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Abstract. These are the lecture notes of a master course given at École
Normale Supérieure during 2023-2026. In this master course, we give
an introduction to topological dynamics and ergodic theory, and we dis-
cuss examples of dynamical systems arising from group theory, symbolic
dynamics, geometry and homogeneous spaces. Topics include: Topolog-
ical dynamics (topological transtivity and recurrence, Ramsey theory,
topological entropy); Ergodic theory (recurrence, ergodicity, weak mix-
ing, ergodic theorems, random walks, measure entropy); Homogeneous
dynamics (locally compact groups, lattices, SLn(Z) < SLn(R), Howe–
Moore’s property, Moore’s ergodicity theorem).
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CHAPTER 1

Topological dynamics

In these lecture notes, all topological spaces are assumed to be Hausdorff.
For any topological space X, a continuous map T : X → X is called a
topological dynamical system. If T : X → X is moreover a homeomorphism,
then T : X → X induces an action Z × X → X : (n, x) 7→ Tn(x) by
homeomorphisms.

A subset Y ⊂ X is (forward) T -invariant if T (Y ) ⊂ Y . When T : X →
X is a homeomorphism, a subset Y ⊂ X is T -invariant if T (Y ) = Y . For
every x ∈ X, define the (positive) T -orbit O+

T (x) = {Tn(x) | n ∈ N}. When
T : X → X is a homeomorphism, for every x ∈ X, define the (negative) T -
orbit O−

T (x) = {T−n(x) | n ∈ N} and the T -orbit OT (x) = O+
T (x)∪O−

T (x) =

{Tn(x) | n ∈ Z}. We say that x ∈ X is T -fixed if O+
T (x) = {x} and

T -periodic if there exists k ≥ 1 such that T k(x) = x.
For every i ∈ {1, 2}, let Ti : Xi → Xi be a topological dynamical sys-

tem. We say that T2 is a topological factor of T1 or that T1 is a topological
extension of T2 if there exists a surjective continuous map π : X1 → X2 such
that π ◦ T1 = T2 ◦ π. We say that T1 and T2 are topologically conjugate if
there exists a homeomorphism π : X1 → X2 such that π ◦T1 = T2 ◦π. Topo-
logically conjugate dynamical systems have identical topological properties.
Therefore, all properties and invariants we introduce in this chapter includ-
ing minimality, topological transitivity, topological recurrence, topological
mixing, topological entropy are preserved by topological conjugacy.

For this chapter, we follow the presentation given in [BS02, EW11].

1. Examples of topological dynamical systems

1.1. Rotations. Denote by T = {z ∈ C | |z| = 1} the unit circle,
which is a compact metrizable group. For every α ∈ R, define the rotation
Tα : T → T : z 7→ exp(i2πα)z which is a homeomorphism. For every α ∈ R,
we have (Tα)

−1 = T−α. Endow T with the metric defined by d : T × T →
[0, 1) : (z1, z2) 7→ min(θ, 1 − θ) where θ ∈ [0, 1) is the unique element such
that z2z

−1
1 = exp(i2πθ). Then Tα : T → T is an isometry in the sense that

d(Tα(z1), Tα(z2)) = d(z1, z2) for all z1, z2 ∈ T.
If α = p

q ∈ Q, then (Tα)
q = idT and so every point z ∈ T is Tα-periodic.

If α /∈ Q, then for every z ∈ T, the positive Tα-orbit O+
Tα
(z) is dense in

T. In that case, we say that Tα is a minimal topological dynamical system.
Indeed, let z ∈ T and N ≥ 2. Since (exp(i2παn))n are pairwise distinct in
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6 1. TOPOLOGICAL DYNAMICS

T, the pigeon-hole principle implies that there exist 0 ≤ m < n ≤ N such
that d(exp(i2παn), exp(i2παm)) ≤ 1

N . This means that the rotation Tn−m
α

has an angle θ = d(Tn−m
α (1), 1) ≤ 1

N . Since n −m ≥ 1, it follows that the

positive Tα-orbit O+
Tα
(z) comes within distance 1

N of every point in T. Since
this is true for every N ≥ 2, the positive Tα-orbit O+

Tα
(z) is dense in T.

Rotations on the unit cercle are particular examples of group transla-
tions. Let G be a (Hausdorff) topological group. For every g ∈ G, define
the homeomorphism Tg : G→ G : x 7→ gx. If G is first countable, that is, if
the identity element e ∈ G admits a countable neighborhood basis, then by
Birkhoff–Kalutani’s theorem, G possesses a left-invariant compatible metric
d : G×G→ R+. In that case, Tg : G→ G is an isometry for every g ∈ G.

1.2. Bernoulli shifts. Let Y be a topological space and I an at most
countable index set (e.g. I = {1, . . . , n} for n ≥ 1, or I = N, or I = Z).
Consider the product space Y I = {(yi)i∈I | ∀i ∈ I, yi ∈ Y } endowed with the
product topology. For every nonempty finite subset F ⊂ I and every family
of open sets (Ui)i∈F of Y , define the cylinder open set C (F , (Ui)i∈F ) =∏

i∈I Zi where Zi = Ui if i ∈ F and Zi = Y if i /∈ F . Then the family
(C (F , (Ui)i∈F ))F⊂I,F finite is a basis of open sets for the product topology

on Y I . If Y is a compact space, then so is Y I by Tychonov’s theorem.
If Y is a Polish space, meaning that Y is a separable complete metrizable
topological space, then so is Y I .

Consider the product space Y N endowed with the product topology and
define the (noninvertible) forward Bernoulli shift S : Y N → Y N : (yn)n 7→
(yn+1)n, which is a topological dynamical system. Likewise, consider the
product space Y Z endowed with the product topology and define the (in-
vertible) Bernoulli shift T : Y Z → Y Z : (yn)n 7→ (yn+1)n, which is a homeo-
morphism.

1.3. Toral automorphisms. Let d ≥ 1 and consider the d-dimensional
torus Td = Rd/Zd, which is a compact metrizable group. For every A ∈
GLd(Z), since A(Zd) ⊂ Zd, we may consider the continuous automorphism

TA : Td → Td : x+ Zd 7→ Ax+ Zd.

Then TA : Td → Td naturally preserves the Haar (Lebesgue) probability
measure on Td.

Toral automorphisms are particular examples of compact group auto-
morphisms. Let G be a compact metrizable group and denote by mG its
unique Haar probability measure (see Chapter 3). Let T ∈ Aut(G) be a
continuous group automorphism. Then T∗mG = mG and so the topologi-
cal dynamical system T : G → G preserves the Haar probability measure
mG ∈ Prob(G).

1.4. Homogeneous dynamical systems. Let G be a locally com-
pact second countable group and Γ < G a lattice, meaning that Γ < G
is a discrete subgroup for which the homogeneous locally compact second
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countable space G/Γ carries a (unique) G-invariant Borel probability mea-
sure ν ∈ Prob(G/Γ) (see Chapter 3). Let g ∈ G and consider the left
translation homeomorphism Tg : G/Γ → G/Γ : hΓ 7→ ghΓ. Then Tg∗ν = ν
and so the topological dynamical system Tg : G/Γ → G/Γ preserves the
Borel probability measure ν ∈ Prob(G/Γ).

2. Topological transitivity, recurrence, minimality, mixing

Let X be a topological space and T : X → X a topological dynamical
system. For every x ∈ X, the ω-limit set of x with respect to T is the closed
subset

ωT (x) =
⋂
n∈N

{T i(x) | i ≥ n}.

If X is compact, then ωT (x) ̸= ∅. For every y ∈ X, we have y ∈ ωT (x)
if and only if there exists a net (ni)i∈I such that limi→∞ ni = +∞ and
y = limi→∞ Tni(x). Note that ωT (x) is T -invariant. We say that a point
x ∈ X is (positively) T -recurrent if x ∈ ωT (x). For every x ∈ X, we
have that x is T -recurrent if and only if there exists a net (ni)i∈I such that
limi→∞ ni = +∞ and x = limi→∞ Tni(x). The set of all T -recurrent points
is T -invariant. Any T -periodic point is T -recurrent.

Definition 1.1. Let X be a topological space and T : X → X a topo-
logical dynamical system. We say that T is topologically transitive if there
exists x ∈ X such that O+

T (x) is dense in X.

Let X be a topological space. We say that X is locally compact if every
point x ∈ X possesses a compact neighborhood. We say that X is second
countable if there exists a countable family of open sets (Vi)i∈N that gener-
ates the topology of X. We say that X satisfies the Baire property if any
countable intersection of dense open subsets is dense. Examples of topologi-
cal spaces with the Baire property include Polish spaces and locally compact
topological spaces. We record the following useful sufficient condition that
implies topological transitivity.

Proposition 1.2. Let X be a second countable topological space with
the Baire property and T : X → X a topological dynamical system. Assume
that for any nonempty open sets U, V ⊂ X, there exists n ∈ N such that
T−n(U) ∩ V ̸= ∅. Then T is topologically transitive.

Proof. By assumption, for every nonempty open set V ⊂ X, the
open set

⋃
n∈N T

−n(V ) intersects any nonempty open set U ⊂ X and so⋃
n∈N T

−n(V ) is dense in X. Choose a countable family of open sets (Vi)i∈N
that generates the topology of X. Since X satisfies the Baire property,
the intersection

⋂
i∈N(

⋃
n∈N T

−n(Vi)) is not empty. Choose a point y ∈⋂
i∈N(

⋃
n∈N T

−n(Vi)). Then for every i ∈ N, we have O+
T (y) ∩ Vi ̸= ∅, which

implies that O+
T (y) is dense in X. Thus, T is topologically transitive. □
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In compact metrizable spaces without isolated points, we show that the
existence of a dense orbit implies the existence of a dense forward orbit.

Proposition 1.3. Let X be a compact metrizable space without isolated
points and T : X → X a homeomorphism. Assume that there exists x ∈ X
such that OT (x) is dense in X. Then there exists y ∈ X such that O+

T (y) is
dense in X, that is, T is topologically transitive.

Proof. Fix a compatible metric d : X × X → R+. Since X has no
isolated points, for every k ≥ 1, we may choose nk ∈ Z such that Tnk(x) ∈
B(x, 1k ) and |nk| → +∞. Note that for every ℓ ∈ Z, we have Tnk+ℓ(x) →
T ℓ(x). Firstly, assume that there are infinitely many k ∈ N such that nk > 0.

Then we have O(x) ⊂ O+
T (x) and so O+

T (x) is dense in X. Then we are done.
Secondly, assume that there are infinitely many k ∈ N such that nk < 0.

Then we have O(x) ⊂ O−
T (x) and so O−

T (x) is dense in X. Since X has no
isolated points, this implies that for any nonempty open sets U, V ⊂ X, we
can find integers i < j < 0 such that T i(x) ∈ U and T j(x) ∈ V . This implies
that T j(x) ∈ T j−i(U) ∩ V ̸= ∅. By Proposition 1.2, there exists y ∈ X such
that O+

T (y) is dense in X. We are done. □

Next, we discuss a strengthening of topological transitivity.

Definition 1.4. A closed nonempty forward T -invariant subset Y ⊂ X
is a minimal set for T if Y contains no proper closed nonempty forward
T -invariant subset. If X itself is a minimal set for T , then we say that
T : X → X is a minimal topological dynamical system.

Any minimal topological dynamical system is topologically transitive. In
the following proposition, we record some useful properties of minimality in
the setting of topological dynamical systems defined on compact topological
spaces.

Proposition 1.5. Let X be a compact topological space and T : X → X
a topological dynamical system. The following assertions hold:

(i) There exists a minimal set Y ⊂ X for T .
(ii) Let Y ⊂ X be a closed nonempty forward T -invariant subset. Then

Y is minimal for T if and only if ωT (y) = Y for every y ∈ Y .
(iii) The topological dynamical system T : X → X is minimal if and

only if for every x ∈ X, the positive T -orbit O+
T (x) is dense in X.

Proof. (i) Denote by Y the collection of all closed nonempty forward
T -invariant subsets Y ⊂ X with the partial ordering given by inclusion.
Then for all Y1, Y2 ∈ Y , we have Y1 ≤ Y2 if and only if Y2 ⊂ Y1. Note that
Y is not empty since X ∈ Y . Let K ⊂ Y be a totally ordered subset.
For any nonempty finite subset F ⊂ K , we have ∅ ≠

⋂
Y ∈F Y ∈ K . Since

X is compact, the finite intersection property implies that
⋂

Y ∈K Y ̸= ∅
and so

⋂
Y ∈K Y is un upper bound for K . By Zorn’s lemma, C contains a

maximal element Y ∈ C , which is a minimal set for T .



2. TOPOLOGICAL TRANSITIVITY, RECURRENCE, MINIMALITY, MIXING 9

(ii) Assume that Y is minimal for T . For every y ∈ Y , since ωT (y) ⊂
X is a closed nonempty forward T -invariant set and since ωT (y) ⊂ Y , it
follows that ωT (y) = Y . Conversely, assume that for every y ∈ Y , we have
ωT (y) = Y . Let Z ⊂ Y be a closed nonempty forward T -invariant subset.
Choose z ∈ Z ⊂ Y . Since ωT (z) ⊂ Z ⊂ Y and ωT (z) = Y , it follows that
Z = Y .

(iii) Assume that T : X → X is minimal. For every x ∈ X, since

O+
T (x) ⊂ X is a closed nonempty forward T -invariant, we have O+

T (x) = X.

Conversely, assume that for every x ∈ X, the positive T -orbit O+
T (x) is

dense in X. Let Y ⊂ X be a closed nonempty forward T -invariant subset.

Choose y ∈ Y . Since O+
T (y) ⊂ Y ⊂ X and since O+

T (y) = X, it follows that
Y = X. □

As an application of Proposition 1.5, we derive Birkhoff’s recurrence
theorem.

Corollary 1.6. Let X be a compact topological space and T : X → X a
topological dynamical system. Then there exists a T -recurrent point x ∈ X.

Remark 1.7. We may also define the notion of a minimal set for a
homeomorphism T : X → X. A closed nonempty T -invariant subset Y ⊂ X
is a minimal set for T if Y contains no proper closed nonempty T -invariant
subset. If X itself is a minimal set for T , then we say that T : X →
X is a minimal homeomorphism. If T : X → X is a homeomorphism
and is minimal as a topological dynamical system, then it is minimal as a
homeomorphism. The converse does not hold in general (consider the map
T : Z → Z : n 7→ n + 1). However, when X is a compact topological space
and T : X → X is a homeomorphism, then T is minimal as a topological
dynamical system if and only if T is minimal as a homeomorphism.

We say that a subset A ⊂ N is syndetic if there exists k > 0 such that
for every n ∈ N, we have {n, n+ 1, . . . , n+ k} ∩ A ̸= ∅. For every k > 0,
observe that the periodic set {km | m ∈ N} is syndetic.

We say that x ∈ X is T -almost periodic if for every neighborhood U ⊂ X
of x ∈ X, the set AU =

{
i ∈ N | T i(x) ∈ U

}
is syndetic. Observe that any

T -periodic point is T -almost periodic.

Proposition 1.8. Let X be a compact topological space, T : X → X a

topological dynamical system and x ∈ X. Then O+
T (x) is minimal for T if

and only if x is T -almost periodic.

Proof. Assume that x is T -almost periodic. Let y ∈ O+
T (x). We need

to show that x ∈ O+
T (y). Let U ⊂ X be a neighborhood of x ∈ X. We show

that O+
T (y) ∩ U ̸= ∅. We may choose an open set U0 ⊂ U such that x ∈ U0

and an open set V ⊂ X×X such that ∆X = {(x, x) | x ∈ X} ⊂ V and such
that whenever x1 ∈ U0 and (x1, x2) ∈ V , we have x2 ∈ U . Since x is T -
almost periodic, we may choose k > 0 with the property that for every n ∈ N,
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there exists 0 ≤ j ≤ k such that Tn+j(x) ∈ U0. Set V0 =
⋂k

j=0(T ×T )−j(V )
and observe that V0 ⊂ X × X is an open set such that ∆X ⊂ V0. Choose

an open set W ⊂ X such that y ∈ W and W ×W ⊂ V0. Since y ∈ O+
T (x),

there exists n ∈ N such that Tn(x) ∈ W . Choose 0 ≤ j ≤ k such that
Tn+j(x) ∈ U0. Then (Tn(x), y) ∈W×W ⊂ V0 and so (Tn+j(x), T j(y)) ∈ V .

