;&(gn,j — 9o0)(T9(x)) — 0 for v-almost

every x € X. For every N > 1, set GN = sup,~n |gn — goo| and Hy =
ZkN:1(9k +g*) o TN=F ¢ LY(X, 2", v). Then we have supy Gy < goo + g
and Gy — 0 v-almost everywhere. By Lebesgue’s dominated convergence
theorem, we have

lim/ GNdl/—/ lim Gy dv = 0.
N Jx x N

Define £(z) = limsup,, Z?;& |gn—j — goo|(T7 (x)) for v-almost every z € X.
For every N > 1 and for v-almost every z € X, using again Theorem 2.28,
we have

n—N-—1
Uz) < limnsup - z;) |gn—j — Joo|(T7 ()
]:
1 n—1 )
+ limnsup o ‘ Z |9n—j — goo|(T7 ()
j=n—N

n—N-1
, 1
< limsup — E Gn(T?(z)) + limsup — Hy (TN ()
n noon

:/ Gy dv.
X

Then ((x) < limy [ Gy dv = 0 for v-almost every x € X. This finishes
the proof of the theorem. O

=0
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6.4. The variational principle. In this subsection, we assume that
(X,d) is a compact metric space. We prove the variational principle for
measure entropy due to Dinaburg [Di71] and Goodman [Go71] which as-
serts that for a topological dynamical system on X, the topological entropy
is the supremum of the measure entropies over all invariant Borel probability
measures.

THEOREM 2.57. Let T : X — X be a topological dynamical system.
Then we have

MT) = sup {h,(T) | v € Probp(X)}.
Before proving Theorem 2.57, we need some preparation.

LEMMA 2.58. Let v,n € Prob(X) and & = {Ay,..., An} a finite mea-
surable partition of X. Then for every t € [0,1], we have

tHV(é-) + (1 - t)Hn(é-) < Htu+(1—t)n(£)'

PROOF. We use the concavity of the function ¢ : [0,1] — R defined by
©(0) = 0 and p(z) = —xlogx for every = € (0,1]. For every t € [0, 1], we
have

I
NE

tH, (&) + (1 — 1) Hy(E) (tp(v(Ai) + (1 = t)p(n(Ai)))

1

<.
I

NE

p(tv(4i) + (1 = t)n(Aq))
1

= tu+(1—t)n(5)-
This finishes the proof. O

<.
Il

For every A € 2, denote by 94 = AN X \ A the boundary of A.
For every finite measurable partition £ = {A1,..., A} of X, denote by
¢ = J", 0A; the boundary of &.

LEMMA 2.59. Let v € Prob(X). The following assertions hold:

(i) For every x € X and every 6 > 0, there ezists 0 < € < § such that
v(0B(z,¢)) = 0.

(ii) For every 6 > 0, there exists a finite measurable partition £ of
X for which all elements have diameter less than § and such that
v(0€) = 0.

(iii) Whenever (vp)n is sequence in Prob(X) such that v, — v with
respect to the weak-+ topology and A € 2 is a measurable set such
that v(0A) = 0, we have v(A) = lim,, v, (A).

ProoOF. (i) Let x € X and § > 0. For every € > 0, define the sphere
S(z,e) = {y € X | d(x,y) =e}. Then we have B(z,d) = Uycocs5 (2, €).
Since the open interval (0, d) is uncountable, there exists 0 < € < § such that
v(S(x,e)) = 0. Since 0B(x,e) C S(x,¢), it follows that v(0B(x,¢e)) = 0.
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(ii) By compactness and using item (i), we may choose a finite open
cover % = {Bi,...,Bpn} by open balls of radius less then g such that
v(0%) = 0. Set C = B and for every 2 < j < m, define recursively
C; =B\ (B1U---UB,_1). Then 9¢ = |JI*, 8C; c U, B;. Therefore,
¢ ={Cy,...,Cp} is a finite measurable partition of X whose all elements
have diameter less than ¢ and such that v(9§) = 0.

(iii) Let (v,)n be a sequence in Prob(X) such that v, — v with respect to
the weak-* topology. Let A € 2" be a measurable set such that v(90A) = 0.
For every k € N, define f; = 1 — min(kd(-,A),1) € C(X). Then 14 < fj
and f — 15 pointwise. Then for every fixed k € N, we have

limsup vy, (A) < limsup v, (A) < limsup v, (fx) = v(fi)-

n

Taking the limit as k — oo, we have

limnsup vn(A) < hlf;n v(fi) = v(4) = v(A).

Similarly, we have
limsup v, (X \A) <v(X\A).
n
Thus, we obtain lim,, v,(A) = v(A). O
We are now ready to prove Theorem 2.57.

PROOF OF THEOREM 2.57. We follow the argument due to Misiurewicz
[Mi76]. Set hgup(T) = sup{h,(T) | v € Proby(X)}. Recall the notation
from Chapter 1.

Firstly, we prove the inequality h(7T") < hgup(T'). Let € > 0. For every
n > 1, choose an (n,e)-separating set .%#,. C X of maximum cardinal-
ity, that is, |#, .| = sep(n,e,T). Then define n, = Iﬂii,s\z%ﬂn,e 0z €
Prob(X) and v, = %ZZ;& TFn, € Prob(X). Fix v € Prob(X) and
an increasing sequence (ng)r in N such that lim %log(sep(nk,s,T)) =
limsup,, £ log(sep(n,e,T)) and limg vy, = v with respect to the weak-*
topology. The proof of Lemma 2.17 shows that v € Proby(X) is T-invariant.
Note that v a priori depends on &.

By Lemma 2.59, we may choose a finite measurable partition £ of X with
elements of diameter less than ¢ and such that v(9¢) = 0. For every A € &,
since the d,,-diameter of A is less than e, either 7,,(A) = 0 or n,(A4) = I:/fiis\
This implies that H,, (§,) = log(|#,.¢|) = log(sep(n, e, T)). ’

Fix 0 < k < ¢ < n and assume that n > k 4 ¢. Set a(k) = L”T_kj > 1.
Set C ={k+rq+i|0<r<a(k)-1,0<i<qg—1}and D ={0,...,n —
1} \ C. Then we have

(k)—1

n—1 a
G=\VT7© =\ T % ¢ v\ T90.
j=0

r=0 Jj€D
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Since |D| < 2q, this further implies that

log(sep(n, &, T)) = Hnn (fn)

a(k)—1
< 3 H, (@ %) + 3 H, (T7(9))
r=0

Jjep
a(k)—1
S Z HT£k+7'q)nn (fq) + 2q lOg(‘fD
r=0

Summing over k, dividing by n and using Lemma 2.58, we obtain

Llog(sep(n, e, T)) =
n

Since for every n > 1, we have v(9¢,) = 0, Lemma 2.59 implies that for
every fixed ¢ > 1, we have

1 1
lim sup — log(sep(n,e,T")) = lim — log(sep(ng,e,T))
n n k Mg

1.
< ; 11]?1 Hl/nk (fq)

1
= gHu(gq)

Then taking the limit as ¢ — 400, we obtain

n

1 1

(2.5) limsup —log(sep(n,e,T)) < lim—H,(&;) = h,(T,§) < hy,(T).
n a q

Finally, we obtain

h(T) = lim lim supllog(sep(n,E,T)) < hsup(T).
e—0t n n

Secondly, we prove the inequality heup(T) < h(T'). Let v € Probp(X).

Let & = {A1,..., Ay} be a finite measurable partition. Choose ¢ > 0

so that mlog(m)e < 1. By regularity of the Borel probability measure

v, for every 1 < ¢ < m, we may choose a compact subset B; C A; such

that v(A4; \ B;) < e. Set By = X \ U;~, B; and observe that By C X
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is an open subset such that v(By) < me. Define the new finite partition
B ={Boy,B1,...,Bn}. Then we have

i my o I/(AiﬂBj)
el = 22 aing o ()

- i V(A; N Bo) log <”(AmB°)>

=1 V(BO)
(Az N Bo) (Az N Bo)
Bo) 2= By) os (55 )

Then Proposition 2.45 implies that

We now consider the open cover % = {By L By,...,ByU By,}. Note
that for every 1 <i <m,

ByUB; =X\ | JB;
1#]
is indeed open. Let n > 1. Every element of %, = % VT Y %)V ---V
T="(%) is of the form

(BoU By, )NT Y ByuB;,)N---NT """ YByUB;, ,)

where ig,...,i,—1 € {1,...,m}. Therefore, every element of %, can be
written as a pairwise disjoint union of 2" elements of 3, (some of which
may be emptyset). This implies that |3, | < 2"N(%,) and so

H,(Bn) < log(|8n]) < nlog(2) + log(N(%y)).
Theorem 1.20 implies that
1
A(T) > lim log(N (%)
1
> lim —H,(5,) — log(2)
n n
= hy(T, B) — log(2)
hy (T, €) — log(2) — 1.
Taking the supremum over all finite measurable partitions £ of X, it follows

that h,(T') < h(T) + log(2) + 1. Observe that this inequality holds true for
every topological dynamical system S : X — X and every S-invariant Borel
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probability measure n € Probg(X). In particular, using Propositions 1.22
and 2.50, for every m > 1, we have

1 log(2) + 1
+0g()+
m

iMﬂ:%@@%gEMWU

zmn+m%fy

Taking the limit as m — oo, it follows that h,(T') < h(T). Since this holds
true for every v € Proby(X), we finally obtain hg,,(T') < h(T). O

For expansive topological dynamical systems, there always exists an in-
variant Borel probability measure of maximal entropy.

ProprosITION 2.60. Let T : X — X be an expansive topological dy-
namical system. Then there exists a T-invariant Borel probability measure

v € Probr(X) such that h(T) = h,(T).

ProoOF. Let k£ > 0 be a constant of expansiveness for T'. Choose 0 <
e < 5. By Proposition 1.24, we know that ho.(1T') = h(T"). Using Lemma
1.18 and the proof of Theorem 2.57, specifically (2.5), we obtain

1
h(T) = h2(T) < limsup - log(sep(n,e,T)) < h,(T).

Therefore, Theorem 2.57 implies that (1) = h,(T). O



CHAPTER 3

Topics in homogeneous dynamics

In this chapter, we give an introduction to the theory
of locally compact groups and their lattices. We show
that SLg(Z) is a lattice in SLg(R) for every d > 2. We
also prove that SLy(R) has the Howe-Moore property
for every d > 2. As an application, we obtain Moore’s
ergodicity theorem.

1. Locally compact groups

DEFINITION 3.1. Let G be a group endowed with a Hausdorff topology.
We say that G is a topological group if the map G x G — G : (g, h) — gh™!is
continuous. We then say that G is locally compact if there exists a compact
neighborhood U C G of the identity element e € G.