Since Tn+j(x) ∈ U0, we have T j(y) ∈ U . This shows that O+
T (x) is minimal

for T .
Conversely, assume that x is not T -almost periodic. Then there exists a

neighborhood U ⊂ X of x ∈ X such that the set AU = {i ∈ N | T i(x) ∈ U}
is not syndetic meaning that for every k > 0, there exists nk ∈ N such that
{nk, nk + 1, . . . , nk + k} ∩ AU = ∅. Choose y ∈

⋂
k>0 {Tnj (x) | j ≥ k} and

note that y ∈ O+
T (x). Then there exists a net (ki)i∈I in N such that ki → ∞

and Tnki (x) → y. For every ℓ ∈ N, we have Tnki
+ℓ(x) → T ℓ(y). For every

ℓ ∈ N, there exists iℓ ∈ I such that for every i ≥ iℓ, we have ℓ ≤ ki and
so Tnki

+ℓ(x) /∈ U . This implies that T ℓ(y) /∈ U for every ℓ ∈ N and so

x /∈ O+
T (y). This shows that O+

T (x) is not minimal for T . □

Next, we discuss yet another strengthening of topological transitivity.

Definition 1.9. Let X be a topological space and T : X → X a topo-
logical dynamical system. We say that T is topologically mixing if for any
nonempty open sets U, V ⊂ X, there exists n0 ∈ N such that for every
n ≥ n0, we have T−n(U) ∩ V ̸= ∅.

By Proposition 1.2, for any second countable topological space X with
the Baire property, any topologically mixing dynamical system is topolog-
ically transitive. The converse is not true. An (irrational) rotation is not
topologically mixing. More generally, for any metric space (X, d) that is
not a singleton and any isometry T : (X, d) → (X, d), the topological dy-
namical system T is not topologically mixing. Indeed, by contradiction,
assume that T is topologically mixing. Let x1, x2 ∈ X such that x1 ̸= x2
and set κ = d(x1, x2) > 0. Define the open sets V1 = B(x1,

1
4κ) and

V2 = B(x2,
1
4κ) and set U = V1. Then we can find n ∈ N large enough

such that T−n(U) ∩ V1 ̸= ∅ and T−n(U) ∩ V2 ̸= ∅. Choose y1 ∈ V1 and
y2 ∈ V2 such that Tn(y1), T

n(y2) ∈ U = V1. Then we have

1

2
κ ≤ d(y1, y2) = d(Tn(y1), T

n(y2)) <
1

2
κ.

This is a contradiction.
We show that Bernoulli shifts are topologically mixing.

Proposition 1.10. Let Y be a topological space. Then both the forward
Bernoulli shift S : Y N → Y N : (yn)n 7→ (yn+1)n and the Bernoulli shift
T : Y Z → Y Z : (yn)n 7→ (yn+1)n are topologically mixing.

Proof. We only prove that the Bernoulli shift T : Y Z → Y Z : (yn)n 7→
(yn+1)n is topological mixing. The proof that the forward Bernoulli shift
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is topologically mixing is completely analogous. Since the family of cylin-
der open sets forms a basis of open sets for the product topology, we may
assume that U and V are cylinder open sets. Let n1, n2 ∈ N, (Uj)|j|≤n1

and (Vk)|k|≤n2
be families of nonempty open sets in Y such that U =

C ({−n1, . . . , n1}, U−n1 , . . . , Un1) and V = C ({−n2, . . . , n2}, V−n2 , . . . , Vn2).
For every n ≥ n1 + n2 + 1, we have

T−n(U ) = C ({n− n1, . . . , n+ n1}, U−n1 , . . . , Un1)

and so T−n(U )∩V ̸= ∅. This shows that the Bernoulli shift T : Y Z → Y Z :
(yn)n 7→ (yn+1)n is topological mixing. □

3. Applications to combinatorial number theory

The main result of this section is Furstenberg–Weiss’multiple recurrence
theorem, which strengthens Birkhoff’s recurrence theorem (see Corollary
1.6). Throughout, we assume that X is a compact metrizable space.

Theorem 1.11 (Furstenberg–Weiss). Let T : X → X be a homeomor-
phism. Then for every ℓ ≥ 1, there exist x ∈ X and a sequence (nk)k in N
such that nk → +∞ and for every 1 ≤ j ≤ ℓ, we have T jnk(x) → x.

Before proving Theorem 1.11, let us derive van der Waerden’s theorem,
which is a Ramsey-type result in combinatorial number theory.

Corollary 1.12 (van der Waerden). Let r ≥ 1 and Z =
⊔r

i=1Ci be a
partition of the integers into r nonempty subsets. Then for every ℓ ≥ 1, there
exists 1 ≤ j ≤ r such that Cj contains an arithmetic progression of length
ℓ + 1. In particular, one of the sets Ci contains arbitrarily long arithmetic
progressions.

Proof. Let ℓ ≥ 1. Set Y = {1, . . . , r} and consider the Bernoulli shift
T : Y Z → Y Z : (yn)n 7→ (yn+1)n. Define the compatible metric d : Y Z ×
Y Z → R+ by the formula d((yn)n, (zn)n) = 2−k where k = min{|n| ∈ N |
yn ̸= zn}. Observe that for all (yn)n, (zn)n ∈ Y Z, we have d((yn)n, (zn)n) < 1
if and only if y0 = z0.

Define the point y ∈ Y Z by the formula yn = i for every 1 ≤ i ≤ r and
every n ∈ Ci, and set X = OT (y) ⊂ Y Z. Consider the homeomorphism
T : X → X. By Theorem 1.11, there exists x ∈ X and n ∈ N large enough
such that for every 1 ≤ j ≤ ℓ, we have d(T jn(x), x) < 1. By definition of T :
X → X, this implies that x0 = xn = · · · = xℓn and we denote this common
value by j ∈ {1, . . . , r}. Since X = OT (y), by definition of the metric d,
there exists m ∈ Z large enough such that Tm(y) and x agree on the interval
[−ℓn, ℓn]. In particular, we have ym = ym+n = · · · = ym+ℓn = x0 = j. By
definition of y ∈ Y Z, this implies that m,m+ n, . . . ,m+ ℓn ∈ Cj . Thus, by
pigeon-hole principle, it follows that one the of sets Ci contains arbitrarily
long arithmetic progressions. □
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Before proving Theorem 1.11, we need to introduce some further termi-
nology. Fix a compatible metric d : X × X → R+. Let T : X → X be a
topological dynamical system and Y ⊂ X a nonempty closed subset. Denote
by HomeoT (X) the group of all homeomorphisms of X that commute with
T . We say that

• Y is T -recurrent if for every ε > 0, there exist n ≥ 1 and (x, y) ∈
Y × Y such that d(Tn(x), y) < ε.

• Y is T -homogeneous if there exists a subgroup G < HomeoT (X)
such that S(Y ) = Y for every S ∈ G and the action G ↷ Y is
minimal.

Firstly, we prove a preliminary result on recurrent homogeneous sets.

Lemma 1.13. Let T : X → X be a topological dynamical system and
Y ⊂ X a nonempty T -recurrent T -homogeneous closed subset. Then for
every ε > 0, there exist n ≥ 1 and z ∈ Y such that d(Tn(z), z) < ε.

Proof. Let Y ⊂ X be a nonempty T -recurrent T -homogeneous closed
subset. Denote by G < HomeoT (X) the corresponding subgroup. We start
by proving the following claim.

Claim 1.14. For every y ∈ Y and every ε > 0, there exist n ≥ 1 and
x ∈ Y such that d(Tn(x), y) < ε.

Indeed, consider the subset Z ⊂ Y of all the elements z ∈ Y with the
property that for every ε > 0, there exist n ≥ 1 and x ∈ Y such that
d(Tn(x), z) < ε. Since d(Tn(S(x)), S(z)) = d(S(Tn(x)), S(z)) for every
S ∈ G and every n ∈ N, it follows that Z ⊂ Y is a closed G-invariant
subset. Since Y is T -recurrent, we may find sequences (rn)n in N∗ and
(xn)n, (yn)n in Y such that limn d(T

rn(xn), yn) = 0. Since Y is compact,
upon passing to a subsequence, we may assume that there exists y ∈ Y such
that yn → y. Then y ∈ Z and so Z ̸= ∅. Since Y is T -homogeneous, it
follows that Z = Y . This finishes the proof of Claim 1.14.

Let ε > 0 and fix z0 ∈ Y . Letting ε1 = ε
2 , using Claim 1.14, there

exist n1 ≥ 1 and z1 ∈ Y such that d(Tn1(z1), z0) < ε1. By continuity, there
exists ε2 < ε1 such that for every z ∈ Y that satisfies d(z, z1) < ε2, we
have d(Tn1(z), z0) < ε1. Using Claim 1.14, there exist n2 ≥ 1 and z2 ∈ Y
such that d(Tn2(z2), z1) < ε2. Then we also have d(Tn2+n1(z2), z0) < ε1.
Proceeding by induction, if d(Tnk(zk), zk−1) < εk for k ≥ 1, by continuity,
there exists εk+1 < εk such that for every z ∈ Y that satisfies d(z, zk) < εk+1,
we have d(Tnk(z), zk−1) < εk. Using Claim 1.14, there exist nk+1 ≥ 1 and
zk+1 ∈ Y such that d(Tnk+1(zk+1), zk) < εk+1. Then for all i < j, we have
d(Tnj+···+ni+1(zj), zi) < εi+1. Since Y is compact, there exist i < j such
that d(zj , zi) < ε1. Then we obtain

d(Tnj+···+ni+1(zj), zj) ≤ d(Tnj+···+ni+1(zj), zi) + d(zi, zj) < εi+1 + ε1 ≤ ε.

Letting z = zj , we are done. □
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Secondly, we prove the following key result regarding the existence of
recurrent points.

Theorem 1.15. Let T : X → X be a topological dynamical system and
Y ⊂ X a nonempty T -recurrent T -homogeneous closed subset. Then there
exists a T -recurrent point y ∈ Y .

Proof. Let Y ⊂ X be a nonempty T -recurrent T -homogeneous closed
subset. Denote by G < HomeoT (X) the corresponding subgroup. Define the
function F : X → R+ : x 7→ infn≥1 d(T

n(x), x). Observe that x ∈ X is T -
recurrent if and only if F (x) = 0. By Lemma 1.13, we have infx∈Y F (x) = 0.
By construction, the function F is upper semicontinuous in the sense that
for every x ∈ X and every sequence (xn)n in X such that xn → x, we have
lim supn F (xn) ≤ F (x). Consider the restriction F |Y : Y → R+. We claim
that F |Y has a point of continuity. Indeed, denote by D the set of all y ∈ Y
where F |Y is not continuous at y. If y ∈ D , then there exist r ∈ Q and
a sequence (yn)n in Y such that yn → y and F (yn) < r < F (y) for every
n ∈ N. Define the closed subset Fr = F−1([r,+∞)) ∩ Y . Then we have

y ∈ ∂Fr = Fr ∩X \ Fr. This shows that D ⊂
⋃

r∈Q ∂Fr. Since Y has the
Baire property and since ∂Fr has empty interior for every r ∈ Q, it follows
that D has empty interior and so Y \ D is not empty.

Let y ∈ Y be a point of continuity for F |Y . We claim that F (y) = 0.
By contradiction, assume that F (y) > 0. Then there exist ε > 0 and an
open set U ⊂ Y such that y ∈ U and F (x) ≥ ε for every x ∈ U . Since
Y is T -homogeneous, the nonempty G-invariant open subset

⋃
S∈G S(U) is

necessarily equal to Y . By compactness, there exist S1, . . . , Sr ∈ G such
that

⋃r
i=1 Si(U) = Y . We may choose δ > 0 such that for all z1, z2 ∈ X,

if d(z1, z2) < δ, then d(S−1
i (z1), S

−1
i (z2)) < ε for every 1 ≤ i ≤ r. This

further implies that for every x ∈ X and every 1 ≤ i ≤ r, if F (x) < δ, then
F (S−1

i (x)) = infn≥1 d(S
−1
i (Tn(x)), S−1

i (x)) < ε. By the choice of ε > 0
and since Y =

⋃r
i=1 Si(U), it follows that F (x) ≥ δ for every x ∈ Y . This

contradicts the fact that infx∈Y F (x) = 0. Therefore, we have F (y) = 0 and
so y ∈ Y is a T -recurrent point. □

We are now ready to prove Theorem 1.11. We will actually prove the
following slightly more general result which implies Theorem 1.11.

Theorem 1.16. Let ℓ ≥ 1 and (Tj : X → X)1≤j≤ℓ be a family of pairwise
commuting homeomorphisms. Then there exist x ∈ X and a sequence (nk)k
in N such that nk → +∞ and for every 1 ≤ j ≤ ℓ, we have Tnk

j (x) → x.

Proof. We proceed by induction on ℓ ≥ 1. For ℓ = 1, the result follows
from Birkhoff’s recurrence theorem (see Corollary 1.6). Assume that the
result holds for ℓ ≥ 1 and let us prove that it holds for ℓ+ 1.

Let (Tj : X → X)1≤j≤ℓ+1 be a family of pairwise commuting homeomor-
phisms. Denote by G the abelian group generated by T1, . . . , Tℓ+1. Upon
passing to a nonempty closed G-invariant subset, we may assume that the
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action G ↷ X is minimal. Set X̂ = Xℓ+1, ∆ = {(x, . . . , x) ∈ X̂ | x ∈ X}
and for every S ∈ G, set Ŝ = X̂ → X̂ : (xj)j 7→ (S(xj))j . Then we

may consider the natural action G ↷ X̂. Observe that ∆ ⊂ X̂ is a
closed G-invariant subset and that the action G ↷ ∆ is minimal. Define
T̂ = T1 × · · · × Tℓ+1 : X̂ → X̂. For every S ∈ G, we have Ŝ ◦ T̂ = T̂ ◦ Ŝ.
Thus, the closed subset ∆ ⊂ X̂ is T̂ -homogeneous. Next, we show that

∆ ⊂ X̂ is T̂ -recurrent. Applying the induction hypothesis to the family
(Sj = Tj ◦T−1

ℓ+1 : X → X)1≤j≤ℓ, there exist x ∈ X and a sequence (nk)k in N
such that nk → +∞ and for every 1 ≤ j ≤ ℓ, we have Snk

j (x) → x. There-

fore, for every ε > 0, there exists n ≥ 1 such that the points (x, . . . , x) ∈
∆ ⊂ X̂ and T̂n(T−n

ℓ+1(x), . . . , T
−n
ℓ+1(x)) ∈ X̂ are within distance ε of one an-

other. Since (x, . . . , x) ∈ ∆ and (T−n
ℓ+1(x), . . . , T

−n
ℓ+1(x)) ∈ ∆, it follows that

the closed subset ∆ ⊂ X̂ is T̂ -recurrent. By Theorem 1.15, there exists a

T̂ -recurrent point (x, . . . , x) ∈ ∆. This implies that the result holds for ℓ+1
and finishes the proof of Theorem 1.16. □

4. Topological entropy

In this section, we introduce the notion of topological entropy. It is a
topological invariant that measures the complexity of the orbit structure of
a dynamical system. Topological entropy is analogous to measure entropy
we will introduce in the next chapter. Throughout, we assume that (X, d)
is a compact metric space. Fix a topological dynamical system T : X → X.

Firstly, we recall the following elementary lemma on subadditive se-
quences.

Lemma 1.17 (Fekete). Let (an)n≥1 be a subadditive sequence in R, mean-
ing that am+n ≤ am + an for all m,n ≥ 1. Then the sequence (ann )n is
convergent in [−∞,+∞) and we have

lim
n

an
n

= inf
n≥1

an
n
.

Proof. Set ℓ = infn≥1
an
n . Let ℓ0 > ℓ and choose m ≥ 1 such that

am
m < ℓ0. Set a0 = 0. For every n ≥ m, write n = qm + r with q ≥ 1 and
0 ≤ r < m. By subadditivity, we have

an
n

≤ qam
n

+
ar
n

≤ am
m

+
1

n
max {a0, . . . , am−1} .

Next, choose n0 ≥ m large enough such that for all n ≥ n0, we have
1
n max {a0, . . . , am−1} ≤ ℓ0 − am

m . Then for all n ≥ n0, we have ℓ ≤ an
n ≤ ℓ0.

Therefore, limn
an
n = ℓ. □

We define the topological entropy of T : X → X using open covers.
We say that a set U consisting of open subsets of X is an open cover if
X =

⋃
U∈U U . For every open cover U and every j ∈ N, define the open

cover T−j(U ) =
{
T−j(U) | U ∈ U

}
. For all open covers U ,V , define the

join open cover U ∨V = {U ∩ V | U ∈ U , V ∈ V }. For every open cover U ,
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using compactness, we may define N(U ) ∈ N∗ as the minimum cardinality
of a finite subcover. It is plain to see that for all open covers U ,V , we
have N(U ∨ V ) ≤ N(U )N(V ). For every n ≥ 1, define the open cover
Un = U ∨· · ·∨T−n+1(U ). Then the sequence (log(N(Un)))n is subadditive
and by using Lemma 1.17, we may define

htop(T,U ) = lim
n

1

n
log(N(Un)) = inf

n≥1

1

n
log(N(Un)) ≥ 0.

The topological entropy of T : X → X is defined by the formula

htop(T ) = sup {htop(T,U ) | U open cover} .
Next, we define the topological entropy of T : X → X as the exponential

growth rate of the number of essentially different orbit segments of length
n ∈ N. We show that the two notions coincide. This second definition of
topological entropy will be very convenient to work with. For every n ≥ 1,
define the metric dn : X × X → R+ : (x, y) 7→ max{d(T k(x), T k(y)) | 0 ≤
k ≤ n−1}. For every (x, y) ∈ X×X and every n ≥ 1, dn(x, y) measures the
maximum distance between the first n iterates of x and y. We claim that d is
equivalent to dn for every n ≥ 1. Firstly, observe that d(x, y) ≤ dn(x, y) for
every n ≥ 1 and every (x, y) ∈ X×X. Secondly, let (xj)j∈N be a sequence in
X and x ∈ X such that limj d(xj , x) = 0. Fix n ≥ 1. For every 0 ≤ k ≤ n−1,

since T k : X → X is continuous, we have limj d(T
k(xj), T

k(x)) = 0 and so
limj dn(xj , x) = 0. Thus, for every n ≥ 1, the metrics d and dn induce the
same topology on X. We denote by Bn(x, r) = {y ∈ X | dn(x, y) < r} the
open ball, with respect to the metric dn, of center x ∈ X and radius r > 0
in X.

Fix n ≥ 1 and ε > 0. A subset F ⊂ X is said to be (n, ε)-spanning if
X =

⋃
x∈F Bn(x, ε). By compactness, there exists a finite (n, ε)-spanning

subset F ⊂ X. We then denote by span(n, ε, T ) the minimum cardinality
of an (n, ε)-spanning set. Likewise, we denote by cov(n, ε, T ) the minimum
cardinality of a covering of X by sets of dn-diameter less than ε. Again by
compactness, we have cov(n, ε, T ) < +∞. A subset F ⊂ X is said to be
(n, ε)-separated if for any x, y ∈ F such that x ̸= y, we have dn(x, y) ≥ ε.
By compactness, any (n, ε)-separating set is finite.

Lemma 1.18. Keep the same notation as above. Let n ≥ 1 and ε > 0.
The following assertions hold:

(i) For every (n, ε)-separating set F ⊂ X, we have |F | ≤ cov(n, ε, T ).

We may then denote by sep(n, ε, T ) the maximum cardinality of an (n, ε)-
separating set.

(ii) We have

cov(n, 2ε, T ) ≤ span(n, ε, T ) ≤ sep(n, ε, T ) ≤ cov(n, ε, T ).

Proof. (i) Assume that F is an (n, ε)-separating set and V is a covering
of X of minimal cardinality by sets of dn-diameter less than ε. For every
x ∈ F , denote by Vx the nonempty set of all sets V ∈ V such that x ∈ V .
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Since F is an (n, ε)-separating set and since each V ∈ V has dn-diameter
less than ε, it follows that the sets (Vx)x∈F are pairwise disjoint. Therefore,
we have |F | =

∑
x∈F 1 ≤

∑
x∈F |Vx| ≤ |V | = cov(n, ε, T ). Then we have

sep(n, ε, T ) ≤ cov(n, ε, T ).
(ii) Assume that F is an (n, ε)-spanning set of minimal cardinality. Then

we have X =
⋃

x∈F Bn(x, ε). By compactness, there exists δ < ε such that
we still have X =

⋃
x∈F Bn(x, δ). Then (Bn(x, δ))x∈F is a covering of X

by subsets of dn-diameter at most 2δ < 2ε. It follows that cov(n, 2ε, T ) ≤
span(n, ε, T ).

Assume that G is an (n, ε)-separating set of maximal cardinality. Then
by maximality, we have X =

⋃
x∈G Bn(x, ε) and so G is an (n, ε)-spanning

set. It follows that span(n, ε, T ) ≤ sep(n, ε, T ). □

Lemma 1.19. For every ε > 0, the sequence (log(cov(n, ε, T )))n is sub-
additive.

Proof. Let m,n ≥ 1 and ε > 0. Let U (resp. V ) be a finite covering
of X of minimal cardinality by elements of dm-diameter (resp. dn-diameter)
less than ε. Then W = {U ∩ T−m(V ) | U ∈ U , V ∈ V } is a covering of X.
Moreover, for every U ∈ U and every V ∈ V , the set U ∩ T−m(V ) has
dm+n-diameter less than ε. Thus, we infer that

cov(m+ n, ε, T ) ≤ cov(m, ε, T ) cov(n, ε, T ).

This finishes the proof of the lemma. □

A combination of Lemmas 1.17 and 1.19 implies that the quantity

hε(T ) = lim
n

1

n
log(cov(n, ε, T )) = inf

n≥1

1

n
log(cov(n, ε, T )) ≥ 0

exists and is finite. Moreover, for every n ≥ 1, the function (0,+∞) →
[0,+∞) : ε 7→ log(cov(n, ε, T )) is non-increasing. This implies that the
function (0,+∞) → [0,+∞) : ε 7→ hε(T ) is non-increasing. Then we may
define the entropy of the topological dynamical system T : X → X by the
formula

h(T ) = lim
ε→0+

hε(T ) = sup
ε>0

hε(T ) ∈ [0,+∞].

It follows from Lemma 1.18 that

h(T ) = lim
ε→0+

lim
n

1

n
log(cov(n, ε, T ))

= lim
ε→0+

lim sup
n

1

n
log(span(n, ε, T )) = lim

ε→0+
lim inf

n

1

n
log(span(n, ε, T ))

= lim
ε→0+

lim sup
n

1

n
log(sep(n, ε, T )) = lim

ε→0+
lim inf

n

1

n
log(sep(n, ε, T )).

We now prove that the two notions of topological entropy coincide.

Theorem 1.20. For every topological dynamical system T : X → X, we
have htop(T ) = h(T ).
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Proof. Firstly, we show that h(T ) ≤ htop(T ). Let ε > 0 and n ≥ 1.
Let U be an open cover whose all elements have d-diameter less than ε.
Then Un is an open cover whose all elements have dn-diameter less than ε
and so cov(n, ε, T ) ≤ N(Un). This implies that

hε(T ) = lim
n

1

n
log(cov(n, ε, T ))

≤ lim
n

1

n
log(N(Un)) = htop(T,U ) ≤ htop(T ).

By taking the limit as ε→ 0+, this further implies that h(T ) ≤ htop(T ).
Secondly, we show that htop(T ) ≤ h(T ). Let U be an open cover of X.

We may then choose ε > 0 such that the Lebesgue number of U with respect
to d is at least 2ε, that is, for all x ∈ X, there exists Ux ∈ U such that
B(x, ε) ⊂ Ux. For every n ≥ 1, Un is an open cover of X whose Lebesgue
number with respect to dn is at least 2ε. Choose an (n, ε)-spanning set
F ⊂ X of minimal cardinality. For every x ∈ F , we may choose Un,x ∈ Un

such that Bn(x, ε) ⊂ Un,x. For every y ∈ X, there exists x ∈ F such that
dn(x, y) < ε. It follows that (Un,x)x∈F is an open subcover of X and so
N(Un) ≤ |F | = span(n, ε, T ). This implies that

htop(T,U ) = lim
n

1

n
log(N(Un))

≤ lim sup
n

1

n
log(span(n, ε, T )) ≤ hε(T ) ≤ h(T ).

By taking the supremum over all open covers of X, this further implies that
htop(T ) ≤ h(T ). This finishes the proof. □

Theorem 1.20 implies that the topological entropy h(T ) = htop(T ) of
the topological dynamical system T : X → X only depends on the topology
on X and does not depend on the compatible metric d on X. In particular,
the topological entropy is an invariant of topological conjugacy.

Example 1.21. Let T : (X, d) → (X, d) be an isometry. Then we have
h(T ) = 0. Indeed, let ε > 0. For every n ≥ 1, we have dn = d and
so cov(n, ε, T ) = cov(1, ε, T ). Then hε(T ) = limn

1
n log(cov(n, ε, T )) = 0.

Therefore, we have h(T ) = limε→0+ hε(T ) = 0.

We collect some useful properties of topological entropy.

Proposition 1.22. Let (X, d) be a compact metric space and T : X → X
a topological dynamical system.

(i) For every m ∈ N, we have h(Tm) = mh(T ).
(ii) If T : X → X is a homeomorphism, then h(T−1) = h(T ). Thus,

for every m ∈ Z, we have h(Tm) = |m|h(T ).
For every i ∈ {1, 2}, let (Xi, d

i) be a compact metric space and Ti : Xi → Xi

a topological dynamical system.

(iii) We have h(T1 × T2) = h(T1) + h(T2).
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(iv) If T2 : X2 → X2 is a topological factor of T1 : X1 → X1, then we
have h(T2) ≤ h(T1).

Proof. (i) Let m ∈ N, n ≥ 1 and ε > 0. For all x, y ∈ X, we have

max
0≤i≤n−1

{
d(Tmi(x), Tmi(y))

}
≤ max

0≤j≤mn−1

{
d(T j(x), T j(x))

}
.

Let Y ⊂ X be an (mn, ε)-spanning set for T of minimal cardinality. Then
Y ⊂ X is also an (n, ε)-spanning set for Tm. Thus, span(n, ε, Tm) ≤
span(mn, ε, T ). This further implies that

h(Tm) = lim
ε→0+

lim sup
n

1

n
log(span(n, ε, Tm))

≤ m lim
ε→0+

lim sup
n

1

mn
log(span(mn, ε, T )) ≤ mh(T ).

Conversely, for every ε > 0, set

δ(ε) = sup
{
d(T i(x), T i(y)) | (x, y) ∈ X ×X, 0 ≤ i ≤ m− 1, d(x, y) ≤ ε

}
.

Then we have δ(ε) → 0 when ε → 0+. Choose a decreasing sequence
(εk)k in R∗

+ such that (δ(εk))k is decreasing and limk εk = limk δ(εk) =
0. For every k ∈ N, let Zk ⊂ X be an (n, εk+1)-spanning set for Tm of
minimal cardinality. Then by construction, Zk ⊂ X is also an (mn, δ(εk))-
spanning set for T . Thus, span(mn, δ(εk), T ) ≤ span(n, εk+1, T

m). This
further implies that

mh(T ) ≤ m lim
k

lim inf
n

1

mn
log(span(mn, δ(εk), T ))

≤ lim
k

lim inf
n

1

n
log(span(n, εk+1, T

m)) = h(Tm).

Therefore, we have h(Tm) = mh(T ).
(ii) Assume that T : X → X is a homeomorphism. For every n ≥ 1

and every ε > 0, Y ⊂ X is an (n, ε)-separating set for T if and only if

T (n−1)(Y ) ⊂ X is an (n, ε)-separating set for T−1. Thus, sep(n, ε, T ) =
sep(n, ε, T−1). This further implies that

h(T ) = lim
ε→0+

lim sup
n

1

n
log(sep(n, ε, T ))

= lim
ε→0+

lim sup
n

1

n
log(sep(n, ε, T−1)) = h(T−1).

For every i ∈ {1, 2}, let (Xi, d
i) be a compact metric space and Ti :

Xi → Xi a topological dynamical system.
(iii) Set X = X1×X2 and T = T1×T2 : X → X. Define the compatible

metric d : X ×X → R+ by the formula

∀x = (x1, x2), y = (y1, y2) ∈ X, d(x, y) = max
{
d1(x1, y1), d

2(x2, y2)
}
.

Moreover, for every n ≥ 1, we have

∀x = (x1, x2), y = (y1, y2) ∈ X, dn(x, y) = max
{
d1n(x1, y1), d

2
n(x2, y2)

}
.
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Let n ≥ 1 and ε > 0. If U1 ⊂ X1 has d1n-diameter less than ε and U2 ⊂ X2

has d2n-diameter less than ε, then U = U1 × U2 ⊂ X has dn-diameter less
than ε. This implies that

cov(n, ε, T ) ≤ cov(n, ε, T1) cov(n, ε, T2).

This further implies that

h(T ) = lim
ε→0+

lim sup
n

1

n
log(cov(n, ε, T ))

≤ lim
ε→0+

lim sup
n

1

n
(log(cov(n, ε, T1)) + log(cov(n, ε, T2)))

≤ lim
ε→0+

lim sup
n

1

n
log(cov(n, ε, T1)) + lim

ε→0+
lim sup

n

1

n
log(cov(n, ε, T2))

= h(T1) + h(T2).

Conversely, let n ≥ 1 and ε > 0. If Y1 ⊂ X1 is an (n, ε)-separating set for
T1 and Y2 ⊂ X2 is an (n, ε)-separating set for T2, then Y = Y1 × Y2 ⊂ X is
an (n, ε)-separating set for T . This implies that

sep(n, ε, T1) sep(n, ε, T2) ≤ sep(n, ε, T ).

This further implies that

h(T1) + h(T2)

= lim
ε→0+

lim inf
n

1

n
log(sep(n, ε, T1)) + lim

ε→0+
lim inf

n

1

n
log(sep(n, ε, T2))

≤ lim
ε→0+

lim inf
n

1

n
(log(sep(n, ε, T1)) + log(sep(n, ε, T2)))

≤ lim
ε→0+

lim inf
n

1

n
log(sep(n, ε, T ))

= h(T ).

Therefore, we have h(T ) = h(T1) + h(T2).
(iv) Assume that T2 : X2 → X2 is a topological factor of T1 : X1 → X1.

Then there exists a surjective continuous map π : X1 → X2 such that
T2 ◦ π = π ◦ T1. For every ε > 0, set

δ(ε) = sup
{
d2(π(x), π(y)) | (x, y) ∈ X1 ×X1, d

1(x, y) ≤ ε
}
.