Let G be a locally compact group. We say that G is

o first countable if there exists a countable neighborhood basis of
ecG.

e second countable if there exists a countable basis for the topology
on G.

e o-compact if there exists an increasing sequence of compact subsets
Qn C G such that G = {J,,cn @n-

o compactly generated if there exists a compact subset Q C G such
that e € Q@ and G = {J,,», Q"

e totally disconnected if the connected component of e € G is equal
to {e}.

The identity element e € G has a neighborhood basis consisting of com-
pact subsets (see [DE14, Corollary A.8.2]). Any open subgroup H < G is
also closed since G\ H = | gr4m 9H- Any compactly generated group G is
o-compact. Any locally compact group G has a compactly generated open
subgroup H < G. Indeed, choose a compact neighborhood U C G of e € G.
Then H = J,,~; (U UU1)" is a compactly generated open subgroup of G.
In particular, any connected locally compact group is compactly generated.
A locally compact group G is second countable if and and only it is first
countable and o-compact (see [St73]). Moreover, any locally compact sec-
ond countable group G is metrizable with a proper left invariant metric (see
[St73]).

75
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The class of locally compact groups is stable under taking closed sub-
groups, finite direct products and quotients with respect to closed normal
subgroups. More precisely, we record the following facts.

PROPOSITION 3.2. The following assertions hold:

(i) If G is a locally compact group and H < G is a closed subgroup,
then H endowed with the induced topology s locally compact.

(ii) Ifd > 1 and Gy,..., Gy are locally compact groups, then the product
group G = G1 X+ - - x Gy endowed with the product topology is locally
compact.

(iii) If G is a locally compact group and N < G is a closed normal sub-
group, the quotient group G/N endowed with the quotient topology
1s locally compact.

(iv) If G is a locally compact group acting continuously on a locally com-
pact group H by continuous automorphisms, then the semi-direct
product group G X H endowed with the product topology is locally
compact.

The proof of Proposition 3.2 is left to the reader as an exercise.

ExaMPLES 3.3. Here are some examples of locally compact groups. Let
d>1.

(i) Any group G endowed with the discrete topology is locally compact.
In these notes, any countable group will always be endowed with
its discrete topology.

(ii) Any compact group K is locally compact. In particular, the fol-
lowing compact groups

Td:{(zl,...,zd)eCd\Vlgigd,|zi|:1}
SO4(R) = {A € SLy(R) | A*A = AA* = 14}
U (d) = {A € GLy(C) | A*A = AA* = 15}

are locally compact.
(iii) Any (finite dimensional) real Lie group G is locally compact.

— The abelian group (R?, +) endowed with the usual topology is
locally compact.

— The general linear group GL4(R) can be regarded as the open
(dense) subset of invertible matrices in My(R) = R, En-
dowed with the topology coming from RdQ, the group GL4(R)
is locally compact.

— The special linear group SLg(R) = ker(det) is a closed sub-
group of GLg4(R) and so SL;4(R) is locally compact.

— The semi-direct product group SLy(R) xR? is locally compact.

(iv) Any (finite dimensional) p-adic Lie group G is totally disconnected
locally compact. In particular, for every prime p € &, the groups
GL4(Qp) and SL4(Q,) are totally disconnected locally compact.
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(v) Let T = (V,E) be a locally finite tree and denote by Aut(T) the
automorphism group of T. Endowed with the topology of point-
wise convergence, the group Aut(T) is totally disconnected locally
compact.

Let X be a locally compact space, meaning that every x € X has a
compact neighborhood. We denote by #(X) the o-algebra of Borel subsets
of X. We say that a Borel measure v on X, that is, a measure defined on
P (X) is regular if the following conditions are satisfied:

(i) For every Borel subset B C X, we have
v(B) =inf {v(V) |V is open and B C V'}.
(ii) For every open subset U C X, we have
v(U) =sup{v(K) | K is compact and K C U}.
(iii) For every compact subset K C X, we have v(K) < +oo.
When v is nonzero, define the support of v by

supp(v) = ﬂ{F | F C X is closed and v(X \ F)) = 0}.

Observe that supp(v) is closed and v(X \ supp(v)) = 0.

If any open subset of X is o-compact, then any Borel measure on X that
satisfies condition (iii) is regular (see [Ru87, Theorem 2.18]). In particular,
using [DE14, Lemma A.8.1(i)], if X is a locally compact second countable
space, then any open subset of X is o-compact and thus any Borel measure
on X that satisfies condition (iii) is regular.

Denote by C.(X) the space of compactly supported continuous functions
on X. We say that a linear functional ® : C.(X) — C is positive if ®(f) > 0
for every f € C.(X)+. By Riesz’s representation theorem (see [Ru87,
Theorem 2.14)), for every positive linear functional ® : C.(X) — C, there
exists a unique regular Borel measure v on X such that

Wecwm,@uwiéﬂmwuy

In that case, we will simply write ® = v. Note that for every regular Borel
measure v on X and every p € [1,400), the space C.(X) is || - ||,-dense
in the Banach space ILP(X, 2", v) of all v-equivalence classes of p-integrable
functions on X.

THEOREM 3.4 (Haar). Let G be a locally compact group. Then there
exists a nonzero reqular Borel measure mg on G that is unique up to mul-
tiplicative constant and that satisfies one of the following equivalent condi-
tions:

(i) For every Borel subset B C G and every g € G, mg(9B) = mag(B).
(ii) For every f € C.(G) and every g € G,

(/ﬂf%mmdm=/fwmmdm
G G
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We say that mq is a left invariant Haar measure on G.

For a proof of Theorem 3.4, we refer the reader to [HR79, Chapter 15].
The locally compact group G is o-compact if and only if the left invariant
Haar measure m¢ is o-finite.

Theorem 3.4 also implies that there exists a nonzero regular Borel mea-
sure ug on G that is unique up to multiplicative constant and that satisfies
one of the following equivalent conditions:

(i) For every Borel subset B C G and every g € G, ug(Bg) = pa(B).
(ii) For every f € C.(G) and every g € G,

/ f(hg) dug(h) = / £(h) duc(h)
G G

We say that ug is a right invariant Haar measure on G. Indeed, any left
invariant Haar measure mg on G gives rise to a right invariant Haar measure
g on G by the formula

VB € #(G), pa(B)=ma(B™).

The next proposition shows that any left invariant Haar measure has
full support.

PROPOSITION 3.5. Let G be a locally compact group and mqa a left in-
variant Haar measure on G. Then supp(mg) = G. Moreover, for every

f € C.(G) 4+ such that f # 0, we have fG f(h)dmg(h) > 0.

PROOF. Since mg # 0, Conditions (ii) and (iii) in the definition of
regularity imply that there exists a compact subset K C G such that 0 <
ma(K) < +o0o. Let U C G be a nonempty open subset. There exist
gi,---,9n € G such that K C |J; ¢;U. This implies that

0 <ma(K) <ma(| JaU) <> ma(gl) =n-ma(U)
=1 i=1

and so mqg(U) > 0. Thus, supp(mg) = G.

Moreover, let f € C.(G)4 such that f # 0. Then there exist ¢ > 0 and
an open subset U C G such that f(h) > € for every h € U. This implies
that

/ F(h) dme(h) > / cdma(h) = & - ma(U) > 0,
G U
This finishes the proof. O

The next proposition gives a characterization of compact groups in terms
of the Haar measure.

PROPOSITION 3.6. Let G be a locally compact group and mg a left in-
variant Haar measure on G.
Then G is compact if and only if mg(G) < +oo.
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PROOF. Firstly, assume that G is compact. Then by regularity we have
mg(G) < +o0.

Secondly, assume that G is not compact. Take a compact neighborhood
K C G of e € G and set gy = e. We have mg(K) > 0 by Proposition 3.5.
Since KK~! is compact, there exists g; € G such that g € G\ KK~
This implies that g;K N K = (). By induction, define g, € G so that
g €EG\ (KU KU---Ug, 1K)K~'. Tt follows that (¢,K), are pairwise
disjoint. This implies that

ma(G) > ma( U g K) = ng(gnK) =400 -mg(K) = +o0.
neN neN
This finishes the proof. U

Let G be a locally compact group and mg a left invariant Haar measure
on (G. The measure m¢g need not be right invariant. For every g € G,
define the nonzero regular Borel measure m{, on G by the formula mf,(B) =
mq(Byg) for every B € Z(G). Since m, is a left invariant Haar measure,
there exists an element Ag(g) € R% such that m{, = Ag(g) mg. Then
Ag : G = RY : g — Ag(g) is a group homomorphism and is called the
modular function on G. The modular function Ag does not depend on the
choice of the left invariant Haar measure mg on GG. Moreover, we have

(3.1) Vf € Cu(G), Vg € G, /Gf(hg_l)dmg(h)—Ag(g)/Gf(h)de(h).

The left invariant Haar measure mg is right invariant if and only if Ag = 1.
In that case, we say that G is unimodular. We then simply refer to m¢g as
a Haar measure on G.

PROPOSITION 3.7. Let G be a locally compact group and mg a left in-
variant Haar measure on G. Then the modular function Ag : G — R is
continuous. Moreover, we have

Vi € Cu(@), /G £ dmg (h) = /G Ag(h™Y) f(h) dme ().

PROOF. Choose ¢ € C.(G) such that x = [, ¢(h)dmg(h) # 0. Set
Q@ = supp(y). Then we have

_ Joethg™) dme(h)
Vge G, Acg(g) = GfG ¢(h) dmg(h)

Choose a compact neighborhood K C G of e € G. Let ¢ > 0. Since ¢ is

uniformly continuous by Lemma 3.8, there exists a neighborhood U of e € G
such that U ¢ K, U™' = U and
ER

Yue U, sup{|p(hu™)—p(h)||he G} < mG(OK)"

Then for every u € U, we have

Al =11 < - [ Jol™) = o(n)] dma(h)
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1 ER
< —mg(QK)———— ==¢.
K ma(QK)
This implies that Ag : G — R is continuous at the identity element e € G
and so Ag is continuous.

Next, observe that both of the positive linear functionals

Ci(G) —» C: f»—>/f ) dmg(h)

C(G) > C: f /G A(Y) £ (h) dma(h)

define a nonzero right invariant regular Borel measure on G. Thus, there
exists ¢ > 0 such that

Vf € Co(G /f ) dmg(h —c/ AR f(R) dmg(h)

Define % € C.(G) by the formula @(h) = @(h™!) for every h € G. Then we
have

07 [ phydma(ny = [ (71 dma(h)
e / Ac(h=H3(h) dme(h)

=/ Ag(hHe(h™t) dme(h)

=c? ; Ac(h™ ") Ag(h)p(h) dmea(h)

_ & /G o(h) dme(h).
This implies that ¢ = 1. ]

In the proof of Proposition 3.7, we used the following technical result.
Denote by (Cy(G), || - ||so) the Banach space of all bounded continuous func-
tions on G endowed with the supremum norm. Denote by A : G ~ Cy(G)
(resp. p : G ~ Cy(G)) the left (resp. right) translation action defined by
A9 f)(h) = f(g~'h) (vesp. (p(9)f)(h) = f(hg)) for all g,h € G and all
f e Cy(G).

LEMMA 3.8. Let G be a locally compact group and f € C.(G) a com-
pactly supported continuous function. Then for every € > 0, there exists a
symmetric neighborhood U C G of e € G such that

sup {[[A(w) f = flloo, [lo(w) f = flloo | u € U} <e.
Then we say that f € C.(G) is uniformly continuous.
ProOOF. Let f € C.(G) and set @ = supp(f). Let ¢ > 0 and fix a

symmetric compact neighborhood V' C G of e € G. For every g € G,
there exists an open neighborhood W, C G of g € G such that for all
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wi,wy € Wy, we have |f(wi) — f(we)| < €. For every g € G, choose an
open symmetric neighborhood U, C G of e € G such that gU,U, UU,Uyg C
Wy. Then for every g € G, gU, NUyg is an open neighborhood of g € G.
Since VQV is compact, there exist n > 1 and ¢i1,...,9, € G such that
VQV C U;—y 9iUg, N Uy, gi. Define U =V N, U,, which is a symmetric
neighborhood of the identity e € G. Then for every v € U and every g € G,
we consider the following situations:
o If g € VQV, then there exists 1 < ¢ < n such that g € g;Uy;, N
Ug,9i- Since v € U C Uy, we have gu € g;U,,U,, C Wy, and
ug € Uy Uggi C Wy, It follows that |f(gu) — f(g)] < € and
[Flgu) - F(g)] < =.
e If g ¢ VQV, then gu ¢ Q and ug ¢ Q. It follows that f(g) =
f(ug) = f(gu) = 0.
We have showed that for every u € U and every g € G, we have |f(gu) —
f(9)l < eand [f(gu) — fg)| <e. O

Let (G, ma,Ag) and (H, mg, Ap) be locally compact groups with their
respective left invariant Haar measure and modular function. Let o : G ~ H
be a continuous action by continuous group automorphisms and write G x H
for the locally compact semi-direct product group. Recall that the group
law on G x H is given by

Vg1,92 € G,Yhi,hy € H, (g1,h1) - (92, h2) = (9192, 0, (h1)ha).

The next proposition provides an explicit calculation of the Haar measure
and the modular function on G x H.

PROPOSITION 3.9. The regular Borel measure magy g defined on G x H
by the formulae

(3.2) VI € ColG w H), /G  H.h)dmgun(h)

:/H</Gf(g,h)dma<g)> dmpy (h)
:/G</Hf(g,h)de(h)> dmea(g)

s a left invariant Haar measure on G x H. Moreover, the modular function
Agxy : G x H — RY satisfies

V(g;h) € Gx H, Acxn(g,h) = p(g) Aalg) Au(h)
where p : G — R is the continuous function defined by the formula

Vi € Cu(H), Vg € G, /H F(o9(h)) dm(h) = p(g) /H F(h) dm (1),

PROOF. Fubini’s theorem implies that for every f € C.(G x H), we have

[ ([ sta.mamc) amau = [ ([ 0.0 amu)) dmeta)
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Denote by mgxg the unique regular Borel measure on G x H defined by
(3.2). For every f € C.(G x H) and every (g1,h1) € G x H, we have

/ (g1, 11) - (g2, b)) dm (g2, ha)
GxH

- /G F(9192, 0 (ha)ha) Az (g2, ho)
x H

:/G</H f(9192,h2)de(h2)> dme(g2)

:/H </Gf(92,h2)dmc(92)> dmp (ha)
—/G[XHf(gg,hz)dexH(g%hQ)'

This shows that max g is a left invariant Haar measure on G x H.
Consider the function p : G — R% as defined above. For every f €
Cc(G x H) and every (g2, h2) € G x H, we have

/ F((g1,hn) - (g2, ha) ™) dmerr (g1, )
Gx H
- / F(9195, 043 (h1h3 1)) dmuerr (g1, h)
GxH
~Auth) | ( / f<glgzl,o—g2<hl>>de<hl>) dmes(g1)
~ plaa) B(hz) | ( [ gt m) de<h1>) dmes(g1)
~ plg2) Do) Aua(he) [ ( /| f<gl,h1>dma<gl>> dmp(hn)

Zﬂ(g2)AG(92)AH(h2)/G Hf(gl,hl)dele(glahl)

and hence Agyw (g2, he) = p(g2) Ac(g2) Ag(he). O

ExaMPLES 3.10. Here are some examples of unimodular locally compact
groups. Let d > 1.

(i) Any group G endowed with the discrete topology is unimodular.
Indeed, in that case the counting measure m¢ is a nonzero regular
Borel measure on G that is clearly both left and right invariant.

(ii) Any compact group G is unimodular. Indeed, fix a left invariant
Haar measure mg on G. Then Ag(G) < RY is a compact sub-
group and so Ag(G) = {1}. This shows that Ag =1 and so G is
unimodular.

(iii) Any abelian locally compact group G is unimodular. The Lebesgue
measure dz; - - - dzg on R? is a Haar measure.
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(iv) Recall that the general linear group GL4(R) can be regarded as the
open (dense) subset of invertible matrices in Mg(R) = R?x - - - x R4,
For every g € GL4(R), the Jacobian of the diffeomorphism

Lg: Mg(R) = Mg(R) : (21,...,2a) = (921, .., g%a)

is equal to |det(g)|?. It follows that a left invariant Haar measure
mq on G = GLy(R) is given by

dmg(g) = \det o I 95 9= (9:3)is-
1<z J<d
For every g € GL4(R), since the Jacobian of the diffeomorphism
Ry : My(R) = My(R) : 2 — 2g

is also equal to | det(g)|¢, it follows that mg is right invariant and
so G = GL4(R) is unimodular.

(v) Recall that the special linear group SL4(R) < GL4(R) is defined
by SL4(R) = ker(det). It is known that the only normal sub-
groups of SL4(R) are {1}, {£1} and SL4(R). This implies that
ker(Agr,,(r)) = SLa(R) and so SLy4(R) is unimodular.

(vi) For every d > 2, the strict upper triangular subgroup G = T4(R)
defined as the group of all matrices g = (g;5)i; such that g;; = 0

forall1 <j<i<dandg;=1for all 1 <i<d is homeomorphic
(d—1)
2

. Under this identification, the Lebesgue measure on
dd-1) . . . . .
2 gives rise to a left and right invariant Haar measure mg on

G defined as

dmg(n H dnij, n = (ni)ij-
1<i<j<d

Indeed, for all i < j and all g,n € Ty(R), we have (gn);; = gij +
Nij + D ik GikTkj- Endow the set {(i,5) [ 1 < i < j < d} with
the lexicographical order. Then for every g € T4(R), the Jacobian
matrix of the diffeomorphism Ty4(R) — T4(R) : n +— gn is lower
triangular with diagonal entries all equal to 1. This implies that
the Jacobian of the diffeomorphism Ty(R) — T4(R) : n +— gn is
equal to 1. The same argument shows that for every g € Ty(R),
the Jacobian of the diffeomorphism Ty(R) — T4(R) : n +— ng is
equal to 1. Thus, G = T4(R) is unimodular.

2. Lattices in locally compact groups

Let G be a locally compact group and I' < G a discrete subgroup. We
say that a Borel subset .# C G is a Borel fundamental domain (for the right
translation action I' ~ G) if

V1,7 €T, £ = FunFyp=0 and |JFy=0G.
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Denote by G/T" = {gI" | g € G} the quotient space and by p: G — G/T" :
g — gI' the quotient map. Endow G/T" with the quotient topology.

ProprosiTION 3.11. Keep the same notation as above. The following
assertions hold:

(i) The quotient map p : G — G/I' is continuous and open and G/’
is Hausdorff and locally compact. Moreover, the action map G X
G/I' = G/I': (g,x) — gz is continuous.

(ii) If G/T is compact, then there exists a Borel fundamental domain
F C G that is relatively compact in G.

(iii) If G is second countable, then G /T is second countable. Moreover,
there exists a Borel fundamental domain % C G such that for every
compact subset Y C G/T, the subset p~1(Y)N.F C G is relatively
compact in G.

PrOOF. (i) Endow the quotient space G/I" = {gI' | ¢ € G} with the
quotient topology. By definition, a subset V' C G/T " is open if and only if
p~1(V) C G is open. Then the quotient topology is the finest topology on
G /T that makes the quotient map p : G — G/T" continuous. Let now U C G
be an open set. Then p~!(p(U)) = p~'({RT | h € U}) = U, er U~ is open
and so is p(U) C G/T" is open. This shows that p: G — G/T" is open.

Let x1,29 € G/T with x; # x9. Write 1 = ¢1I" and z9 = goI'. Note
that go ¢ g1I". Choose a compact neighborhood U; C G (resp. Us C G3) of
g1 € G (resp. g2 € G). Since U{lUl C G is compact and since I' < G is
discrete, the set A = {y € ' | Uy NUyy # 0} is finite. For every v € A, since
g1 # g27, there exist neighborhoods U, of g; € G and V, of g2y € G such
that U, NV, = (). Set

Wy=Uin (U, and Wo=0Tpn (] Vyy "
YEA vEA
Then for every v € T', we have W1 N Way = (. Indeed, if v € T\ A,
then Uy NUsy = 0. If v € A, then U, N (Vo7 1)y = 0. Thus, we have
p(W1) Np(W3) = 0. This shows that G/I" is Hausdorff.

Let z = gI' € G/I". Choose a compact neighborhood K C G of e € G.
Then gK is a compact neighborhood of g € G and so p(gK) is a compact
neighborhood of z € G/I'. This shows that G/T" is locally compact.