Then we have δ(ε) → 0 when ε → 0+. Choose a decreasing sequence
(εk)k in R∗

+ such that (δ(εk))k is decreasing and limk εk = limk δ(εk) = 0.
For every n ≥ 1, choose a covering Un,k of X1 of minimal cardinality by
elements with d1n-diameter less than εk+1. Since π : X1 → X2 is surjective
and since X1 =

⋃
U∈Un,k

U , we have X2 = π(X1) =
⋃

U∈Un,k
π(U). Thus,

π(Un,k) is a covering of X2. Moreover by construction, for every U ∈ Un,k,
the d2n-diameter of π(U) is at most δ(εk+1) < δ(εk). This implies that
cov(n, δ(εk), T2) ≤ cov(n, εk+1, T1). This further implies that

h(T2) = lim
k

lim
n

1

n
log(cov(n, δ(εk), T2))
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≤ lim
k

lim
n

1

n
log(cov(n, εk+1, T1)) = h(T1).

This finishes the proof of the proposition. □

Next, we plan to compute the topological entropy of the (forward)
Bernoulli shift. Before doing so, we introduce the following terminology.
Let T : X → X be a topological dynamical system. We say that T is (pos-
itively) expansive if there exists κ > 0 such that whenever x, y ∈ X and
x ̸= y, there exists n ∈ N for which d(Tn(x), Tn(y)) ≥ κ. Assume moreover
that T : X → X is a homeomorphism. We say that T is expansive if there
exists κ > 0 such that whenever x, y ∈ X and x ̸= y, there exists n ∈ Z for
which d(Tn(x), Tn(y)) ≥ κ. We call κ > 0 a constant of expansiveness.

Observe that the notion of expansiveness does not depend on the choice
of the compatible metric d on X. Indeed, let d and ρ be compatible metrics
on X and assume that T : X → X is expansive with respect to the metric
d with constant of expansiveness κ > 0. We claim that T : X → X is also
expansive with respect to the metric ρ. Indeed, for every ε > 0, set

δ(ε) = sup {d(x, y) | (x, y) ∈ X ×X, ρ(x, y) ≤ ε} .
By compactness and since ρ and d are equivalent compatible metrics on
X, we have δ(ε) → 0 when ε → 0+. Choose ε > 0 small enough so that
δ(ε) < κ. For all x, y ∈ X such that x ̸= y, there exists n ∈ N such that
d(Tn(x), Tn(y)) ≥ κ > δ(ε) and so ρ(Tn(x), Tn(y)) > ε. This shows that
T : X → X is expansive with respect to the metric ρ with constant of
expansiveness ε > 0.

Example 1.23. Let r ≥ 2. Set Y = {1, . . . , r} and consider the forward
Bernoulli shift S : Y N → Y N : (yn)n 7→ (yn+1)n. Define the compatible
metric d : Y N × Y N → R+ by the formula d((yn)n, (zn)n) = 2−k where k =
min{n ∈ N | yn ̸= zn}. Then S is expansive with constant of expansiveness
κ = 1. Likewise, the Bernoulli shift T : Y Z → Y Z : (yn)n 7→ (yn+1)n is
expansive with constant of expansiveness κ = 1.

The expansiveness property turns out to be useful when computing the
topological entropy.

Proposition 1.24. Let T : X → X be an expansive topological dynami-
cal system with constant of expansiveness κ > 0. Then for every 0 < ε < κ,
we have hε(T ) = h(T ).

The same statement holds true for homeomorphisms.

Proof. Fix 0 < γ < ε < κ. By monotonicity, it suffices to prove that
h2γ(T ) ≤ hε(T ). This clearly implies the statement of the proposition.

By expansiveness, for all x, y ∈ X such that x ̸= y, there exists n ∈ N for
which d(Tn(x), Tn(y)) ≥ κ > ε. Since the set {(x, y) ∈ X ×X | d(x, y) ≥ γ}
is compact, there exists k = k(γ, ε) ∈ N such that if d(x, y) ≥ γ, then
d(T j(x), T j(y)) > ε for some 0 ≤ j ≤ k. It follows that if Y ⊂ X is an
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(n, γ)-separating set, then Y is an (n + k, ε)-separating set. Using lemma
1.18, this implies that

cov(n, 2γ, T ) ≤ sep(n, γ, T ) ≤ sep(n+ k, ε, T ) ≤ cov(n+ k, ε, T )

and so h2γ(T ) ≤ hε(T ). This finishes the proof of the proposition. □

We can now compute the topological entropy of Bernoulli shifts.

Proposition 1.25. Let r ≥ 2. Set Y = {1, . . . , r} and consider the
forward Bernoulli shift S : Y N → Y N : (yn)n 7→ (yn+1)n and the Bernoulli
shift T : Y Z → Y Z : (yn)n 7→ (yn+1)n. Then h(S) = h(T ) = log(r).

Proof. We prove that h(S) = log(r). The proof that h(T ) = log(r) is
completely analogous. Set X = Y N. Define the compatible metric d : X ×
X → R+ by the formula d((yn)n, (zn)n) = 2−k where k = min{n ∈ N | yn ̸=
zn}. By Example 1.23, S is expansive with constant of expansiveness κ = 1.
Choose 1

2 < ε < 1. For every j ∈ {1, . . . , r}, set Uj = {(xn)n ∈ X | x0 = j}
and note that Uj ⊂ X is both open and closed and has d-diameter equal to 1

2 .
Moreover, U = (Uj)1≤j≤r is a partition of X and for any j ̸= k, any x ∈ Uj

and y ∈ Uk, we have d(x, y) = 1. This implies that cov(1, ε, S) = r. More

generally, for every m ≥ 1, we may consider the partition
∨m−1

k=0 S
−k(U ) =

(U(i0,...,im−1))(i0,...,im−1)∈{1,...,r}m of X defined by

U(i0,...,im−1) = {(xn)n ∈ X | x0 = i0, . . . , xm−1 = im−1}

= Ui0 ∩ S−1(Ui1) ∩ · · · ∩ S−(m−1)(Uim−1)

for all (i0, . . . , im−1) ∈ {1, . . . , r}m. Then U(i0,...,im−1) ⊂ X is both open and

closed and has dm-diameter equal to 1
2 . Moreover, for any (i0, . . . , im−1) ̸=

(j0, . . . , jm−1), any x ∈ U(i0,...,im−1) and y ∈ U(j0,...,jm−1), we have dm(x, y) =
1. This implies that cov(m, ε, S) = rm. Therefore, using Proposition 1.24,
we have

h(S) = hε(S) = lim
m

1

m
log(cov(m, ε, S)) = lim

m

1

m
log(rm) = log(r).

This finishes the proof of the proposition. □





CHAPTER 2

Ergodic theory

Throughtout this chapter, a probability space (X,X , ν) is a triple where
X is a nonempty set, X is a σ-algebra of subsets of X and ν is a probability
measure defined on X . We refer to elements in X as measurable subsets
of X. A Borel space Z is a space endowed with a σ-algebra Z of Borel
subsets. A topological space X is naturally a Borel space endowed with
the σ-algebra X generated by open sets. A Borel space Z is standard if Z
is Borel isomorphic to a Borel subset of a Polish space. A standard Borel
space is either finite, countable or Borel isomorphic to the segment [0, 1].
A standard probability space (X,X , ν) is a standard Borel space (X,X )
endowed with a Borel probability measure ν ∈ Prob(X). Any standard
probability space (X,X , ν) such that ν is atom-free is measurably isomor-
phic to ([0, 1],B([0, 1]),Leb) where Leb denotes the Lebesgue measure on
[0, 1]. This means that there exists a measurable map π : (X,X , ν) →
([0, 1],B([0, 1]),Leb), conull measurable subsets Y ⊂ X, Z ⊂ [0, 1] such that
π|Y : Y → Z is bijective, (π|Z)−1 : Z → Y is measurable and π∗ν = Leb.

Recall that a collection of subsets S ⊂ P(X) is said to be a semi-algebra
if the following properties hold:

• ∅ ∈ S .
• For all A,B ∈ S , A ∩B ∈ S .
• For all A ∈ S , the complement X \ A is finite union of pairwise
disjoint elements in S .

A collection of subsets A ⊂ P(X) is said to be an algebra if A is a semi-
algebra and if moreover for all A ∈ A , we have X \A ∈ A .

Example 2.1. Let (X,X , ν) = (X1×X2,X1⊗X2, ν1⊗ν2) be a product
probability space. The collection

S = {U1 × U2 | U1 ∈ X1, U2 ∈ X2} ⊂ X1 ⊗ X2

that consists of all measurable rectangles is a semi-algebra. The collection
A ⊂ X1⊗X2 that consists of all finite unions of rectangles forms an algebra.
Moreover, we have σ(S ) = σ(A ) = X1 ⊗ X2.

We will use the following result without comment (see [EW11, Theorem
A.1.10]).

Theorem 2.2. Let (X,X , ν) be a probability space and A ⊂ X an
algebra for which σ(A ) = X . Then for every ε > 0 and every U ∈ X ,
there exists A ∈ A such that ν(U△A) < ε.

23
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For more information, we refer the reader to [EW11, Appendix A] and
[KL16, Appendix A].

A measurable dynamical system is a map T : X → X for which T−1(U) ∈
X for every U ∈ X . We denote by T∗ν the pushforward probability mea-
sure of ν by T defined by (T∗ν)(U) = ν(T−1(U)) for every U ∈ X . We
say that T is nonsingular if the probability measures T∗ν and ν are equiv-
alent on X. We then say that the quadruple (X,X , ν, T ) is a nonsingular
dynamical system. We say that T is probability measure preserving (pmp)
if T∗ν = ν. We then say that the quadruple (X,X , ν, T ) is a probability
measure preserving (pmp) dynamical system. In these lectures notes, we
will be mostly interested in pmp dynamical systems.

For every i ∈ {1, 2}, let (Xi,Xi, νi, Ti) be a pmp dynamical system.
We say that (X2,X2, ν2, T2) is a pmp factor of (X1,X1, ν1, T1) or that
(X1,X1, ν1, T1) is a pmp extension of (X2,X2, ν2, T2) if there exists a mea-
surable map π : (X1,X1, ν1) → (X2,X2, ν2) such that π∗ν1 = ν2 and
T2 ◦ π = π ◦ T1 ν1-almost everywhere. We say that (X2,X2, ν2, T2) and
(X1,X1, ν1, T1) are measurably conjugate if there exists a measurable map
π : (X1,X1, ν1) → (X2,X2, ν2), conull measurable subsets Y1 ⊂ X1, Y2 ⊂
X2 such that π|Y1 : Y1 → Y2 is bijective and (π|Y1)

−1 : Y2 → Y1 is measur-
able, π∗ν1 = ν2 and T2 ◦ π = π ◦ T1 ν1-almost everywhere.

In this chapter, we follow the presentation given in [BS02, EW11,
KL16].

1. Ergodicity and recurrence

Firstly, we prove a useful result in order to check that a measurable
dynamical system T : X → X is pmp. We will use this result without
reference in what follows.

Lemma 2.3. Let T : X → X be a measurable dynamical system. Let
C ⊂ X be a collection of measurable subsets that is stable under finite
intersection and such that σ(C ) = X . Then T preserves the probability
measure ν if and only if ν(T−1(U)) = ν(U) for every U ∈ C .

Proof. Assume that ν(T−1(U)) = ν(U) for every U ∈ C . Set

Y =
{
U ∈ X | ν(T−1(U)) = ν(U)

}
.

We have that C ⊂ Y and that Y is a monotone class. By the monotone
class lemma, we obtain X = σ(C ) = M (C ) ⊂ Y and hence X = Y . □

Secondly, we show that pmp dynamical systems behave well with respect
to Lp-spaces.

Lemma 2.4. Let T : X → X be a measurable dynamical system. Then
T preserves the probability measure ν if and only if for every measurable
function f : X → R+, we have∫

X
f dν =

∫
X
f ◦ T dν.
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Moreover, if T preserves the probability measure ν, then for every p ∈
[1,+∞) and every f ∈ Lp(X,X , ν), we have f ◦ T ∈ Lp(X,X , ν) and
∥f ◦ T∥p = ∥f∥p.

Proof. Assume that T : X → X preserves the probability measure ν.
Then for every U ∈ X , we have∫

X
1U dν = ν(U) = ν(T−1(U)) =

∫
X
1U ◦ T dν.

By linearity, the above equality also holds for every simple measurable func-
tion f : X → C. Let now f : X → R+ be a measurable fonction. Then there
exists an increasing sequence (fn)n of finite linear combinations of simple
nonnegative measurable functions on X such that fn → f . By monotone
convergence theorem, we have∫

X
f dν = lim

n

∫
X
fn dν = lim

n

∫
X
fn ◦ T dν =

∫
X
f ◦ T dν.

Let now f ∈ Lp(X,X , ν). Using the first part of the proof, we obtain

∥f∥pp =
∫
X
|f |p dν =

∫
X
|f |p ◦ T dν =

∫
X
|f ◦ T |p dν = ∥f ◦ T∥pp.

This shows that f ◦ T ∈ Lp(X,X , ν). Note that f ◦ T ∈ Lp(X,X , ν) only
depends on (the class of) f ∈ Lp(X,X , ν). □

For any topological space X endowed with its σ-algebra X = B(X) of
Borel sets, any topological dynamical system T : X → X and any Borel
probability measure ν ∈ ProbT (X), we may consider the pmp dynamical
system (X,X , ν, T ).

1.1. Ergodicity.

Definition 2.5. Let (X,X , ν, T ) be a pmp dynamical system. We
say that T is ergodic if for every measurable subset U ∈ X such that
T−1(U) = U , we have ν(U) ∈ {0, 1}.

For every pmp dynamical system (X,X , ν, T ), define the Koopman op-
erator κT : L2(X,X , ν) → L2(X,X , ν) by the formula κT (ξ) = ξ ◦ T . For
all ξ, η ∈ L2(X,X , ν), we have

⟨κT (ξ), κT (η)⟩ = ⟨ξ ◦ T, η ◦ T ⟩

=

∫
X
ξ ◦ T · η ◦ T dν

=

∫
X
ξ · η dν

= ⟨ξ, η⟩.

It follows that κT : L2(X,X , ν) → L2(X,X , ν) is an isometry, that is,
κ∗TκT = 1. If (X,X , ν, T ) is an invertible pmp dynamical system, then

κT : L2(X,X , ν) → L2(X,X , ν) is a unitary, that is, κ∗TκT = 1 and
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κTκ
∗
T = 1. Observe that κT (1X) = 1X and so 1 is always an eigenvalue

for κT with eigenvector given by 1X . The next proposition provides useful
characterizations of ergodicity.

Proposition 2.6. Let (X,X , ν, T ) be a pmp dynamical system. The
following assertions are equivalent:

(i) T is ergodic.
(ii) For all U ∈ X such that ν(T−1(U)△U) = 0, we have ν(U) ∈

{0, 1}.
(iii) For all U ∈ X such that ν(U) > 0, we have ν(

⋃
n∈N T

−n(U)) = 1.
(iv) For all U, V ∈ X such that ν(U)ν(V ) > 0, there exists n ≥ 1 such

that ν(T−n(U) ∩ V ) > 0.
(v) Every measurable function f : X → C satisfying f = f ◦T ν-almost

everywhere is constant ν-almost everywhere.
(vi) The eigenvalue 1 is simple for κT .

Proof. (i) ⇒ (ii) Let U ∈ X be such that ν(T−1(U)△U) = 0. Define
V =

⋂
n∈N(

⋃
k≥n T

−k(U)) ∈ X and observe that T−1(V ) = V . By ergodic-

ity, we know that ν(V ) ∈ {0, 1}. For every n ∈ N, set Vn =
⋃

k≥n T
−k(U) ∈

X . Observe that the sequence (Vn)n is decreasing and
⋂

n∈N Vn = V . For

every n ∈ N, we have U△Vn ⊂
⋃

k≥n U△T−k(U) and ν(U△T−n(U)) = 0
since

• U△T−n(U) ⊂
⋃n−1

j=0 T
−j(U)△T−(j+1)(U) and

• ν(T−j(U)△T−(j+1)(U)) = 0 for all j ≥ 0.

It follows that ν(U△Vn) = 0 for every n ∈ N and hence ν(U△V ) = 0. Since
ν(V ) ∈ {0, 1}, we obtain ν(U) ∈ {0, 1}.