Define the action map a : G x G/T' - G/T : (g,x) — gz. Recall
that the multiplication map m : G x G — G is continuous. Since the map
idgxp: GxG— GxGJI':(g,h) — (g,hI') is continuous and open, the
commutative diagram

GxG —2 @

lid xp lp

G x G —— G/T

shows that the action map a : G x G/I" — G/I" is continuous.
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(ii) Since I' < G is discrete, there exists an open neighborhood V- C G
of e € G such that VNT = {e}. Since the map G x G — G : (g,h) — g~ 'h
is continuous, there exists an open neighborhood U C GG of e € G such that
U~'U c V. Replacing U with U N K where K is a relatively compact open
neighborhood of e € G, we may assume that U C G is relatively compact.
Since G/I' is compact and since (p(gU)gec) is an open covering of G/T,
there exist g1,...,9, € G such that G/T' = |J_, p(¢;U). Define the Borel
subset

n
F=JaU\|JgUT

i=1 j<i
By construction, .% C G is relatively compact. Then we have Uwer Fy =
UL, aUT =p Y UL, p(9:U)) = p~1(G/T) = G. Let 71,72 € I be elements
such that .#~1N.Z v, # (. Upon exchanging 71 and 72, we may assume that
there exist ¢ > j and uy,up € U such that g;uivy1 = gjuay2. By construction
and since g;u1 = gjuay27y; LegUn g;UT", we necessarily have i = j. Then
u17y1 = ugy2 and so u;lul = ’ygfyl_l ce U 'lUNT c VNI = {e}. This shows
that 71 = 72 and thus .# C G is a Borel fundamental domain.

(iii) Choose a countable basis (Uy,),, for the topology on G. Let V' C G/T’
be an open set. Then p~(V) C G is open and so there exists a subfamily
(Un, )k such that p~3(V) = U, Up,. Then we have V = p(p~1(V)) =
Uk p(Up, ). This shows that (p(U,))n is a countable basis for the quotient
topology on G/T" and so G/T" is second countable. For every n € N, choose
gn € Up.

As before, there exist open neighborhoods U,V C G of e € G such that
U C G is relatively compact, U"'U C V and VNI = {e}. We claim that
G = U,en92U. Indeed, for every g € G, gU~! C G is an open set and
hence there exists n € N such that U, C gU~!. This implies that there
exists u € U such that g, = gu™! or equivalently g = g,u and thus g € g,U.
Define the Borel subset

7= (gnU\ U gkUF> .

neN k<n

Then we have |, cr #v = U,eny 9nUT = G. Let 71,72 € T be elements such
that .F~1N.% 7, # 0. Upon exchanging 1 and 72, we may assume that there
exist m > n and wuy,us € U such that g,ui1v1 = gnusye. By construction
and since g,,u1 = gpuay27y; e ¢,U N goUT, we necessarily have m = n.
Then u17y; = ug7ye and so uglul = 727{1 cU'UNT cvnT = {e}.
This shows that v; = 72 and thus .# C G is a Borel fundamental domain.
Let Y C G/T be a compact subset. Since (p(gnU))n is an open covering of
Y, there exist n; < --- < ng such that ¥ C Ulep(gmU). Then we have
p Y (Y)NF C UjL0(9;U \ U, ¢:UT) and so p~Y(Y)NZF C G is relatively
compact. O
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Observe that when G is a locally compact o-compact group, any discrete
subgroup I' < G is necessarily countable. Indeed, since G is o-compact,
the left invariant Haar measure mg is o-finite. We may then choose a
Borel probability measure p € Prob(G) such that p ~ mg. We may also
choose open neighborhoods U,V C G of e € G such that UU~! € V and
VNI = {e}. Then (YU) er is a family of pairwise disjoint open subsets.
Moreover, since mg(yU) = mg(U) > 0 for every v € T, it follows that
w(yU) > 0 for every v € I'. This implies that I" is necessarily countable.

COROLLARY 3.12. Let G be a locally compact second countable group
and T’ < G a discrete subgroup. Then there ezists a Borel map o : G/T' — G
such that
o(G/T') = F is a Borel fundamental domain,

o(l) =e,

x =o(x)l for every xz € G/T,

o(Y) C G is relatively compact for every compact subset Y C G/T.
We then simply say that o : G/T' — G is a Borel section.

ProoF. Choose a Borel fundamental domain .# C G as in Proposition
3.11(iii) such that e € .#. Then p|z : . — G/T is Borel and bijective. This
implies that the map o = (p|#)~! : G/T — G is Borel (see [Zi84, Theorem
A.4]) and satisfies all the required properties. O

DEFINITION 3.13. Let GG be a locally compact group and I' < G a discrete
subgroup. We say that I' < G is uniform or cocompact if G/T" is compact.

We say that I' < G is a lattice if there exists a G-invariant regular Borel
probability measure v € Prob(G/T).

Define the linear mapping 7 : C.(G) — C.(G/T) : f — f by the

formula
Vge G, flgD)=>_ flgv).
vel’

We claim that 7 : C.(G) — C.(G/T) is surjective. Indeed, let ¢ € C.(G/T)
be a function and denote by @ = supp(y¢) C G/T its compact support.
Choose a relatively compact open neighborhood V' C G of e € GG. Then there
exist g1, ..., gn € G such that @ C U, p(¢;V). Set K = p~1(Q)NU, 9:V.
Then K C G is a compact subset such that p(K) = @. By Urysohn’s lemma
(see e.g. [DE14, Lemma A.8.1(ii)]), we may choose fx € C.(G)+ such that
f‘K = lK.

Define the function f : G — C by the formula f(g) = %ﬁ((g)
if 7(frk)(gl') # 0 and f(g) = 0 otherwise. Then supp(f) C supp(fx) is
compact and f is continuous on G since 7 (fx)(gI') > 0 on a neighborhood
of Q. Thus, f € C.(G) and we have .7 (f) = .

ProprosITION 3.14. Let G be a locally compact group and I' < G a
uniform discrete subgroup. Then G is unimodular and I' < G is a lattice.
If G is moreover compactly generated, then I' < G is finitely generated.
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PrOOF. Fix a right invariant Haar measure ug on G. Consider the
positive linear functional

D :C(G/T) = C: Frs /G £(9) duc(g).

In order to check that ® is well-defined, it suffices to show that if ¢ € C.(G)
is such that @ = 0, then we have chp )dug(g) = 0. Indeed, for every
¥ € C.(@G), using Fubini’s theorem, we have

[ pmysmduat) = X [ oo duath

ver

- ) dpug(h)
WGZ; / e

- /G (B (hT) dp (h).

Since the map C.(G) — C(G/T) : f = f is surjective, there exists 1) €
C.(G) such that 1) = 1 on the compact subset supp(¢)I' € G/I'. Therefore,
we obtain

/ o(h) dug(h) = / (R (D) dug(h) = / B (h) du(h) = 0.
G G

G

By Riesz’s representation theorem, there exists a unique regular Borel mea-
sure v on G/T" such that

VS € (), /G £(h) du(h) = /G F(hT) du(hT).

Note that the above argument does not use the fact that I' < G is uniform.
However, since I' < G is uniform, G/I' is compact and we have 0 <
v(G/T') < +o0. Up to normalization, we may assume that v(G/I") = 1.
Define the left invariant Haar measure mg on G by the formula mg(B) =
pa(B™Y) for every B € %(G). Then for every B € %(G) and every g € G,
we have

(ge11c)(B) = pa(g~'B) = ma(B™'g) = Aa(g) ma(B™") = Aq(g) na(B)

and so g.ug = Ag(g) e. By uniqueness in the previous construction, we
obtain g.v = Ag(g) v for every g € G. Since v € Prob(G/I) is a probability
measure, we obtain Ag(g) =1 and g.v = v for every g € G. Thus, Ag =1
and so G is unimodular. Moreover, v € Prob(G/I') is G-invariant and so
I' < G is a lattice.

Assume moreover that G is compactly generated. Choose a compact
subset @ C G such that e € Q and G = |J,,»; Q". Since G/I" is compact,
we may choose a compact subset K C G such that p(K) = G/T" (see the
proof of surjectivity of the map 7 : C.(G) — C.(G/I')). Upon replacing
Q@ by QU K, we may further assume that ) -I' = G. Then Sy = Q NT is
finite. Moreover, since Q2 is compact, there exists a finite subset S; C T’
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such that Q? C QS;. Indeed, otherwise we could find sequences (g, ), in
Q?, (hn)n in Q and (v,), in I' such that g, = h,7, for every n € N and
(¥n)n are pairwise distinct. This would imply that v, = h;'g, € Q*NT
for every n € N. Since Q3 is compact and I' < G is discrete, @3 N T must
be finite, a contradiction. Set S = Sy US; C I'. Then @ NI" C S and for
every n > 1, we have Q"' C QS™. We claim that S is a finite generating
set for I'. Indeed, by construction, we have Q NI" C S. Next, let n > 1 and
yeQ"'NT c QS*"NTI. Then v = g7, where g € Q and ~, € S™. This
implies that y,' =g € QNI Cc S. Then v = gy, € SS" = " and
hence Q"' NT C S™*1. This implies that T = |J,~, Q"N C |J,,~; S™ and
so I' is finitely generated. - B O

PropoSITION 3.15. Let G be a locally compact group that possesses a
lattice ' < G. Then G s unimodular. Moreover, there is a unique G-
invariant regular Borel probability measure v € Prob(G/T").

PROOF. Let v € Prob(G/I") be a G-invariant regular Borel probability
measure. We claim that there exists a unique left invariant Haar measure
mg on G such that

(33)  VfeCuq), /G sama(n = [ Far) angr)

Indeed, the well-defined positive linear functional

Ce(G) = C: [ f(gl") dv(gl")
G/T
is left invariant. By Riesz’s representation theorem, there exists a unique
left invariant Haar measure mg on G for which (3.3) holds.
Applying (3.1), for every f € C.(G) and every v € I', letting f, =
f(-771) € Cu(G), we have

Ac(y) /G F(h) dmg (h) = /G £ (h) dma(h)

= f(RD) dv(hT)
G/T

= f(RD) dv(hT)
G/T

— [ s dman)
G

This implies that Ag(y) = 1 for every v € I'. Consider the well-defined con-
tinuous mapping A : G/I" — R% : gI' = Ag(g). Then n = A,v € Prob(R%)
is a Borel probability measure that is invariant under multiplication by
Ag(g) for every g € G. This implies that Ag = 1 and so G is unimod-
ular.
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Observe that (3.3) together with surjectivity of .7 : C.(G) — C.(G/TI)
imply that there is a unique G-invariant regular Borel probability measure
v € Prob(G/T). O

The next proposition provides a group-theoretic characterization of uni-
form lattices in locally compact groups.

PropoSITION 3.16. Let G be a locally compact group and I' < G a
lattice. The following assertions are equivalent:
(i) T < G is uniform.
(ii) There exists a compact neighborhood U C G of e € G such that for
every g € G, we have gTg~ ' NU = {e}.

PROOF. (i) = (ii) Assume that I' < G is uniform. Since I' < G is
discrete, we may choose a compact neighborhood W C G of e € (G such that
I'nW = {e}. Next, we may choose a symmetric compact neighborhood
V C W of e € G such that VVV C W. Observe that for every h € V, we
have

ACA PNV c RN A WVR)A  c (TN W)R™! = {e}.
By compactness of G/T", there exist n > 1 and ¢i,...,9, € G such that
G/T = U, gip(V). Set U = N\, 9:;Vg;'. Then for every g € G, there
exist 1 <7 <n and h € V such that gI' = g;hl' and hence

gTg ' NU = ghTh™ g ' nU C g;(hTA™ ' NV)g; = {e}.

(ii) = (i) Denote by v € Prob(G/T") the unique G-invariant regular Borel
probability measure and by m¢g the unique Haar measure on G such that
(3.3) holds. Assume that there exists such a compact neighborhood U C G
of e € G. Choose a compact neighborhood V' C G of e € G such that
V=1V c U. Choose a nonnegative function ¢ € C.(G) such that 0 < ¢ < 1
and supp(p) C V. Set € = [, ¢(h) dma(h).

For every g € G, define ¢, = ¢(-g7') € C.(G). Note that 0 < p, <1
and supp(py) C Vg. Moreover, we have supp(@,) C VgI'. Since m¢ is right
invariant, we have

e = /G o(h) dma(h)
— [ ealh) dmath)
G
_ / B=(hT) du(hT)
G/T
- / B=(hT) dv(hT)
Vgl'

— /V . > pg(hy) dv(hT).

yel’
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We claim that for every h € VgI', there is at most one v € I' such that
hvy € Vg. Indeed, if 71,7 € I' are elements such that hvy;, hys € Vg, then
gwflfyzg_l € V'V c U. Since gT'g~' NU = {e}, we have 71 = 2. Since
0 < ¢4y < 1 and supp(py) C V4, it follows that

€= /V gFZgog(h’y)dy(hF) < / 1dy(hl') = v(Vgl).

~er Vgl

We have showed that v(VgI') > € for every g € G.
Let FF C G be a finite subset for which for every g,h € F such that
g # h, we have VgI' N VAD = ). Then we have

fF-e <> v(VgD) =v(| ) VgD) <1
geFr geF

and hence #F < e~!. We may then choose a maximal finite subset F' C G
with the aforementioned property. It follows that for every g € GG, we have
VgL NVET # () and hence gI' € V-'VFIL Cc UFT. Since UFT C G/T is
compact, it follows that G/T' = UFT is compact. O

When G is a locally compact second countable group, we prove a very
useful criterion to ensure that a discrete subgroup I' < G is a lattice.

THEOREM 3.17. Let G be a locally compact second countable group and
I' < G a discrete subgroup. The following assertions are equivalent:

(i) I' < G is a lattice.

(ii) G is unimodular and there is a Borel fundamental domain F C G
for the right translation action T' ~ G such that 0 < mg(F) <
+00.

(iii) G is unimodular and there is a Borel subset & C G such that
S-T'=G and 0 < mg(6) < +o0.

PRrROOF. Recall that since G is a locally compact second countable group,
the discrete subgroup I' < GG is necessarily countable.

(i) = (ii) We already know that G is unimodular by Proposition 3.15.
Denote by v € Prob(G/I") the unique G-invariant regular Borel probability
measure. Denote by mg the unique Haar measure on G satisfying (3.3).
Since G is locally compact second countable, (3.3) holds for every nonnega-
tive Borel function f : G — R,. In particular, for f = 17, we have f = 1
and so

ma(F) = /C;f(h) dmg(h) = /G/Ffdu(hf) =1 < +o0.

Since mg(G) > 0, G = U, Fv and ma(Fv) = ma(F) for every v € T,
we also have mg(F) > 0.
(ii) = (iif) It is trivial.
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(iii) = (i) Following the proof of Proposition 3.14 and since my is right
invariant, we may consider the well-defined nonzero left invariant linear func-
tional

®:CA(G)T) = C: frs /Gf(g) dmg(g).

By Riesz’s representation theorem, there exists a unique nonzero G-invariant
regular Borel measure v on G/T" such that (3.3) holds. Since G is locally
compact second countable, (3.3) holds for every nonnegative Borel function
f: G — Ry. In particular, for f = 1g, we have f > 1 and so

v(G/T) < fdu(hr):/f(h)dmg(h)zmc(6)<+oo.
G/T G

Then ﬁV € Prob(G/T") is a G-invariant regular Borel probability mea-

sure and so I' < (G is a lattice. O

Let us point out that when I' < G is a lattice, all Borel fundamental
domains for the right translation action I' ~ G have the same finite Haar
measure. Indeed, whenever %1, %3 C G are Borel fundamental domains,
since the Haar measure m¢ on G is right invariant, we have

ma(F1) =Y ma(F10 Fay)

~yel’
= Z mg(yl’y*l N e9})

= m(;(ﬁQ).

ExaMPLES 3.18. Here are some examples of lattices in locally compact
groups.

(i) For every d > 1, the discrete subgroup Z¢ < R? is a uniform lattice.
(ii) More generally, any lattice I' < G in a locally compact second
countable abelian group G is necessarily uniform.
(iii) The discrete Heisenberg group H3(Z) < H3(R) is a uniform lattice
in the continuous Heisenberg group Hs(R):

1 =z =z

H3(Z2) = 01 y||xyz€Z
0 0 1
1 =z =z

HyR)={ (0 1 y| ey z2eRr
0 0 1

(iv) More generally, any lattice I' < G in a locally compact second
countable nilpotent group G is necessarily uniform.
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3. SL4(Z) is a lattice in SL4(R), d > 2
In this section, we prove the following theorem due to Minkowski.

THEOREM 3.19 (Minkowski). For every d > 2, the discrete subgroup
SL4(Z) < SL4(R) is a nonuniform lattice.

Before proving Theorem 3.19, we need to prove some preliminary results
that are also of independent interest.

Let d > 1. Endow R? with its canonical euclidean structure. Denote by
K = S04(R) < SLg4(R) the special orthogonal subgroup and observe that
K < SL4(R) is compact. Denote by A < SL4(R) the subgroup of diagonal
matrices with positive entries, that is,

A:{a:diag()\l,...,)\d)\/\1,...,)\d>0, )\1~--)\d=1}<SLd<R).

Denote by N = T4(R) < SL4(R) the strict upper triangular subgroup as in
Example 3.10(vi).

LEMMA 3.20 (Iwasawa decomposition). The map K x Ax N — SLg(R) :
(k,a,n) — kan is a homeomorphism. We simply write SLz(R) = K- A-N.

PROOF. Denote by (ei,...,eq) the canonical basis of R?. The map
U:KxAxN — SLg(R) : (k,a,n) — kan is clearly continuous. Con-
versely, let g € SL4(R) and write v; = ge; € R? for every 1 < i < d.
By Gram—Schmidt’s orthogonalization process, set w; = v; and w41 =

viy1 — Py (viy1) where V; = Vect(vy,...,v;) for every 1 <i < d — 1. Then
(”:ﬁ—i”, ce HZ}”—ZH) is an orthonormal basis for R? and we may find k& € Og(R)
such that ke; = ”g—’” for every 1 < i < d. Then the matrix k= 1g is
upper triangular and (k=1g); = ||w;| for every 1 < i < d. It follows
that det(k™!) = det(k~'g) = ||lwi|---|Jwg] > 0 and hence k € SO4(R).
Letting a = diag(||w1], ..., ||lwq|]) € A, we have ¢ = kan and the map

SLg(R) - K x Ax N : g — (k,a,n) is continuous. Since its inverse is
U, we have showed that ¥ : K x A x N — SLy4(R) : (k,a,n) — kan is a
homeomorphism. O

LEMMA 3.21. Endow (K,dk), (A,da), (N,dn) with their respective Haar
measure. Then the pushforward measure of

% dkdadn

1<i<j<d "

under the map K x A x N — SL4(R) : (k,a,n) — kan is a Haar measure
on SL4(R).

PRrROOF. Counsider the product map ¥ : K x AN — SLy(R) : (k,p) —
k~!p. Since SL4(R) is unimodular, the regular Borel measure (¥ 1), mgr, J(R)
on K x AN is right invariant. Then (\Il_l)*mSLd(R) is a right invariant Haar
measure on the locally compact second countable group K x AN and hence
(\Il_l)*mSLd(R) = pug @ pan where pg is a right invariant Haar measure on
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K and pap is a right invariant Haar measure on AN. Since K is compact,
px is also left invariant and hence we may assume that dux (k) = dk. It
remains to prove that ngi <j<d i—; dadn is a right invariant Haar measure
on AN.

As explained in Examples 3.10(vi), we may assume that dmpy(n) =
dn = [];<;cj<qdnij. Observe that N < AN is a normal subgroup and
define the conjugation action Ad: A ~ N by Ad(a)(n) = ana™! for a € A,
n € N. Then AN = A x N and dadn is a left invariant measure on
AN by Proposition 3.9. A simple calculation shows that Ad(a).my =
(Ii<icj<a i—;)_l -my. Then Proposition 3.9 implies that [ [, ;<4 i—; dadn
is a right invariant Haar measure on AN. ([

For all t,u > 0, set
={a=diag(A1,...,N\g) € A|VI<i<d—1,\ <thiy1}
Ny ={n=(ny)ij € N |Vl <i<j<d,|n| <u}
Giu=K-A;- Ny.
The Borel subset &;, C G is called a Siegel domain. We now have all the
tools to prove Theorem 3.19.

ProOOF OF THEOREM 3.19. For every t > % and every u > %, we

show that SLq(R) = &;, - SL4(Z) and that &;,, has finite Haar measure.
By Theorem 3.17, this implies that SL4(Z) < SLg4(R) is a lattice. We divide
the proof into a series of claims.

Cram 3.22. For all t,u > 0, the Siegel domain &;, has finite Haar
measure.

Indeed, note that since K and N, are both compact in SLg(R), using
Lemma 3.21 it suffices to prove that

Ai
Ky = /A H X da < 4o00.
t1<i<j<d "7

Observe that the map

©: AR diag(Ay, ..., M) — <10g>\2,...,log Ad )
A1 Ad—1

is a topological group isomorphism. We may choose the Haar measure da
on A that is the pushforward of the Lebesgue measure on R4~ by ©~1. We
then have

Rt = / H eXp 31 s Sj—l))l{sl,.‘.,sd,lzflogt} dsy---dsg_
Y <i<j<d

H/ exp(—k(d — k)sy) dsg, < +00.
logt
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CLAIM 3.23. For every u > 1, we have N = N, - (N N SLy(Z)).