(ii) ⇒ (iii) Set V =
⋃

n∈N T
−n(U). Then we have T−1(V ) ⊂ V and

ν(T−1(V )) = ν(V ) since T∗ν = ν. Then ν(T−1(V )△V ) = 0 and hence
ν(V ) ∈ {0, 1}. Since U ⊂ V and ν(U) > 0, we obtain ν(V ) = 1.

(iii) ⇒ (iv) Since ν(U) > 0, we have ν(
⋃

n∈N T
−n(U)) = 1. Since

ν(V ) = ν(
⋃

n∈N(T
−n(U) ∩ V )) and ν(V ) > 0, there exists n ∈ N such

that ν(T−n(U) ∩ V ) > 0.
(iv) ⇒ (i). Let U ∈ X be such that T−1(U) = U . Then for every n ∈ N,

0 = ν(U ∩X \ U) = ν(T−n(U) ∩X \ U).

It follows that ν(U) = 0 or ν(X \ U) = 0, that is, ν(U) ∈ {0, 1}.
(ii) ⇒ (v). Upon taking the real and imaginary parts of f , we may

assume without loss of generality that the measurable function f is real-
valued. For every t ∈ R, define Ut = {x ∈ X | f(x) ≥ t} ∈ X . Since
f ◦ T = f ν-almost everywhere, we have ν(T−1(Ut)△Ut) = 0. Therefore,
ν(Ut) ∈ {0, 1}. Since t 7→ ν(Ut) is decreasing and f is real-valued, there
exists t ∈ R such that ν(Us) = 0 for all s > t and ν(Us) = 1 for all s ≤ t.
This implies that f = t ν-almost everywhere.

(v) ⇒ (vi) This is trivial.
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(vi) ⇒ (i) Let U ∈ X be such that T−1(U) = U . Set f = 1U ∈
L2(X,X , ν). Since f ◦T = f , f is constant ν-almost everywhere. Therefore,
ν(U) ∈ {0, 1}. □

We use Proposition 2.6 to give examples of ergodic pmp dynamical sys-
tems. Denote by (T,B, λT) the probability space that consists of the torus
endowed with its σ-algebra of Borel subsets and its Haar (Lebesgue) mea-
sure. For every α ∈ R, consider the rotation Tα : T → T : z 7→ exp(i2πα)z.
Since Tα∗λT = λT, the dynamical system (T,B, λT, Tα) is pmp.

Proposition 2.7. The rotation (T,B, λT, Tα) is ergodic if and only if
α ∈ R \Q.

Proof. Firstly, assume that α ∈ R\Q. For every k ∈ Z, define ek : T →
T : x 7→ xk. It easy to check that (ek)k∈Z forms an orthonormal basis of the
Hilbert space L2(T,B, λT). Let f ∈ L2(T,B, λT) be a function satisfying
f ◦ Tα = f . Write f =

∑
k∈Z akek for the Fourier expansion of f where

ak ∈ C for all k ∈ Z. By uniqueness of the Fourier expansion, we have
ck = ck exp(i2πkα) for all k ∈ Z. Since α ∈ R \ Q, we have ck = 0 for all
k ∈ Z \ {0}. Then f is a constant function. This shows that (T,B, λT, Tα)
is ergodic.

Secondly, assume that α ∈ Q. Write α = p/q with p ∈ Z and q ∈
N \ 0. The function x 7→ xq is Tα-invariant and is not λT-almost everywhere
constant. This shows that (T,B, λT, Tα) is not ergodic □

Let (Y,Y , η) be a probability space. Consider the product probabil-
ity space (Y N,Y ⊗N, η⊗N) together with the forward Bernoulli shift S :
Y N → Y N : (yn)n 7→ (yn+1)n. It is plain to see that S∗η

⊗N = η⊗N and
so (Y N,Y ⊗N, η⊗N, S) is a pmp dynamical system. Likewise, consider the
product probability space (Y Z,Y ⊗Z, η⊗Z) together with the Bernoulli shift
T : Y Z → Y Z : (yn)n 7→ (yn+1)n. It is plain to see that T∗η

⊗Z = η⊗Z and so
(Y Z,Y ⊗Z, η⊗Z, T ) is a pmp dynamical system.

Proposition 2.8. The forward Bernoulli shift (Y N,Y ⊗N, η⊗N, S) is er-
godic. Likewise, the Bernoulli shift (Y Z,Y ⊗Z, η⊗Z, T ) is ergodic.

Proof. We only give the proof of ergodicity of the forward Bernoulli
shift. The proof of ergodicity of the Bernoulli shift is completely analogous.
Set (X,X , ν) = (Y N,Y ⊗N, η⊗N). Note that the σ-algebra X is generated
by cylinder sets of the form C (U0, . . . , Un0) =

∏
n Zn where Zn = Un ∈ Y

for n ≤ n0 and Zn = Y for n > n0.
Let U ∈ X satisfying S−1(U) = U . For every ε > 0, there exists a finite

union of cylinder sets V such that ν(U△V ) ≤ ε. Then there exists m ∈ N
large enough such that

ν(S−m(V )\V ) = ν(S−m(V )∩X\V ) = ν(S−m(V ))ν(X\V ) = ν(V )ν(X\V ).
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We have ν(S−m(V )△U) = ν(S−m(V )△S−m(U)) = ν(V△U) ≤ ε and so
ν(S−m(V )△V ) ≤ 2ε. Therefore, we have

ν(U)ν(X \ U) ≤ (ν(V ) + ε)(ν(X \ V ) + ε)

≤ ν(V )ν(X \ V ) + 2ε+ ε2

≤ ν(S−m(V )△V ) + 2ε+ ε2

≤ 4ε+ ε2.

Since ε > 0 is arbitrary, we have ν(U)ν(X \U) = 0 and so ν(U) ∈ {0, 1}. □

Let G be a compact abelian metrizable group. Denote by B(G) its
σ-algebra of Borel subsets and by mG its unique Haar Borel probability
measure (see Chapter 3). Let T ∈ Aut(G) be a continuous automorphism
group. Then we have T∗mG = mG and so (G,B(G),mG, T ) is a pmp dy-

namical system. We denote by Ĝ the Pontryagin dual of G that consists of
all continuous group homomorphisms (characters) χ : G→ T.

Theorem 2.9. The pmp dynamical system (G,B(G),mG, T ) is ergodic

if and only if the identity χ ◦ Tn = χ for some n ≥ 1 and character χ ∈ Ĝ
implies that χ = 1G is the trivial character.

Proof. Firstly, assume that there is a nontrivial character χ ∈ Ĝ such
that χ ◦ Tn = χ for some n ≥ 1. We may choose n ≥ 1 to be minimal with
this property. Then the continuous function f = χ+χ◦T+· · ·+χ◦Tn−1 is T -
invariant. We claim that f is not constant. Indeed, for every i ∈ {0, . . . , n},
set χ0 = 1G and χi = χ ◦ T i−1 ∈ Ĝ for every 1 ≤ i ≤ n. Then the
characters (χi)0≤i≤n are pairwise distinct and so the family (χi)0≤i≤n is
linearly independent. This implies that f is not constant. This shows that
the pmp dynamical system (G,B(G),mG, T ) is not ergodic.

Secondly, assume that there is no nontrivial character χ ∈ Ĝ such that
χ ◦ Tn = χ for some n ≥ 1. Let f ∈ L2(G,B(G),mG) be a function that
is invariant under T . Write f =

∑
χ∈Ĝ cχχ for the Fourier expansion of

f ∈ L2(G,B(G),mG). We have
∑

χ∈Ĝ |cχ|2 = ∥f∥22. Since f = f ◦ T , we
have cχ◦Tk = cχ for every χ ∈ Ĝ and every k ∈ Z. Let χ ∈ Ĝ. Then
either cχ = 0 or there are finitely many distinct characters among (χ ◦
T k)k∈Z. In the latter case, there are p > q such that χ ◦ T p = χ ◦ T q and
so χ ◦ T p−q = χ. By assumption, this implies that χ = 1G. Therefore,
f = c1G1G ∈ L2(G,B(G),mG) is constant mG-almost everywhere. This
shows that the pmp dynamical system (G,B(G),mG, T ) is ergodic. □

As a corollary to Theorem 2.9, we obtain a characterization of ergodicity
for toral automorphisms. Let d ≥ 1 and A ∈ GLd(Z). Regard Td = Rd/Zd

and denote by λTd the Haar (Lebesgue) probability measure on Td. Consider
the continuous group automorphism TA : Td → Td : x+Zd 7→ Ax+Zd which
satisfies TA∗λTd = λTd . Then (Td,B, λTd , TA) is a pmp dynamical system.
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Corollary 2.10. The pmp dynamical system (Td,B, λTd , TA) is ergodic
if and only if no eigenvalue of A is a root of unity.

Proof. For every (x1, . . . , xd) ∈ Rd, we denote by [xi]i the correspond-
ing column vector. We simply denote by ⟨ · , · ⟩ the canonical inner product
on Rd. The homomorphism

Zd 7→ T̂d : (n1, . . . , nd) 7→
(
(x1, . . . , xd) + Zd 7→ exp(i2π⟨[ni]i, [xi]⟩)

)
is an isomorphism that allows to identify Zd with the Pontryagin dual T̂d.

Firstly, assume that there exists an eigenvalue λ of A that is a root
of unity. Then there exists n ≥ 1 such that 1 = λn is an eigenvalue of
An. Then 1 is also an eigenvalue of (An)∗. Regarding (An)∗ ∈ GLd(Q),
we infer that there exists a nonzero vector ξ ∈ Qd such that (An)∗ξ = ξ.
Upon multiplying by a nonzero integer, we may assume that ξ ∈ Zd and
(An)∗ξ = ξ. Write ξ = [ni]i and consider the corresponding character χ =

(n1, . . . , nd) ∈ Zd = T̂d. Then for every g = (x1, . . . , xd) + Zd ∈ Td, we have

χ(Tn
A(g)) = exp(i2π⟨ξ, An[xi]i⟩)

= exp(i2π⟨(An)∗ξ, [xi]i⟩)
= exp(i2π⟨ξ, [xi]i⟩)
= χ(g).

By Theorem 2.9, the pmp dynamical system (Td,B, λTd , TA) is not ergodic.
Secondly, assume the pmp dynamical system (Td,B, λTd , TA) is not er-

godic. By Theorem 2.9, there is a nontrivial character χ = (n1, . . . , nd) ∈
Zd = T̂d such that χ ◦ Tn

A = χ for some n ≥ 1. Write ξ = [ni]i. For every

g = (x1, . . . , xd) + Zd ∈ Td, we have

exp(i2π⟨(An)∗ξ, [xi]i⟩) = exp(i2π⟨ξ, An[xi]i⟩)
= χ(Tn

A(g))

= χ(g)

= exp(i2π⟨ξ, [xi]i⟩).

This further implies that (An)∗ξ = ξ and so 1 is an eigenvalue of (An)∗

as well as of An. This shows that A has an eigenvalue that is a root of
unity. □

1.2. Recurrence and applications. We prove Poincaré’s recurrence
theorem and we investigate some applications. Poincaré’s recurrence theo-
rem is a measurable analogue of Birkhoff’s recurrence theorem in topological
dynamics (see Corollary 1.6).

Theorem 2.11 (Poincaré). Let (X,X , ν, T ) be a pmp dynamical system
and U ∈ X . Then ν-almost every point of U returns to U infinitely many
times. That is, there exists a conull measurable subset V ⊂ U such that
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for every x ∈ V , there exists an increasing sequence (nk)k≥1 in N for which
Tnk(x) ∈ U for every k ≥ 1.

Proof. For every n ∈ N, set Wn =
⋃

k≥n T
−k(U) ∈ X and observe

that Wn = T−n(W0). Moreover, the sequence (Wn)n is decreasing. Since T
is pmp, we have ν(Wn) = ν(W0) for every n ∈ N. Since ν(W0) < +∞, it
follows that ν(

⋂
n∈NWn) = limn ν(Wn) = ν(W0). Letting V = U∩

⋂
n∈NWn,

we are done. □

Let (X,X , ν, T ) be an invertible pmp dynamical system and U ∈ X
with ν(U) > 0. By Poincaré’s recurrence theorem, the first return time
defined by

rU (x) = inf {n ≥ 1 | Tn(x) ∈ U}
is finite ν-almost everywhere on U .

Definition 2.12 (Induced transformation). The map TU : U → U de-
fined ν-almost everywhere by

TU (x) = T rU (x)(x)

is called the transformation induced by T on the measurable subset U .

Observe that rU : U → N and TU : U → U are measurable. Indeed, for
every n ≥ 1, set Xn = {x ∈ X | rU (x) = n}. We have X1 = T−1(U) ∈ X
and

∀n ≥ 2, Xn = T−n(U) \
⋃

1≤i<n

Xi ∈ X .

This implies that rU : U → N is measurable. For every n ≥ 1, set Un =
U ∩ Xn. Since T is invertible, we have Tn(Un) ∈ X for every n ≥ 1.
Therefore, the map

TU : U → U =
⊔
n≥1

(Tn : Un → Tn(Un))

is measurable. The measurable subset Un ⊔T (Un)⊔ · · · ⊔Tn−1(Un) is called
the nth Kakutani tower and

⊔
n≥1

⊔
0≤j≤n−1 T

j(Un) is called the Kakutani
skyscraper.

Set U = {V ∩ U | V ∈ X } and νU (V ) = 1
ν(U)ν(V ) for every V ∈ U .

Observe that U is a σ-algebra on U and νU is a probability measure defined
on (U,U ). We have the following result.

Proposition 2.13. The induced dynamical system (U,U , νU , TU ) is
pmp. Moreover, if (X,X , ν, T ) is ergodic, then so is (U,U , νU , TU ).

Proof. Since (X,X , ν, T ) is pmp and invertible and

TU : U → U =
⊔
n≥1

(Tn : Un → Tn(Un)) ,

it follows that (U,U , νU , TU ) is pmp.
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If (U,U , νU , TU ) is not ergodic, then there exists a TU -invariant subset
V ∈ U such that 0 < ν(V ) < ν(U). Then W =

⊔
n≥1

⊔
0≤j≤n−1 T

j(V ∩Un)

is T -invariant. Moreover for every 0 ≤ j ≤ n − 1, we have ν((U \ V ) ∩
T j(V ∩ Un)) = 0. This implies that W is nontrivial and so (X,X , ν, T ) is
not ergodic. □

Proposition 2.14 (Kac). Let (X,X , ν, T ) be an invertible ergodic pmp
dynamical system and U ∈ X with ν(U) > 0. Then∫

U
rU dν = 1.

Proof. Since (X,X , ν, T ) is ergodic and since
⊔

n≥1

⊔
0≤j≤n−1 T

j(Un)
is T -invariant, we have ⊔

n≥1

⊔
0≤j≤n−1

T j(Un) = X

up to a ν-null measurable subset. By the monotone convergence theorem,
it follows that

1 = ν(X) =
∑
n≥1

n−1∑
j=0

ν(T j(Un)) =
∑
n≥1

nν(Un) =

∫
U
rU dν.

This finishes the proof. □

We prove now Kakutani–Rokhlin’s tower theorem.

Theorem 2.15 (Kakutani–Rokhlin). Let (X,X , ν, T ) be an invertible
ergodic pmp dynamical system and assume that ν is atom-free. For every
ε > 0 and every n ≥ 1, there exists V ∈ X such that

• the measurable subsets V, T (V ), . . . , Tn−1(V ) are pairwise disjoint
• and ν(X \

⊔
0≤k≤n−1 T

k(V )) < ε.

Proof. Let ε > 0 and n ≥ 1. Since ν is atom-free, we may choose a
measurable subset U ∈ X such that 0 < ν(U) < ε

n . Consider the Kakutani
skyscraper over U . By ergodicity, we know that⊔

k≥1

⊔
0≤j≤k−1

T j(Uk) = X

up to ν-null measurable subset. Define the measurable subset

V =
⊔
k≥n

⌊k/n⌋−1⊔
j=0

T jn(Uk).