Indeed, it suffices to prove Claim 3.23 for u = % We proceed by induc-
tion over d > 1. For d = 1, there is nothing to prove. Assume that the
result is true for d — 1 > 1 and let us prove it for d. Let n € N = T4(R)
that we write

Ono

By induction hypothesis, there exists 79 € Tg—1(R) N SLg—1(Z) such that
ny = nofyo_l € Tg1(R)1 /5. Write

n<1 01>:<1 x> where 2 € RL
0 v 0

Choose y € Z%~! such that z —y € [~1/2,1/2]1. Then
(1 =z 1 0
"= 0 )0
(1 z—y\ (1 y 1 0
—\0 ni 0 1 0 Yo

1 z—y 1 y\/1 O

This shows the result is true for d and finishes the proof of Claim 3.23.
Cramm 3.24. For every t > %, we have SLy(R) = K - Ay - N - SL4(Z).

n= (1 *> where ng € Ty_1(R).

where

Indeed, it suffices to prove Claim 3.24 for t = % We proceed by

induction over d > 1. For d = 1, there is nothing to prove. Assume that the
result is true for d — 1 > 1 and let us prove it for d. Denote by (e, ..., eq)
the canonical basis of R%. Let g € SLy(R). Since A = gZ% is a lattice in R?,
there must exist a vector v; € A\ {0} such that

[[o1]] = min {[jo]| | v € A\ {0}}

By minimality of the norm of v; € A\ {0}, we may find v, ...,v5 € A\ {0}
such that (vy,...,vq) is a basis of A (see e.g. [CaT71, Corollary 1.3]). Upon
further replacing vy by —wv1, there exists v € SLy4(Z) such that ve; = g~ tv;
for every 1 < i < d. Note that gye; = vy.

Next, consider the Iwasawa decomposition gv = kan and write

2\d-1 * *
an = < 0 )\_190> where X € R%, go € SLg—1(R).

By induction hypothesis, there exist ky € SO4_1(R) and 79 € SLy—1(Z) such
that ko_lggfyo_l € (Ad—l)z/\/g - Ty—1(R). If we consider

1 0, 4 1 0 N1 * >
h = 1k 1] = _ 1] € AN
<0 ko 1) 9 <0 Yo 1) < 0 A lkolgon!
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we obtain that the diagonal coefficients of h satisfy h;; < %hi+17i+1 for
every 2 <7 < d— 1. It remains to prove that hy; < %hgg. Observe that
for every w € Z%\ {0}, we have

1 0 1 0
_ — — < — .
|\hei|l = |lgv (0 70_1) e1ll = llgverll = llv1ll < [lgy (0 70_1> w|| = |[hwl|

Using Claim 3.23, write h = diag(hi11,...,h4g)n171 where ny € Nyjo and
v1 € NN SLy(Z). Then he; = diag(hii,...,hqq)er = hi1e1 and with w =
’yl_leg € 74\ {0}, we have hw = diag(hq1, ..., hag)niea = hiinizer + hases.
Then we obtain

1
hi = [[her|® < |hw|* = hiniy + h3y < Zh%l + h3,

and so h?; < %h%? This finishes the proof of Claim 3.24.

A combination of Claims 3.22, 3.23, 3.24 and Theorem 3.17 implies that
SL4(Z) < SL4(R) is a lattice.

It remains to prove that SL4(Z) < SLg(R) is nonuniform. Indeed, regard
SL2(R) < SL4(R) as a subgroup in the top left corner and set

v = <é }) € SLy(Z) < SLy4(Z).

Then a simple calculation shows that

_ 1 n2 ) n~t 0
gnvgnl = <0 1 ) —e with g, = ( 0 n) € SLy(R) < SLy(R).

Then Proposition 3.16 implies that SL4(Z) < SL4(R) is nonuniform. O

4. Howe—Moore’s property and Moore’s ergodicity theorem

4.1. Generalities on unitary representations. Let (J,(-,-)) be
a (complex) Hilbert space. We always assume that (-, -) is conjugate linear
in the second variable. We denote by

U () ={ueB(H)|uu=uu" =1y}

the group of unitary operators on #. We simply write 1 = 1 . We endow
U () with the strong operator topology defined as the initial topology on
U () that makes the maps % () — R : u +— ||(u — 1)¢|| continuous for
all £ € . Then % () is a topological group but % () need not be
locally compact. When J# is separable, % (.#¢) is a Polish group.

DEFINITION 3.25. Let G be a locally compact group. We say that the
mapping 7 : G — % (7#;) is a strongly continuous unitary representation if
the following conditions hold:

(i) m: G — % (H;) is a group homomorphism.

(ii) 7 : G — % (%) is strongly continuous, meaning that 7 is a con-
tinuous map when % () is endowed with the strong operator
topology as above.
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When 7 : G — % (#;) only satisfies condition (i), we simply say that
7 is a unitary representation. When G is discrete, condition (ii) is trivially
satisfied.

The next result shows that in order to prove that the unitary represen-
tation m : G — % () is strongly continuous, it is enough to show that the
coefficients of m are measurable functions.

LEMMA 3.26. Let G be a locally compact group, 5 a separable Hilbert
space and 7 : G — % (H;) a unitary representation. Assume that for all
& € Az, the map ¢ : G — C:g— (m(9)&,n) is measurable. Then 7 is
strongly continuous.

ProoOF. Let £ € 74 be a vector. It suffices to show that the map
G — 5 : g — 7(g)€ is continuous at e € G. Let Q C G be a symmetric
compact neighborhood of e € G. Consider the compactly generated open
subgroup H = |J,~; @" < G. It further suffices to show that the map
H — J : g — w(g)€ is continuous at e € H. Upon replacing G by H, we
may as well assume that G is o-compact.

As usual, we denote by m¢ a left invariant Haar measure on G. Let e > 0
and set B={g € G | ||r(9)§ — &|| < e/2}. Then B C G is a measurable sub-
set since B = {g € G | 2R((m(9)¢&,&)) > 2||¢||* — €%/4}. Moreover, we have
B '=Band B2=BB ' Cc{gecG||r(g)¢ —&| <e}. Since n(G)¢ C
is separable, there exists a sequence (gn), in G such that (7(gn)&)n is dense
in 7(G)¢€. This implies that | J,,cy 9o B = G and so mg(B) > 0. Since G is 0-
compact, upon replacing B by BN K for a suitable symmetric compact sub-
set, we may further assume that B = B~!, B C K and 0 < mg(B) < +oo.
Then 15 € L*(G,%(G), mg) and ¢ = 1 * 15 € C.(G) with supp(p) C
BB C KK. Since ¢(e) = mg(B) > 0, the subset U = ¢~1(0, +00) is open,
ecUand U C BB C{geG||n(9)¢—¢&| <e}. O

DEFINITION 3.27. Let G be a locally compact group and « : G —
U () a strongly continuous unitary representation. We say that
e 7 has invariant vectors and we write 1¢ C w if the subspace of
7(G)-invariant vectors

()¢ ={¢ € A | Vg € G m(9)é = €}

is nonzero. Otherwise, we say that 7 is ergodic and we write 1¢ ¢ .
e 7 has almost invariant vectors and we write 1lg < m if for every
€ > 0 and every compact subset () C G, there exists a unit vector
& € J¢; such that
sup [|m(g)€ — & <e.
9eQ
Otherwise, we say that 7w has spectral gap and we write 1g 4 7.
It is clear that if 1¢ C 7, then 15 < 7.

For every i € {1,2}, let m; : G — % (7;,) be a strongly continuous

i

unitary representation. We say that w1 and my are wunitarily equivalent if
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there exists a unitary operator U : J#, — J;, such that for every g € G,
we have ma(g) = Umq(g)U*. In this situation, we will identify 71 with s.

4.2. Examples of unitary representations. Let G be a locally com-
pact group.

The left regular representation A\g. Let mg be a left invariant
Haar measure on G and simply denote by L*(G) = L*(G, %(G), mg) the
corresponding Hilbert space of L2-integrable functions on G. Define the left
reqular representation \g : G — % (L*(G)) by the formula

Vg € G,VE € LX(G), (Aa(9)€)(h) = &g~ h).

The left regular representation \g : G — % (L*(G)) is a strongly continuous
unitary representation. This follows from the well known facts that the
subspace C.(G) of compactly supported continuous functions on G is || - [|2-
dense in L?(G) and the left translation action A : G ~ Co(G) is || - [|o-
continuous (see Lemma 3.8).

PROPOSITION 3.28. Keep the same notation as above. Then 1g C Ag if
and only if G is compact.

ProOOF. If G is compact, then the left invariant Haar measure mg is
finite. This implies that the constant function 1g belongs to L?(G) and
is A\g(G)-invariant. Conversely, assume that there exists a nonzero A\g(G)-
invariant vector & € L?(Q).

CrLAamM 3.29. There exists a o-compact open subgroup H < G such that
§=1u¢.

Indeed, define the measurable subsets B = {h € G | £(h) # 0} and B,, =
{heG|I&h)] =n~"} for every n > 1. Then B = J,,~, Bn, and mg(By) <
+oo for every n > 1. By regularity, for every n > 1, there exists an open
set U,, C G such that B, C U, and mg(U,) < +oo. To prove the claim,
it suffices to show that every open set U C G with finite Haar measure is
contained in a o-compact open subgroup H < G.

Let U C G be a nonempty open set such that mg(U) < +o0. Let L < G
be a o-compact open subgroup. Then the set A = {gL € G/L | U nNgL # 0}
is at most countable. Letting H < G be the subgroup generated by L and
A, we have that U C H and H < G is o-compact and open. This finishes
the proof of Claim 3.29.

Using Claim 3.29 and the assumption, for every g € G, we have

1a§ =& = Aa(9)€ = Aa(9)(1uE) = 1gné.
Since & # 0, we have gH = H for every g € G and so H = G. This shows
that G is o-compact.

We may now apply Fubini’s theorem. Indeed, since for every g € G and
mg-almost every h € G, we have £(g~'h) = £(h), Fubini’s theorem implies
that there exists h € G such that for mg-almost every g € G, we have
£(g~'h) = &(h). This further implies that ¢ is essentially constant. If we
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denote by ¢ > 0 the essential value of |£|?, we obtain c-mg(G) = [|€]|? < +o0
and so mg(G) < +00. Then G is compact by Proposition 3.6. O

The Koopman representation . Let GG be a locally compact second
countable group and (X, .2",v) a standard probability space. We endow
G with its o-algebra Z(G) of Borel subsets. Endow the product space
G x X with the product o-algebra B(G) ® Z°. Let G ~ (X, Z",v) be a
probability measure preserving (pmp) action, meaning that the action map
G x X — X :(g,x) — gz is measurable and that g,v = v for every g € G.
Denote by L?(X, 2, v) the Hilbert space of L%integrable functions on X.
Since (X, 2", v) is a standard probability space, L?(X, 2", v) is separable.
Define the Koopman representation k : G — % (L*(X, 2 ,v)) associated
with the pmp action G ~ (X, 2", v) by the formula

Vg€ GVE e LA(X, 2,v),  (k(9)€)(x) = E(g™ ).