Observe that k = ⌊k/n⌋ · n + r with 0 ≤ r ≤ n − 1. We obtain that
V, T (V ), . . . , Tn−1(V ) are pairwise disjoint. Then we obtain

ν

X \
⊔

0≤k≤n−1

T k(V )

 ≤ n
∑
k≥1

ν(Uk) ≤ n ν(U) ≤ ε.
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This finishes the proof. □

We use Theorem 2.15 to infer that invertible ergodic pmp dynamical
systems are not strongly ergodic.

Corollary 2.16. Let (X,X , ν, T ) be an invertible ergodic pmp dynam-
ical system and assume that ν is atom-free.

Then there exists a sequence (Un)n in X such that ν(Un) =
1
2 for every

n ∈ N and limn ν(T (Un)△Un) = 0.

Proof. For every n ≥ 1, we apply Theorem 2.15 to ε = 1
n and 2n. Then

there exists a measurable subset Vn ∈ X such that Vn, T (Vn), . . . , T
2n−1(Vn)

are pairwise disjoint and ν(X \
⊔

0≤k≤2n−1 T
k(Vn)) <

1
n . Set Wn = Vn ⊔

T (Vn) ⊔ · · · ⊔ Tn−1(Vn). Then we have

1

2
− 1

2n
≤ ν(Wn) ≤

1

2
and ν(T (Wn)△Wn) ≤ 2ν(Vn) ≤

1

n
.

For every n ≥ 1, define Un ∈ X so that Wn ⊂ Un and ν(Un) =
1
2 . Since for

every n ≥ 1, ν(Un \Wn) ≤ 1
2n , we have limn ν(T (Un)△Un) = 0. □

2. Invariant measures and unique ergodicity

In this section, we assume that X is a compact metrizable space. We fix
a compatible metric d on X. Denote by (M (X), ∥ · ∥) the Banach space of
all complex Borel measures on X where the norm of ν ∈ M (X) is given by
∥µ∥M (X) = |µ|(X). Here |µ| denotes the modulus or absolute value of the
Borel measure ν ∈ M (X). Hence |ν| is a finite positive Borel measure on
X. By Riesz representation theorem, the mapping

M (X) → C(X)∗ : ν 7→
(
f 7→

∫
X
f dν

)
is isometric and surjective. We can define the weak-∗ topology on M (X):
a net (νi)i∈I in M (X) converges to ν ∈ M (X) with respect to the weak-∗
topology if for every f ∈ C(X), we have

lim
i

∫
X
f dνi =

∫
X
f dν.

Observe that the unit ball Ball(M (X)) is a metrizable compact space
hence separable. Indeed, since (X, d) is a compact metric space, the uni-
tal Banach algebra C(X) is separable by Stone–Weierstrass theorem. Let
(fn)n≥1 be a uniformly dense sequence in C(X). For all ν, η ∈ Ball(M (X)),
define

d(ν, η) =
∞∑
n=1

1

2n
|
∫
X fn dν −

∫
X fn dη|

1 + |
∫
X fn dν −

∫
X fn dη|

.

Then d is a metric on Ball(M (X)) that induces the weak-∗ topology.
Denote by X = B(X) the σ-algebra of Borel subsets of X and by

Prob(X) ⊂ M (X) the convex subset of all the Borel (positive) probability
measures on X. Since Prob(X) is contained in the unit ball of M (X) and



2. INVARIANT MEASURES AND UNIQUE ERGODICITY 33

since Prob(X) is weak-∗ closed, it follows that Prob(X) is weak-∗ compact.
For any topological dynamical system T : X → X, define the map T∗ :
Prob(X) → Prob(X) : ν 7→ T∗ν by the formula∫

X
f d(T∗ν) =

∫
X
f ◦ T dν.

here T∗ν is the pushforward Borel probability measure of ν by T . It is easy
to check that T∗ : Prob(X) → Prob(X) is affine and weak-∗ continuous.

2.1. Invariant measures. Let T : X → X be a topological dynamical
system. Denote by

ProbT (X) = {ν ∈ Prob(X) | T∗ν = ν} .
the weak-∗ convex subset of T -invariant Borel probability measures on X.

Lemma 2.17. We have ProbT (X) ̸= ∅.

Proof. Choose ν ∈ Prob(X) any Borel probability measure on X. For
every n ≥ 1, define

νn =
1

n

(
ν + T∗ν + · · ·+ (Tn−1)∗ν

)
∈ Prob(X).

For every n ≥ 1, we have

∥T∗νn − νn∥M (X) =
1

n
∥(Tn)∗ν − ν∥M (X) ≤

2

n

and so limn ∥T∗νn − νn∥M (X) = 0. Since Prob(X) is weak-∗ compact, there
exists an increasing sequence (nk)k in N and η ∈ Prob(X) such that νnk

→ η
weak-∗ as k → ∞. Since limk ∥T∗νnk

− νnk
∥M (X) = 0, we also have T∗νnk

−
νnk

→ 0 weak-∗ as k → ∞ and so T∗η = η. Therefore, η ∈ ProbT (X). □

Let T : X → X be a topological dynamical system and ν ∈ ProbT (X).
We say that ν is T -ergodic if the pmp dynamical system (X,X , ν, T ) is
ergodic. We give a characterization of ergodic measures.

Proposition 2.18. Let T : X → X be a topological dynamical system
and ν ∈ ProbT (X). Then (X,X , ν, T ) is ergodic if and only if ν is an
extreme point of the convex set ProbT (X).

Proof. Let ν ∈ ProbT (X) be a measure that is not T -ergodic. Let U ∈
X be such that ν(U) ∈ (0, 1). Define ν1 = 1

ν(U)ν|U and ν2 = 1
µ(X\U)ν|X\U .

Then we have ν1, ν2 ∈ ProbT (X), ν1 ̸= ν ̸= ν2 and ν = ν(U) ν1 + (1 −
ν(U)) ν2. Thus, ν is not an extreme point of the convex set ProbT (X).

Conversely, let ν ∈ ProbT (X) be a T -ergodic measure and let ν = t ν1+
(1 − t) ν2 be a convex combination with t ∈ (0, 1) and ν1, ν2 ∈ ProbT (X).
Since t > 0, ν1 is absolutely continuous with respect to ν and we may
consider the Radon–Nikodym derivative f = dν1

dν ∈ L1(X,X , ν).
Define U = {x ∈ X | f(x) < 1}. We have

ν1(U) = ν1(U ∩ T−1(U)) + ν1(U \ T−1(U))
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=

∫
U∩T−1(U)

f dν +

∫
U\T−1(U)

f dν

ν1(T
−1(U)) = ν1(T

−1(U) ∩ U) + ν1(T
−1(U) \ U)

=

∫
T−1(U)∩U

f dν +

∫
T−1(U)\U

f dν.

Since ν1(U) = ν1(T
−1(U)), we have∫

U\T−1(U)
f dν =

∫
T−1(U)\U

f dν

Moreover, we have

ν(T−1(U) \ U) = ν(T−1(U))− ν(T−1(U) ∩ U)

= ν(U)− ν(T−1(U) ∩ U)

= ν(U \ T−1(U)).

Finally, observe that f(x) < 1 for all x ∈ U \ T−1(U) while f(x) ≥ 1 for
all x ∈ T−1(U) \ U . Therefore ν(T−1(U) \ U) = ν(U \ T−1(U)) = 0 and so
ν(T−1(U)△U) = 0. Since ν is ergodic, we have ν(U) ∈ {0, 1}. If ν(U) = 1,
then 1 = ν1(U) =

∫
U f dν and so f(x) = 1 for ν-almost every x ∈ U . This is

a contradiction. Thus, ν(U) = 0 and so we have f(x) ≥ 1 for ν-almost every
x ∈ X. Likewise, we have f(x) ≤ 1 for ν-almost every x ∈ X. Therefore,
f = 1 in L1(X,X , ν) and so ν1 = ν. Thus, ν is an extreme point of the
convex set ProbT (X). □

Recall that two positive measures ν and η on a measurable space (E,A )
are mutually singular if there exists a measurable subset U ∈ A such that
ν(U) = 0 and η(U) = 1. The above characterization of ergodic measures
allows to obtain an interesting dichotomy result for such ergodic measures.

Proposition 2.19. Let T : X → X be a topological dynamical system.
Let ν1, ν2 ∈ ProbT (X) be two T -ergodic measures. Then either ν1 = ν2 or
ν1 and ν2 are mutually singular.

Proof. Using Radon–Nikodym’s theorem, there exists a unique pair
(ζ1, ζ2) of finite positive Borel measures on X such that ν1 = ζ1 + ζ2, where
ζ1 is absolutely continuous with respect to ν2 and ζ2 and ν2 are mutually
singular.

If ζ1 = 0, then ν2 = ζ2 and so ν1 and ν2 are mutually singular.
If ζ2 = 0, then ν1 = ζ1 and so ν1 is absolutely continuous with respect

to ν2. The same reasoning as in Proposition 2.18 shows that ν1 = ν2.
Finally, by contradiction, we show that ζ1 = 0 or ζ2 = 0. If not, then

we may write ν1 = tη1 + (1 − t)η2 with η1, η2 ∈ Prob(X), t ∈ (0, 1), η1
is absolutely continuous with respect to ν2 and η2 and ν2 are mutually
singular. Observe that η1 ̸= η2 and ν1 = T∗ν1 = t T∗η1 + (1 − t)T∗η2. It
is clear that T∗η1 is absolutely continuous with respect to T∗ν2 = ν2. We
claim that T∗η2 and T∗ν2 = ν2 are mutually singular. Indeed, let U ∈ X
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be a measurable subset such that η2(U) = 1 and ν2(U) = 0. Then we have
η1(U) = 0 and so ν1(U) = (1 − t)η2(U) = (1 − t). Since ν2(T

−1(U)) = 0,
we also have η1(T

−1(U)) = 0 and so ν1(T
−1(U)) = (1 − t)η2(T

−1(U)).
Since ν1(T

−1(U)) = ν1(U), we have η2(T
−1(U)) = η2(U) = 1. Therefore,

T∗η2 and ν2 are mutually singular. By uniqueness of the decomposition
in Radon–Nikodym’s theorem, we have T∗η1 = η1 and T∗η2 = η2, that is,
η1, η2 ∈ ProbT (X). This however contradicts the fact that ν1 ∈ ProbT (X) is
an extreme point by Proposition 2.18. Therefore, we have ζ1 = 0 or ζ2 = 0
and the proof is complete. □

2.2. Unique ergodicity. We say that a topological dynamical system
T : X → X is uniquely ergodic if ProbT (X) is a singleton. We start by
proving a general result on weak-∗ compact convex subsets.

Lemma 2.20 (Krein–Milman). Let (E, ∥ · ∥) be a normed complex vector
space. Let K ⊂ (E∗)1 be a nonempty weak-∗ closed convex subset of the unit
ball of E∗. Then K has an extreme point.

Proof. Observe that K is weak-∗ compact. We say that a nonempty
subset A ⊂ K is extreme if whenever x, y ∈ K and t ∈ (0, 1) are such that
t x+ (1− t) y ∈ A, we have x, y ∈ A. Define the nonempty set

C = {A ⊂ K | A is weak-∗ closed, extreme and nonempty}

with order relation < given by

A1 < A2 if and only if A2 ⊂ A1.

It is easy to check that (C , <) is an inductive set. Indeed, let {Ai | i ∈ I} ⊂
C be a totally ordered subset. Set A =

⋂
i∈I Ai. Then A ⊂ K is weak-∗

closed, extreme and nonempty by compactness. Therefore, we have A ∈ C .
By Zorn’s lemma, C has a maximal element B ∈ C . We show that

B is a singleton. If not, let f1, f2 ∈ B with f1 ̸= f2. Let v ∈ E be such
that f1(v) ̸= f2(v). We may assume that ℜf1(v) < ℜf2(v). Since B is
weak-∗ closed and hence weak-∗ compact, there exists f0 ∈ B such that
ℜf0(v) = sup {ℜf(v) | f ∈ B}. Let B0 = {f ∈ B | ℜf(v) = ℜf0(v)}. Then
B0 is a weak-∗ closed extreme subset of K. Indeed, let g1, g2 ∈ K and
t ∈ (0, 1) be such that t g1 + (1 − t)g2 ∈ B0. Since B is extreme, we have
g1, g2 ∈ B. Next, by definition of B0, we moreover have g1, g2 ∈ B0. Then
B0 is a weak-∗ closed extreme subset of K such that B < B0 and B0 ̸= B.
This contradicts the maximality of B. Therefore B = {f} is a singleton and
so f ∈ K is an extreme point. □

Theorem 2.21. Let T : X → X be a topological dynamical system. The
following assertions are equivalent:

(i) T is uniquely ergodic.
(ii) There is only one ergodic T -invariant Borel probability measure in

ProbT (X).
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(iii) For every f ∈ C(X), there exists a constant λf such that uniformly
for all x ∈ X, we have

lim
n

1

n

(
f(x) + · · ·+ f(Tn−1(x))

)
= λf .

(iv) There exists a uniformly dense subspace A ⊂ C(X) such that for
every f ∈ A , there exists a constant λf such that for all x ∈ X,
we have

lim
n

1

n

(
f(x) + · · ·+ f(Tn−1(x))

)
= λf .

If any of the above assertions holds, then we have λf =
∫
X f dν,

where ProbT (X) = {ν}.

Proof. (i) ⇒ (ii). If ProbT (X) = {ν}, then ν is an extreme point of
the convex set ProbT (X). Thus, ν is ergodic by Theorem 2.18.

(ii) ⇒ (i). We show that if ProbT (X) is not a singleton, then it has
at least two extreme points. This will prove the implication by Propo-
sition 2.18. Let ν1, ν2 ∈ ProbT (X) be such that ν1 is an extreme point
(see Lemma 2.20) and ν2 ̸= ν1. Let f ∈ C(X) be such that

∫
X f dν2 ̸=∫

X f dν1. We may assume that f is real-valued and that
∫
X f dν1 <

∫
X f dν2.

Since ProbT (X) is weak-∗ compact, there exists ν ∈ ProbT (X) such that∫
X f dν = sup

{∫
X f dη | η ∈ ProbT (X)

}
. Set

K =

{
η ∈ ProbT (X) |

∫
X
f dη =

∫
X
f dν

}
.

Then K ⊂ ProbT (X) is a nonempty weak-∗ closed convex subset. By
Lemma 2.20, K has an extreme point η. Since K ⊂ ProbT (X) is moreover
an extreme subset, η is an extreme point in ProbT (X). Since

∫
X f dν1 <∫

X f dη, we have ν1 ̸= η.
(i) ⇒ (iii). Using the proof of Lemma 2.17, we have that for every

x ∈ X, the sequence
(
1
n

(
δx + T∗δx + · · ·+ (Tn−1)∗δx

))
n≥1

converges with

respect to the weak-∗ topology to the unique invariant Borel probability ν.
Then for all f ∈ C(X) and all x ∈ X, since (T k)∗δx = δTk(x), we have

lim
n

1

n

(
x+ f(x) + · · ·+ f(Tn−1(x))

)
=

∫
X
f dν.

If the above convergence is not uniform on X for some f ∈ C(X), then there
exist ε > 0, an increasing sequence (nk)k in N∗ and xnk

∈ X such that for
all k ∈ N,∣∣∣∣ 1nk (xnk

+ f(xnk
) + · · ·+ f(Tnk−1(xnk

))
)
−
∫
X
f dν

∣∣∣∣ ≥ ε.

By weak-∗ compactness of Prob(X), upon choosing a further subsequence
(nk)k in N, we may assume that the sequence 1

nk
(δxnk

+ δT (xnk
) + · · · +

δTnk−1(xnk
)) converges to η ∈ Prob(X) with respect to the weak-∗ topology.
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The same reasoning as in the proof of Lemma 2.17 shows that η is invariant
and hence η = ν. We obtain

lim
k

1

nk

(
xnk

+ f(xnk
) + · · ·+ f(Tnk−1(xnk

))
)
=

∫
X
f dν

which is a contradiction.
(iii) ⇒ (iv). It is trivial.
(iv) ⇒ (i). By applying Lebesgue’s dominated convergence theorem, for

every ν ∈ ProbT (X), we have λf =
∫
X f dν for every f ∈ A . Therefore, for

all ν1, ν2 ∈ ProbT (X) and all f ∈ A ,∫
X
f dν1 = λf =

∫
X
f dν2.

By uniform density of A in C(X), we have
∫
X f dν1 =

∫
X f dν2 for all

f ∈ C(X) and so ν1 = ν2. Therefore, ProbT (X) is a singleton. □

The sum Sf,T,n(x) = 1
n

(
f(x) + · · ·+ f(Tn−1(x))

)
is sometimes called

the nth Birkhoff sum of the function f ∈ C(X) at the point x ∈ X. Theorem
2.21 shows that the Birkhoff sums of f ∈ C(X) converge everywhere and
uniformly in X to the space average

∫
X f dν.

Recall that for α ∈ R, the circle rotation Tα : T → T is the topological
dynamical system defined by Tα(x) = exp(i2πα)x for all x ∈ T.

Proposition 2.22. The circle rotation Tα : T → T is uniquely ergodic
if and only if α ∈ R \Q.

Proof. First, assume that α ∈ R \Q. Let k ∈ Z and put f(x) = xk for
all x ∈ T. Then with x = exp(i2πt), for all n ∈ N, we have

Sf,Tα,n(x) =
1

n

(
f(x) + f(Tα(x)) + · · ·+ f(Tn−1

α (x))
)

=
1

n

n−1∑
j=0

exp (i2πk(t+ jα))

=

{
1 if k = 0
1
n exp(i2πkt)1−exp(i2πknα)

1−exp(i2πkα) if k ̸= 0

→
{

1 if k = 0
0 if k ̸= 0

as n→ ∞

=

∫
T
f dλT.

Since the linear span of {T → T : x 7→ xk : k ∈ Z} is uniformly dense in C(T)
by Stone–Weierstrass theorem, Tα follows uniquely ergodic by Theorem 2.21.

Next, assume that α ∈ Q. Then the Lebesgue measure λT is invariant
but not ergodic for Tα. Since there must exist ergodic measures in ProbTα(T)
by Lemma 2.20 and Theorem 2.18, Tα is not uniquely ergodic. □
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Definition 2.23. Let ν ∈ Prob(X) and (xn)n a sequence in X. We say
that the sequence (xn)n is equidistributed with respect to ν if the sequence
of empirical measures

(
1
n(δx0 + · · ·+ δxn−1)

)
n
converges to ν with respect to

the weak-∗ topology, that is,

∀f ∈ C(X), lim
n

1

n
(f(x0) + · · ·+ f(xn−1)) =

∫
X
f dν.

For every x ∈ R, write {x} = x−⌊x⌋ ∈ [0, 1) for the fractional part of x.
As a consequence of Theorem 2.21 and Proposition 2.22, we deduce Weyl’s
equidistribution theorem.

Corollary 2.24 (Weyl’s equidistribution theorem). Let α ∈ R \ Q be
irrational. Then the sequence ({αn})n is equidistributed with respect to the
Lebesgue measure Leb on [0, 1].

Proof. Using the continuous mapping [0, 1] → T : x 7→ exp(i2πx),
we may identify [0, 1]/∼ with T as compact spaces, where 0 ∼ 1 in [0, 1].
Moreover, we may identify the Lebesgue measure on [0, 1]/∼ with the Haar
measure λT on T.

Let α ∈ R\Q be irrational. We can write the rotation Tα : T → T : x 7→
{x+α}. Then for every n ∈ N, we have {nα} = Tn

α (0). Using a combination
of Theorem 2.21 and Proposition 2.22, we infer that

∀f ∈ C(T), lim
n

1

n
(f(0) + · · ·+ f({α(n− 1)})) =

∫
T
f(x) dλT(x).

Therefore, ({αn})n is equidistributed with respect to the Lebesgue measure
Leb on [0, 1]. □

Finally, we obtain the following general result about unique ergodicity
for rotations on compact metrizable groups.

Theorem 2.25. Let G be a compact metrizable group. Denote by B(G)
its σ-algebra of Borel subsets and by mG its unique Haar Borel probability
measure. Let g ∈ G and consider the rotation Tg : G → G : x 7→ gx. Then
the following assertions are equivalent:

(i) The rotation Tg is uniquely ergodic and ProbTg(G) = {mG}.
(ii) The Haar measure mG is Tg-ergodic.
(iii) The subgroup gZ is dense in G.

(iv) The group G is abelian and χ(g) ̸= 1 for every χ ∈ Ĝ \ {1G}.

Proof. Fix a compatible metric d : G × G → R+. Define the new
compatible metric dG : G×G→ R+ by the formula

∀x, y ∈ G, dG(x, y) =

∫
G
d(hx, hy) dmG(h).

Then dG : G×G→ R+ is left invariant.
(i) ⇒ (ii) This is obvious.
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(ii) ⇒ (iii) Denote by H the closure of the subgroup gZ in G. Then
H < G is a closed abelian subgroup. Consider the continuous function
fH : G→ R+ defined by the formula

∀x ∈ G, fH(x) = inf {dG(x, y) | y ∈ H} .

Observe that fH : G → R+ is indeed continuous since |fH(x) − fH(y)| ≤
dG(x, y) for all x, y ∈ G. Since dG is left invariant, it follows that fH ◦ Tg =
fH . By contraposition, if the subgroup gZ is not dense in G, then H ̸= G
and so fH is not constant. This implies that the pmp dynamical system
(G,B(G),mG, Tg) is not ergodic.

(iii) ⇒ (i) Let ν ∈ ProbTg(G) be a Tg-invariant Borel probability mea-
sure. Then ν is Tgn-invariant for every n ∈ Z. We show that ν is Tx-invariant
for every x ∈ G. Indeed, let f ∈ C(G) be a continuous function and x ∈ G.
Choose a sequence (nk)k in Z such that limk dG(g

nk , x) = 0. Then by
Lebesgue’s dominated convergence theorem, we have∫

G
f(xy) dν(y) = lim

k

∫
G
f(gnky) dν(y) =

∫
G
f(y) dν(y).

Then ν is Tx-invariant for every x ∈ G. By uniqueness of the Haar probabil-
ity measure on G, it follows that ν = mG. Therefore, Tg is uniquely ergodic
and ProbTg(G) = {mG}.

(iii) ⇒ (iv) Since gZ is dense in G, it follows that G is abelian. Let

χ ∈ Ĝ such that χ(g) = 1. Then for every n ∈ Z, we have χ(gn) = 1. By
continuity and density, we have χ = 1G.

(iv) ⇒ (ii) Let f ∈ L2(G,B(G),mG) be a Tg-invariant function. Write
f =

∑
χ∈Ĝ cχχ for the Fourier expansion of f ∈ L2(G,B(G),mG). Since

f ◦ Tg = f , we have cχχ(g) = cχ for every χ ∈ Ĝ. Using the assumption, we

obtain cχ = 0 for every χ ∈ Ĝ \ {1G}. It follows that f = c1G1G is constant
mG-almost everywhere. Therefore, (G,B(G),mG, Tg) is ergodic. □

Keep the same notation as in Theorem 2.25. Simply denote by κg =
κTg : L2(G,B(G),mG) → L2(G,B(G),mG) : f 7→ f ◦ Tg the Koopman

unitary operator. For every χ ∈ Ĝ, we have κg(χ) = χ ◦ Tg = χ(g)χ. It
follows that (χ)

χ∈Ĝ forms an orthonormal basis of eigenvectors of κg on

L2(G,B(G),mG). In that case, we have that the pmp dynamical system
(G,B(G),mG, Tg) has discrete spectrum.

3. Ergodic theorems

3.1. von Neumann’s mean ergodic theorem. In this subsection,
we prove von Neumann’s mean ergodic theorem.
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Theorem 2.26 (von Neumann). Let (X,X , ν, T ) be an ergodic pmp
dynamical system. Then we have

(2.1) ∀f ∈ L2(X,X , ν), lim
n

∥∥∥∥∥ 1n
n−1∑
k=0

f ◦ T k −
∫
X
f dν

∥∥∥∥∥
2

= 0.

Proof. Denote by κT : L2(X,X , ν) → L2(X,X , ν) the Koopman op-
erator associated with (X,X , ν, T ). Denote by K the closed subspace of
L2(X,X , ν) generated by

{
κT (g)− g | g ∈ L2(X,X , ν)

}
. Since T is er-

godic, we have K ⊥ = C1X . Indeed, for all f ∈ K ⊥ and all g ∈ L2(X,X , ν),
we have

0 = ⟨f, κT (g)− g⟩ = ⟨κ∗T (f)− f, g⟩
and so κ∗T (f) = f . Then

∥f − κT (f)∥22 = ∥f∥22 + ∥f∥22 − 2ℜ⟨f, κT (f)⟩
= ∥f∥22 + ∥κ∗T (f)∥22 − 2ℜ⟨κ∗T (f), f⟩
= ∥f − κ∗T (f)∥22 = 0.

Since T is ergodic and since κT (f) = f , we have f ∈ C1X . Therefore,
K = L2(X,X , ν)⊖ C1X .

If f = λ1X ∈ C1X , we have 1
n

∑n−1
k=0 κ

k
T (f) = λ1X = (

∫
X f dν)1X for all

n ≥ 1 and so limn
1
n

∑n−1
k=0 κ

k
T (f) = (

∫
X f dν)1X =

∫
X f dν.

If f = κT (g)− g, we have

1

n

n−1∑
k=0

κkT (f) =
1

n
(κnT (g)− g)

and so limn
1
n

∑n−1
k=0 κ

k
T (f) = 0 in L2(X,X , ν). By density of the linear span

of
{
κT (g)− g | g ∈ L2(X,X , ν)

}
in K and since the operator 1

n

∑n−1
k=0 κ

k
T

is a contraction for every n ≥ 1, we have limn
1
n

∑n−1
k=0 κ

k
T (f) = 0 for every

f ∈ K . This finishes the proof of the theorem. □

Using Theorem 2.26, we obtain a new characterization of ergodic pmp
dynamical systems.

Corollary 2.27. Let (X,X , ν, T ) be a pmp dynamical system. Then
(X,X , ν, T ) is ergodic if and only if

(2.2) ∀U, V ∈ X , lim
1

n

n−1∑
k=0

ν(U ∩ T−k(V )) = ν(U)ν(V ).

Proof. Assume that (X,X , ν, T ) is not ergodic. Then there exists
U ∈ X such that T−1(U) = U and ν(U) ∈ (0, 1). Then we have

∀n ∈ N,
1

n

n−1∑
k=0

ν(U ∩ T−k(U)) = ν(U) ̸= ν(U)2.
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Therefore, (2.2) does not hold.
Assume that (X,X , ν, T ) is ergodic. Let U, V ∈ X . Using Theorem

2.26, we obtain

lim
n

1

n

n−1∑
k=0

ν(U ∩ T−k(V )) = lim
n

1

n

n−1∑
k=0

〈
1U ,1V ◦ T k

〉
=

〈
1U , lim

n

1

n

n−1∑
k=0

1V ◦ T k

〉
= ⟨1U , ν(V )1X⟩
= ν(U)ν(V ).

Therefore, (2.2) holds. □

3.2. Birkhoff’s pointwise ergodic theorem. In this subsection, we
prove Birkhoff’s pointwise ergodic theorem.

Theorem 2.28 (Birkhoff). Let (X,X , ν, T ) be an ergodic pmp dynami-

cal system. Then for every f ∈ L1(X,X , ν), the sequence ( 1n
∑n−1

k=0 f ◦T k)n
converges to

∫
X f dν ν-almost everywhere and in L1(X,X , ν).

Before proving Theorem 2.28, we prove a useful inequality known as the
maximal inequality.

Lemma 2.29 (Maximal inequality). Let (Y,Y , η, S) be a pmp dynamical
system. Let (φn)n≥1 be a sequence of real-valued functions in L1(X,X , ν)
that satisfy the subadditivity relation φm+n ≤ φm ◦Sn+φn for all m,n ≥ 1.
Set φ = φ1 and φ∗ = supn≥1 φn. Then∫

{φ∗>0}
φdη ≥ 0.

Proof of Lemma 2.29. Set ψ0 = φ0 = 0. For every n ≥ 1, set ψn =
max{0, φ1, . . . , φn} and Yn = {y ∈ Y | ψn(y) > 0}. For every y ∈ Yn, we
have ψn(y) = φk(y)(y) for some k(y) ∈ {1, . . . , n} and so

ψn(y) = φk(y)(y) ≤ (φk(y)−1 ◦ S)(y) + φ(y) ≤ (ψn−1 ◦ S)(y) + φ(y).

For every y ∈ Y \ Yn, we have ψn(y) = 0 and (ψn−1 ◦ S)(y) ≥ 0. Therefore,∫
Yn

φ(y) dη(y) ≥
∫
Yn

ψn(y) dη(y)−
∫
Yn

(ψn−1 ◦ S)(y) dη(y)

≥
∫
Y
ψn(y) dη(y)−

∫
Y
(ψn−1 ◦ S)(y) dη(y)

=

∫
Y
(ψn − ψn−1)(y) dη(y) ≥ 0.
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Since (Yn)n is increasing and since {φ∗ > 0} =
⋃

n≥1 Yn, Lebesgue’s domi-
nated convergence theorem implies that∫

{φ∗>0}
φdη =

∫
Y
1{φ∗>0}φdη = lim

n

∫
Y
1Ynφdη = lim

n

∫
Yn

φdη ≥ 0.

This finishes the proof. □

Proof of Theorem 2.28. Upon taking real and imaginary parts, we
may assume that f is real-valued. For every n ≥ 1, set fn =

∑n−1
k=0 f ◦ T k.

Then for every n ≥ 1, we have
∫
X

1
nfn dν =

∫
X fdν ∈ R. In order to prove

that limn
1
nfn(x) exists ν-almost everywhere, it suffices to show that for all

rational numbers α < β, the measurable subset

Xα,β =

{
x ∈ X | lim inf

n

1

n
fn(x) < α < β < lim sup

n

1

n
fn(x)

}
∈ X

is ν-null. Observe that for every x ∈ X, we have limn
1
n(fn− fn−1 ◦T )(x) =

limn
1
nf(x) = 0. This implies that T−1(Xα,β) = Xα,β. Since (X,X , ν, T ) is

ergodic, we have ν(Xα,β) ∈ {0, 1}. Assume by contradiction that ν(Xα,β) =
1. If we apply Lemma 2.29 to Y = Xα,β, S = T |Xα,β

and (φn)n = (fn−βn)n
(resp. Y = Xα,β, S = T |Xα,β

and (φn)n = (αn− fn)n), we obtain∫
Xα,β

(f − β) dν ≥ 0 and

∫
Xα,β

(α− f) dν ≥ 0.

It follows that
∫
Xα,β

(α − β) dν ≥ 0 and so ν(Xα,β) = 0, which is a contra-

diction.
Define the measurable function λf : X → R by the formula λf (x) =

limn
1
nfn(x) for ν-almost every x ∈ X. Since for every x ∈ X, we have

limn
1
n(fn− (fn−1 ◦T ))(x) = 0, we obtain λf ◦T = λf ν-almost everywhere.

Since T is ergodic, λf is a constant function ν-almost everywhere. We
moreover have |λf | ≤ ∥f∥1. Indeed, upon taking positive and negative
parts, we may assume that f = f+ ≥ 0 (resp. f = f− ≥ 0). By Fatou’s
lemma, we have

0 ≤ λf =

∫
X
lim inf

n

1

n
fn dν ≤ lim inf

n

1

n

∫
X
fn dν =

∫
X
f dν.