The Koopman representation x : G — % (L?(X, 2", v)) is a strongly contin-
uous unitary representation. This follows from Lemma 3.26 after noticing
that for all £,n € L?(X, 2", v), the map

pen: G —C: g (k(g)En) = /X £(g~ 2)n(z) du(z)

is measurable thanks to Fubini’s theorem. The constant function 1x is
k(G)-invariant. For this reason, it is natural to consider the restriction of
the Koopman representation to the orthogonal complement L2 (X, 2 ,v)° =
L%(X, 2 ,v) © Cly that we denote by «°: G — % (L*(X, 2 ,v)?).

We say that a measurable subset Y C X is

e v-almost everywhere G-invariant if v(gY AY') = 0 for every g € G.
e strictly G-invariant if gY =Y for every g € G.

The next lemma clarifies the difference between the two notions.

LEMMA 3.30. For any v-almost everywhere G-invariant measurable sub-
set Y C X, there is a strictly G-invariant measurable subset Z C X such
that v(YAZ) = 0.

PrOOF. Fix a left invariant Haar measure mg on G. By assumption
and using Fubini’s theorem, the measurable subset

Xo={zeX|G—->C:gr 1y (g 'z) is mg-a.e. constant }

is v-conull in X. For every = € X, denote by f(x) the unique essential value
of the measurable function G — C : g — 1y (g~ '2). For every z € X \ X,
set f(x) = 0. Note that f(X) C {0,1}. Fubini’s theorem implies that the
function f : X — C is measurable and f(x) = 1y (z) for v-almost every
x € X. For every z € Xy and every h € G, the measurable function G —
C: g+ 1y(g~'h~'z) is mg-almost everywhere constant, hence h™'z € Xj
and f(h~'z) = f(z). This further implies that f is strictly G-invariant

meaning that f(g~'z) = f(x) for every ¢ € G and every x € X. Set
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Z ={xe€ X | f(x)=1}. Then Z C X is a strictly G-invariant measurable
subset such that v(YAZ) = 0. O

From now on, we simply say that the measurable subset ¥ C X is
G-invariant if for every g € G, we have v(gY AY) = 0. We say that the
pmp action G ~ (X, 27, v) is ergodic if every G-invariant measurable subset
Y C X is null or conull.

PROPOSITION 3.31. Keep the same notation as above. Then 1g C K° if
and only if the pmp action G ~ (X, Z",v) is not ergodic.

PROOF. If the pmp action G ~ (X, 2", v) is not ergodic, then there ex-
ists a G-invariant measurable subset ¥ C X such that 0 < v(Y) < 1. Then
the nonzero vector ¢ = 1y — v(Y)1ly € L*(X, 2 ,v)? is x%(G)-invariant.
Conversely, assume that there exists a nonzero x°(G)-invariant vector £ €
L2 (X, 2 ,v)°. Upon taking the real or imaginary part of £, we may assume
that ¢ is real-valued. Next, upon taking £t = max(£,0) or £~ = max(—¢,0),
we may further assume that ¢ € L2(X, 2", v) is x(G)-invariant, nonnegative
and & ¢ Cly. For every t > 0, define the G-invariant measurable subset
Xy = {z € X |&(x)? > t}. Then the function R% — Ry :t — v(Xy) is
measurable, decreasing and satisfies ||¢||? = O+°° v(X;)dt. We claim that
there exists ¢ > 0 such that 0 < v(X;) < 1. Indeed otherwise there would
exist s > 0 such that v(X;) = 0 for every ¢t > s and v(X;) = 1 for every
t < s. This would imply that £ is v-almost everywhere constant equal to
V/s and thus ¢ € Cly, a contradiction. Therefore, there exists ¢ > 0 such
that 0 < v(X;) < 1. This shows that the pmp action G ~ (X, 2", v) is not
ergodic. O

The quasi-regular representation Ag . Let G be a locally compact
second countable group and I' < G a lattice. We endow the locally com-
pact second countable space X = G/I' with its o-algebra 2" = #(G/I)
of Borel subsets (see Proposition 3.11(iii)). We denote by v € Prob(X)
the unique G-invariant Borel probability measure (see Proposition 3.15).
Then the action G ~ (X, %2 ,v) is pmp. In that case, we denote by
Mx : G = % (L*X,%,v)) the Koopman representation and we call it
the quasi-regular representation. Since G ~ X is transitive, Lemma 3.30
implies that G ~ (X, Z",v) is ergodic and Proposition 3.31 implies that
M G — % (L2(X, 2,v)?) is ergodic. We can strengthen the above result
when I' < G is a uniform lattice.

PROPOSITION 3.32. Assume that I' < G is a uniform lattice. Then A%
has spectral gap.

PrOOF. We may choose a Borel section o : X — G such that o(X)
is relatively compact in G (see Proposition 3.11 and Corollary 3.12). We
further choose the Haar measure mg on G such that o.v = mg|,(x). Set
Q = o(X)o(X)™! € G. Observe that Q = Q™! is relatively compact in
G and so mg(Q) < +o0o. Let (&,), be a bounded sequence of vectors in
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L2(X, 2 ,v)° such that lim, sup,cq A% (9)én — &nll = 0. Using Fubini’s
theorem, we obtain

1
JCCRZCEEY < / s |sn<gx>—5n<m>|2dmc<g>> du(x)

3 [ ([ o) - 60 amata)) avto
-3/ ([ tenta) - 60 (o)) amato)

1
) /Q X% (97 1)n = &all® dma(g)
1

IN

= imG’(Q) * Sup H)‘g((g_l)gn - fn” —0 as n— +oo.
9eQ

This implies that lim,, [|&,|| = 0 and thus A% has spectral gap. O

4.3. Howe—Moore’s property for SL;(R), d > 2. Let ¢ be a (com-
plex) Hilbert space and denote by B(.#) the unital Banach *-algebra of all
bounded linear operators T : ¢ — . Besides the norm topology on
B() given by the supremum norm

VT € B(A), |Tloo =sup{lT¢| | €2, lIEll <1},

we can define two weaker locally convex topologies on B(J¢) as follows.

e The strong operator topology on B(J) is defined as the initial topol-
ogy on B(J¢) that makes the maps B(J¢) — C : T — [|T¢]| con-
tinuous for all £ € J7.

e The weak operator topology on B(H) is defined as the initial topol-
ogy on B(s¢) that makes the maps B(2¢) — C : T — [(T¢,n)|
continuous for all £, € J2.

Note that we already defined the strong operator topology on % ().
As a matter of fact, on % (), strong and weak operator topologies coin-
cide. Observe that when 7 is separable, both strong and weak operator
topologies are metrizable on the unit ball of B(.##") denoted by Ball(B(5¢)).
Moreover, Ball(B(7#)) is weakly compact.

Let G be a locally compact group and 7 : G — % () a strongly con-
tinuous unitary representation. We say that = is mizing if 7(g) — 0 weakly
as g — oo. Note that when G is noncompact, the left regular representation
g : G — % (L*(@)) is mixing. Let G ~ (X, 2" ,v) be a pmp action on
a standard probability space. We say that G ~ (X, 2", v) is mizing if the
Koopman representation x° : G — % (L2(X, 2" ,v)") is mixing. It is easy to
check that G ~ (X, 27, v) is mixing if and only if

VA,B e Z, li_>m v(ANgB) =v(A)v(B).
g—o0
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Any mixing strongly continuous unitary representation is ergodic. In
that respect, we introduce the following terminology.

DEFINITION 3.33. Let G be a noncompact locally compact group. We
say that G has the Howe—Moore property if any ergodic strongly continuous
unitary representation 7 : G — % () is mixing.

Observe that when G has the Howe-Moore property, for every nontrivial
strongly continuous unitary representation w : G — % (), the subrepre-
sentation 70 : G — % (H; © (#;)%) is ergodic hence mixing. Here are
some properties enjoyed by locally compact groups with the Howe—Moore

property.

PROPOSITION 3.34. Let G be a noncompact locally compact group with
the Howe—Moore property. The following assertions hold:

(i) For every closed normal subgroup N < G, either N is compact or
N =G.
(ii) For every open subgroup H < G, either H is compact or H = G.
(iii) For every ergodic pmp action G ~ (X, Z",v) and every noncom-
pact closed subgroup H < G, the action H ~ (X, Z",v) is mizing.

PrOOF. (i) Let N < G be a proper closed normal subgroup. Define
the quasi-regular representation 7 : G — % (L?>(G/N)) and note that 7 =
Ag/nop where p: G — G/N is the canonical factor map and A\g/y : G/N —
% (L*(G/N)) is the left regular representation of the locally compact group
G/N. Since N # G, we have L?(G/N)¢ # L?(G/N). By Howe Moore
property, the subrepresentation 7° : G — % (L*(G/N) © L2(G/N)%) is
mixing. Since 7|x = 1, it follows that 7|y = 1 and thus N is compact.

(ii) Let H < G be a proper open subgroup. Then the homogeneous
space G/ H is discrete and nontrivial. Define the strongly continuous unitary
representation 7w : G — % (¢2(G/H)) by the formula

Vg,h € G, m(9)0nn = dgh-

Since H # G, the unit vector dy € ¢2(G/H) is not 7(G)-invariant and so
2(G/H)¢ +# (?(G/H). By Howe Moore property, the subrepresentation
70 G = % (*(G/H) © *>(G/H)Y) is mixing. Since the nonzero vector
§ =05 —Ppg/me(0n) € A(G/H)62(G/H)C is n(H)-invariant, it follows
that H is compact.

(iii) Let G ~ (X, Z",v) be an ergodic pmp action and H < G a non-
compact closed subgroup. By Proposition 3.31, the Koopman represen-
tation k0 : G — % (L%(X, 2 ,v)°) is ergodic. By Howe Moore property,
K0 G — % (LA(X, 2 ,v)°) is mixing and so is 7|z : H — % (L*(X, 2", v)°).
Therefore, H ~ (X, 2", v) is mixing. O

The main theorem of this subsection is the following well-known result
due to Howe-Moore [HMT77].
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THEOREM 3.35 (Howe-Moore). For every d > 2, SLy(R) has the Howe—
Moore property.

As a consequence of Theorem 3.35 and Proposition 3.34(iii), we obtain
the following ergodicity result due to Moore [Mo65].

COROLLARY 3.36 (Moore). Let d > 2 and set G = SLg(R). LetT' < G
be a lattice and denote by v € Prob(G/I') the unique G-invariant Borel
probability measure. For every noncompact closed subgroup H < G, the
pmp action H ~ (G/T', B(G/T"),v) is ergodic.

In particular, for every g € G that is not contained in a compact sub-
group, the pmp dynamical system (G/T', B(G/I'),v,T,) is ergodic.

Before proving Theorem 3.35, we need to prove some preliminary results
that are also of independent interest.
Define the following subgroups of SLa(R):

G e
(oo
A_{(é A91>\A>0}.

Observe that SLo(R) is generated by Ut U U ™.

LEMMA 3.37. Let w : SLa(R) — % () be a strongly continuous unitary
representation. Every w(U™T)-invariant vector is w(SLa(R))-invariant.

PROOF. Let £ € % be a m(U™)-invariant unit vector. Define the con-
tinuous function ¢ : G — C : g — (7(9)&,€). By assumption, ¢ is UT-bi-
invariant. For every n > 1, set

0 —n
n

A simple calculation shows that for every A > 0, we have

1 An I 3\ _(r O . A0

0 1)%\0 1)7\L A 0 Al
Since ¢ is continuous and U -bi-invariant, it follows that
Vae A, ¢(a) =limp(gn) = ¢(1) = 1.

This further implies that m(a){ = £ for every a € A. It follows that ¢ is
A-bi-invariant.
Another simple calculation shows that for every z € R, we have

G E DG-G9
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Since ¢ is continuous and A-bi-invariant, it follows that for every v € U™,
we have p(u) =1 and so 7(u)§ = &.

We have showed that ¢ is both 7(U™)-invariant and 7(U~)-invariant.
Since SLy(R) is generated by Ut U U™, it follows that ¢ is 7(SLa(R))-
invariant. U

Let d > 2. Forall 1 <a # b <d and all x € R, denote by E,(z) €
SLg(R) the elementary matrix defined by (Eqy(x))s; = 1if i = j, (Egp(2))s5 =
xifi =a and j = b, (Eap(x))i; = 0 otherwise. We leave as an exercise to
check that SL;(R) is generated by {E.p(z) | 1 <a # b <d,z € R}. For ev-
ery 2 < k < d, regard SLi(R) < SL4(R) as the following subgroup:

ST (R) = {( A Oaks ) |AeSLk(R)}.

Okd—k  ld—k,d—k
For all 1 < ¢; < £y < d, denote by Hy, o, < SLg(R) the (¢1,¢2)-copy of
SL2(R) in SLg(R) that consists in all matrices g € SLg(R) such that gg, e, =

@, oy = 67 9oty = 75 Gloly = 57 9ii = 1 for all 4 7£ €17€27 9i5 = 0 for all
i # j and {i,j} # {¢1,¢2} and such that

(: ?) € SLy(R).

LEMMA 3.38. Let d > 2 and 7 : SLy(R) — % () be a strongly contin-
uous unitary representation. Let & € H; be a w(Hy, 4,)-invariant vector for
some 1 < l; <ty <d. Then & is 7(SL4(R))-invariant.

PRroOF. Upon permuting the indices, we may assume that ¢; = 1 and
ly = 2. We proceed by induction over 2 < k < d. By assumption, £ is
m(SL2(R))-invariant. Assume that £ is m(SLg(R))-invariant for 2 < k <
d — 1 and let us show that £ is m(SLg41(R))-invariant. Let 1 < j < k and
x € R. For every n > 1, denote by g, € SLg(R) < SLg4+1(R) any diagonal

matrix such that (g,)i; = % if i = j. Then a simple Computation shows

that gnEjet1) ()9, " = Ejes)(£) = 1 as n — oo and g, ' By (2)gn =
E41);(5) = 1 as n — oo. Since 7(gn)§ = &, we have

170 (B 41y ())& = €Il = Tim [ (Ejg41) (2))7(90) "€ = 7(gn) €]l
= lim [|7(gn Bj 41 ()9, )6 — €]l = 0

and so 7(Ej41)(2))§ = €. Likewise, we have m(E;11);(7))§ = & Since
SLi+1(R) is generated by

SLi(R) U { Ej(k41)(2), Brynyj(x) | 1 < j < k,z € R},
it follows that ¢ is W(SLkH(R))—mvarlant. By induction over 2 < k < d, we
have that ¢ is m(SL4(R))-invariant. O

Let d > 2. Denote by K = SO4(R) < SLg(R) the special orthogonal
subgroup and observe that K < SL4(R) is compact. Define the subset
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A1 C SL4(R) of diagonal matrices by
At = {diag()\l,...,)\d) ‘ A2 X >0, Ao dg = 1} C SLd<R).
We now have all the tools to prove Theorem 3.35.

PROOF OF THEOREM 3.35. Let d > 2 and 7 : SLg(R) — % (%) be
a strongly continuous unitary representation. Assuming that 7 is not mix-
ing, we show that there exists a nonzero 7(SLy(R))-invariant vector. Since
SL4(R) is second countable, m(G)& is separable for every & € % and so
we may assume assume that 7 is separable. Since 7 is not mixing, there
exists a sequence (g,)n, in G such that g, — oo and 7(g,) 4 0 weakly.
Upon taking a subsequence, we may assume that there exists T € B(%7)
such that 7' # 0 and 7(g,) — T weakly. Using Lemma 2.35, there exist se-
quences (k1)n and (k2,)n in K and (ay), in A* such that g, = k1 nanks,,
for every n € N. Upon taking another subsequence, we may assume that
kin — ki in K and kg, — ko in K. This implies that 7(k;,) — m(k1) and
7(kan) — m(ko) strongly. This further implies that m(ay,) — 7(k1)*T'm(k2)*
weakly. Set S = m(k1)*Tnw(k2)* € B(J¢) and observe that S # 0.

For every n € N, write a,, = diag(Ain, ..., Aqpn) With A, > - > Ag

Aon .
N — Foo. A simple

,n

and A1y, ---Agpn = 1. Since a,, — oo, it follows that
computation shows that for every x € R,
_ Ad
a, ' Eig(z)a, = Eld()\—’nx) — 1.
1,n

This implies that for every = € R, we have m(E14(x))S = S since
Vi e € Hx,  (w(Era(2))Sm, n2) =l (m(Era())m(an)m, 12)
= lim(m(a, ' Bra(x)an)n, (a, ' )n2)

= <7]17 5*772>

= (Sn1,12).
Choose n € #; so that £ = Sy # 0. Then £ € J; is a nonzero 7(E14(R))-
invariant vector. Denote by Higy < SLg4(R) the (1, d)-copy of SLa(R). By

Lemma 3.37, £ is w(Hiq)-invariant and by Lemma 3.38, ¢ is m(SLg(R))-
invariant. This finishes the proof of Theorem 3.35. ([



APPENDIX A
Appendix

Martingale convergence theorem

Let (X, Z,v) be a probability space. Let # C 2" be a o-subalgebra.
Regard LY(X, %, v) c LY(X, 2" ,v) and denote by E, (- |%) : LY(X, 2", v) —
LYX,%,v) the conditional expectation which is the unique v-preserving
linear positive contraction such that E, (f|%) = f for every f € L1(X, %, v).

In this section, we prove Doob’s martingale convergence theorem.

THEOREM A.l. Let (%), be an increasing sequence of o-subalgebras
of Z and denote by ¥ = o((%,)n) the o-subalgebra of % generated by
Unen Zn- Then for every f € LY X, 2 ,v), the sequence (Ey(f|%,))n con-
verges to B, (f|%) v-almost everywhere and in LY(X, 2", v).

ProoF. Firstly, we prove that for every f € L'(X,.27,v), the asso-
ciated sequence (E,(f|%,))n converges to E,(f|#) in LY(X, 2 ,v). Let
f e LYX,2,v) and € > 0. Since the subspace |, oy L'(X,%,,v) is
| - |li-dense in LY(X, %, v), there exists ng € N and g € LY(X,%,,,v) such
that ||E,(f|%) —gll1 < 5. For every n > ng, using the triangle inequal-
ity and the contraction property of the conditional expectation and since
g € LYX,%,,v), we have

1B (f12) = Eu (f1Z0)]11 < 1B (F127) — gl + llg — Eu (F120) 1
= E.(f1%) = glli + [[Ew(g — Eu (f12)|%0)[11
< 2B, (f1Z) — gl < e
Therefore, the sequence (E,(f|%,)), converges to E,(f|#) in LY(X, 2", v).
Secondly, we prove that for every f € LY(X, 2, v), the associated se-
quence (E, (f|#;,))n converges to E, (f|#') v-almost everywhere. Recall that

for every ¢ € LY(X, 2" ,v) and every a > 0, we have v({|g| > a}) <
% Jx lg] dv (Chebyshev’s inequality). We prove the following key result.

CrLamm A2, Let ¢ € LY(X, 2 ,v) be such that ¢ > 0. Set G =
sup,, E,(9|%;) > 0. Then for every a > 0, we have

v({G > a}) < Cll/ngy.

Let a > 0. For every n € N, denote by Z,, € £ the measurable sub-
set consisting of all elements z € X for which E,(g|%,+1)(z) > a and
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max {E,(9/%;)(xz) | 0 <k <n} < a. Then we have {G > a} = ||, Z,. For
every n € N| since Z,, € %;,11, we have

v(Zy) < - / 17, E(9]%h1) dv

< - / v(12,9|%n41) dv
1
/ z,9dv
aJx
1
/ gdv.
a T

Summing over N, we obtain

v({G>a}) =D v(Z) <> - /gdu< /gdy.

neN neN
This finishes the proof of the claim.

Let f € LY(X, 2 ,v). Upon taking the real and imaginary parts, we
may assume that f is real-valued. Let ¢ > 0. T hen there exists ng € N and
g € LY(X,%,,,v) such that [|E,(f]|%) —g|l1 < e?. We may assume that g is
also real valued. For every n > ng, using the tr1angle inequality and since
g € LYX,%,,v), we have

B, (f12) = Eu(f|%R)] < [E.(f1Z) — gl + |9 — Eu(f1%0)]
= [E.(f1#) — g| + [Ev(g — E.(f|Z)|%)]
< B, (f|Z) — gl + EL([Eu(f|%) — gl|%n).
Using Chebyshev’s inequality and Claim A.2, this further implies that

v <nmnsup E, (/%) - E(f1%)] > 2g>
V(B () gl = &) +v (sngE,,(EV(f@) gl > )

1 1
< ZIE(f12) = gl + ZIE(£12) = gll1 < 2e.

Since this holds true for every € > 0, it follows that limsup,, |[E,(f|%) —
E,(f|#)] = 0 v-almost everywhere. This finishes the proof. O
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