It remains to show that λf =
∫
X f dν and that limn ∥fn − λf∥1 = 0.

To do this, we firstly assume that f ∈ L∞(X,X , ν) (which is indeed con-
tained in L1(X,X , ν) since ν is a probability measure). Then by Lebesgue’s
dominated convergence theorem, we obtain limn ∥λf − 1

nfn∥1 = 0 and so

λf =
∫
X f dν. Secondly, assume that f ∈ L1(X,X , ν) and fix ε > 0. By

L1-density of L∞(X,X , ν) in L1(X,X , µ), choose g ∈ L∞(X,X , ν) such
that ∥f −g∥1 ≤ ε/3. We have 1

n∥fn−gn∥1 ≤ ε/3 for every n ≥ 1 by triangle
inequality and |λf − λg| ≤ ∥f − g∥1 ≤ ε/3 by the observation above. Using

again the triangle inequality, we obtain lim supn ∥λf − 1
nfn∥1 ≤ ε. Since
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ε > 0 is arbitrary, we have limn ∥λf − 1
nfn∥1 = 0 and so λf =

∫
X f dν. This

finishes the proof. □

As a consequence of Birkhoff’s pointwise ergodic theorem, we can deduce
the strong law of large numbers.

Corollary 2.30 (Strong law of large numbers). Let (Xn)n≥1 be an
infinite sequence of iid integrable real valued random variables. Then almost
surely, we have

1

n
(X1 + · · ·+Xn) → E(X1).

Proof. Denote by (Ω,A ,P) the underlying probability space and con-
sider the measurable map π : Ω → RN∗

: ω 7→ (Xn(ω))n. Since (Xn)n is
iid, there is a unique Borel probability measure η ∈ Prob(R) such that
π∗P = η⊗N∗

. Consider the forward Bernoulli shift S : RN∗ → RN∗
:

(yn)n 7→ (yn)n+1. Then the pmp dynamical system (RN∗
,B(R)⊗N∗

, η⊗N∗
, S)

is ergodic. Consider the function f ∈ L1(RN∗
,B(R)⊗N∗

, η⊗N∗
) defined by

f((yn)n) = y1 which satisfies
∫
X f dη⊗N∗

= E(X1). Then for every n ≥ 1

and every y = (yn)n = π(ω), we have 1
n

∑n−1
k=0(f ◦ Sk)(y) = 1

n(X1(ω) +
· · ·+Xn(ω)). Therefore, Theorem 2.28 implies that almost surely, we have
1
n(X1 + · · ·+Xn) → E(X1). □

3.3. Kingman’s subadditive ergodic theorem. In this subsection,
we prove Kingman’s subadditve ergodic theorem.

Theorem 2.31 (Kingman). Let (X,X , ν, T ) be an ergodic pmp dynami-
cal system. Let (fn)n≥1 be a sequence of real-valued functions in L1(X,X , ν)
that satisfy the subadditivity relation fm+n ≤ fm ◦Tn+ fn for all m,n ≥ 1.
Then the sequence ( 1nfn)n converges to infn≥1

1
n

∫
X fn dν ν-almost every-

where.

Proof. Set f0 = 0. For every n ≥ 1, set gn = fn −
∑n−1

k=0 f1 ◦ T k. Then

(gn)n is a sequence of real-valued functions in L1(X,X , ν) that still satisfy
the subadditivity relation gm+n ≤ gm ◦ Tn + gn for all m,n ≥ 1. Moreover,
g1 = 0 and so gn ≤ 0 for all n ≥ 1. By Theorem 2.28, the sequence
( 1n
∑n−1

k=0 f1 ◦ T k)n converges to
∫
X f1 dν ν-almost everywhere. Therefore,

we may assume without loss of generality that fn ≤ 0 for every n ≥ 1. Set
ℓ = infn≥1

1
n

∫
X fn dν.

Firstly, since the sequence (
∫
X fn dν)n is subadditive, Lemma 1.17 im-

plies that ℓ = limn
1
n

∫
X fn dν.

Secondly, we show that the sequence ( 1nfn)n converges ν-almost every-
where. For all α, β ∈ Q, define

Xα =

{
x ∈ X | lim inf

n

1

n
fn(x) < α

}
∈ X

Yβ =

{
x ∈ X | lim sup

n

1

n
fn(x) > β

}
∈ X .
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Assume that α < β. Since fn+1 ≤ fn ◦ T + f1 for every n ≥ 1, we have
T−1(Xα) ⊂ Xα and Yβ ⊂ T−1(Yβ). Since (X,X , ν, T ) is ergodic, we have
ν(Xα), ν(Yβ) ∈ {0, 1}. Assume by contradiction that ν(Xα) = ν(Yβ) = 1.
If we apply Lemma 2.29 to Y = Xα ∩ Yβ, S = T |Xα∩Yβ∩T−1(Xα∩Yβ) and

(φn)n = (fn − βn)n (resp. Y = Xα ∩ Yβ, S = T |Xα∩Yβ∩T−1(Xα∩Yβ) and

(φn)n = (αn− fn)n), we obtain∫
Xα∩Yβ

(f1 − β) dν ≥ 0 and

∫
Xα∩Yβ

(α− f1) dν ≥ 0.

It follows that
∫
Xα∩Yβ

(α − β) dν ≥ 0 and so ν(Xα ∩ Yβ) = 0, which is a

contradiction. Therefore, we have ν(Xα ∩Yβ) = 0 for all α, β ∈ Q satisfying
α < β. This implies that the sequence (fn)n converges ν-almost everywhere.
Define ψ(x) = limn

1
nfn(x) ≤ 0 for ν-almost every x ∈ X.

For every n ≥ 1, since −fn ≥ 0, Fatou’s lemma implies that∫
X
−ψ dν =

∫
X
lim inf

n
− 1

n
fn dν ≤ lim inf

n

∫
X
− 1

n
fn dν = −ℓ.

Next, we show that ψ(x) ≤ ℓ for ν-almost every x ∈ X. Recall that fn ≤ 0
for every n ∈ N. Let q,m ≥ 1 and 0 ≤ k ≤ m − 1. By iterating the
subadditivity relation, we have

f(q+1)m ≤ fqm+k + fm−k ◦ T qm+k ≤ fqm+k ≤ fk + fqm ◦ T k

≤ fqm ◦ T k

≤ f(q−1)m ◦ T k + fm ◦ T (q−1)m+k

≤ f(q−2)m ◦ T k + fm ◦ T (q−2)m+k + fm ◦ T (q−1)m+k

≤ · · ·

≤
q−1∑
i=0

fm ◦ T im+k.

Summing over k ∈ {0, . . . ,m− 1} these inequalities and dividing by m, we
obtain

f(q+1)m ≤ 1

m

qm−1∑
i=0

fm ◦ T i.

Dividing both sides by qm and letting q → ∞, by applying Theorem 2.28
to fm ∈ L1(X,X , ν), we obtain for ν-almost every x ∈ X,

ψ(x) = lim
q

1

qm
fqm(x) ≤ 1

m

∫
X
fm dν.

Since this holds true for every m ≥ 1, we obtain ψ(x) ≤ ℓ for ν-almost every
x ∈ X.

If ℓ = −∞, then ψ(x) = ℓ = −∞ for ν-almost every x ∈ X.
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If −∞ < ℓ ≤ 0, then −ψ(x) + ℓ ≥ 0 for ν-almost every x ∈ X and∫
X(−ψ + ℓ) dν ≤ 0. This implies that ψ(x) = ℓ for ν-almost every x ∈ X.
This finishes the proof. □

4. Strong and weak mixing

Let (X,X , ν, T ) be a pmp dynamical system. The convergence (2.2) in
Corollary 2.27 suggests the following strengthenings of the notion of ergod-
icity.

Definition 2.32. We say that (X,X , ν, T ) is

• strongly mixing if for all U, V ∈ X , we have

lim
n
ν(U ∩ T−n(V )) = ν(U)ν(V ).

• weakly mixing if for all U, V ∈ X , we have

lim
n

1

n

n−1∑
k=0

∣∣∣ν(U ∩ T−k(V ))− ν(U)ν(V )
∣∣∣ = 0.

Observe that for any sequence (an)n in R, if limn an = 0, then we have

limn
1
n

∑n−1
k=0 |ak| = 0. Therefore, strong mixing implies weak mixing. More-

over, weak mixing implies ergodicity by Corollary 2.27.
Firstly, we give examples of strongly mixing pmp dynamical systems.

Let (Y,Y , η) be a probability space. Consider the product probability
space (Y N,Y ⊗N, η⊗N) together with the forward Bernoulli shift S : Y N →
Y N : (yn)n 7→ (yn+1)n. Likewise, consider the product probability space
(Y Z,Y ⊗Z, η⊗Z) together with the Bernoulli shift T : Y Z → Y Z : (yn)n 7→
(yn+1)n.

Proposition 2.33. The forward Bernoulli shift (Y N,Y ⊗N, η⊗N, S) is
mixing. Likewise, the Bernoulli shift (Y Z,Y ⊗Z, η⊗Z, T ) is mixing.

Proof. We only give the proof of strong mixing of the forward Bernoulli
shift. The proof of strong mixing of the Bernoulli shift is completely anal-
ogous. Set (X,X , ν) = (Y N,Y ⊗N, η⊗N). Note that the σ-algebra X
is generated by cylinder sets of the form C (U0, . . . , Un0) =

∏
n Zn where

Zn = Un ∈ Y for n ≤ n0 and Zn = Y for n > n0. In order to check the
strong mixing condition, we may assume that U, V ∈ X are finite unions
of cylinder sets. Then there exists m0 ∈ N large enough such that for every
m ≥ m0, we have

ν(U ∩ S−m(V )) = ν(U)ν(S−m(V )) = ν(U)ν(V ).

This finishes the proof. □

We make the following observation regarding the connection between
topological mixing and strong mixing. Let X be a compact metrizable space
and T : X → X a topological dynamical system. Let ν ∈ ProbT (X) be a
T -invariant Borel probability measure such that supp(ν) = X. If the pmp
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dynamical system (X,X , ν, T ) is strongly mixing, then T : X → X is
topologically mixing.

Secondly, we prove the following characterization of weak mixing.

Theorem 2.34. Let (X,X , ν, T ) be a pmp dynamical system. The fol-
lowing assertions are equivalent:

(i) (X,X , ν, T ) is weakly mixing.
(ii) (X ×X,X ⊗ X , ν ⊗ ν, T ⊗ T ) is ergodic.
(iii) The Koopman operator κT : L2(X,X , ν) → L2(X,X , ν) has only

one eigenvalue, which is 1, and moreover, the eigenvalue 1 is simple
for κT .

Proof. (i) ⇒ (ii) Let U1, U2, V1, V2 ∈ X . Set a = ν(U1)ν(V1) and
b = ν(U2)ν(V2). For every k ∈ N, set ak = ν(U1 ∩ T−k(V1)) and bk =
ν(U2 ∩ T−k(V2)). For every n ≥ 1, we have

1

n

n−1∑
k=0

(ν ⊗ ν)(U1 × U2 ∩ (T ⊗ T )−k(V1 × V2))

=
1

n

n−1∑
k=0

akbk =
1

n

n−1∑
k=0

(ak − a)bk +
1

n

n−1∑
k=0

abk.

Since (X,X , ν, T ) is weakly mixing, we have limn
1
n

∑n−1
k=0 |ak − a| = 0 and

limn
1
n

∑n−1
k=0 |bk − b| = 0. This further implies that

lim
n

1

n

n−1∑
k=0

(ν ⊗ ν)(U1 × U2 ∩ (T ⊗ T )−k(V1 × V2))

= ν(U1)ν(V1)ν(U2)ν(V2)

= (ν ⊗ ν)(U1 × U2)(ν ⊗ ν)(V1 × V2).

Since the σ-algebra X ⊗X is generated by elements of the form U ×V for
U, V ∈ X , it follows that for all W,Z ∈ X ⊗ X , we have

lim
n

1

n

n−1∑
k=0

(ν ⊗ ν)(W ∩ (T ⊗ T )−k(Z)) = (ν ⊗ ν)(W )(ν ⊗ ν)(Z).

Then (X ×X,X ⊗ X , ν ⊗ ν, T ⊗ T ) is ergodic by Corollary 2.27.
(ii) ⇒ (i) Let U, V ∈ X . Since (X×X,X ⊗X , ν⊗ν, T ⊗T ) is ergodic,

Corollary 2.27 implies that

lim
n

1

n

n−1∑
k=0

ν(U ∩ T−k(V ))2 = lim
n

1

n

n−1∑
k=0

(ν ⊗ ν)(U × U ∩ (T ⊗ T )−k(V × V ))

= ν(U)2ν(V )2(2.3)
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Observe that by Cauchy–Schwarz inequality, for any sequence (an)n in R,
we have

(2.4) ∀n ≥ 1,

(
1

n

n−1∑
k=0

ak

)2

≤ 1

n

n−1∑
k=0

a2k.

Applying (2.4) to the sequence an = |ν(U ∩T−n(V ))−ν(U)ν(V )|, we obtain(
1

n

n−1∑
k=0

|ν(U ∩ T−k(V ))− ν(U)ν(V )|

)2

≤ 1

n

n−1∑
k=0

|ν(U ∩ T−k(V ))− ν(U)ν(V )|2

=
1

n

n−1∑
k=0

(
ν(U ∩ T−k(V ))2 + ν(U)2ν(V )2 − 2ν(U ∩ T−k(V ))ν(U)ν(V )

)
Since (X,X , ν, T ) is ergodic, a combination of (2.3) and Corollary 2.27
implies that

1

n

n−1∑
k=0

|ν(U ∩ T−k(V ))− ν(U)ν(V )| = 0.

Then (X,X , ν, T ) is weakly mixing.
(ii) ⇒ (iii) Assume that λ ∈ T is an eigenvalue for κT and choose a

nonzero λ-eigenvector ξ ∈ L2(X,X , ν). We have κT (ξ) = λξ. Consider θ :

X×X → C : (x, y) 7→ ξ(x)ξ(y). Then we have θ ∈ L2(X×X,X ⊗X , ν⊗ν)
and κT⊗T (θ) = λλ θ = θ. Since (X×X,X ⊗X , ν⊗ν, T ⊗T ) is ergodic, θ is
constant (ν ⊗ ν)-almost everywhere. This further implies that ξ is constant
ν-almost everywhere and so λ = 1.

(iii) ⇒ (ii) By contraposition, assume that (X×X,X ⊗X , ν⊗ν, T ⊗T )
is not ergodic. Let θ ∈ L2(X ×X,X ⊗ X , ν ⊗ ν) ⊖ C1X×X be a nonzero
element such that κT⊗T (θ) = θ. Since θ is not constant (ν ⊗ ν)-almost
everywhere, it follows that one of the functions

• (x, y) 7→ θ(x, y) + θ(y, x)

• (x, y) 7→ i(θ(x, y)− θ(y, x))

is not constant (ν⊗ν)-almost everywhere. Without loss of generality, we may

assume that θ(x, y) = θ(y, x) (ν ⊗ ν)-almost everywhere. Upon subtracting∫
X×X θ d(ν ⊗ ν), we may further assume that

∫
X×X θ d(ν ⊗ ν) = 0.

Using Fubini and Cauchy–Schwarz theorems, we may consider the well-
defined operator

Kθ : L
2(X,X , ν) → L2(X,X , ν) : ξ 7→

∫
X
θ( · , y)ξ(y) dν(y).
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Observe that Kθ is nonzero, selfadjoint and satisfies ∥Kθ∥ ≤ ∥θ∥2. Note
that

∥Kθ∥ = sup
{
|⟨Kθ(ξ), η⟩| | ξ, η ∈ L2(X,X , ν), ∥ξ∥2, ∥η∥2 ≤ 1

}
= sup

{∣∣∣∣∫
X×X

θ(x, y)ξ(y)η(x) d(ν ⊗ ν)(x, y)

∣∣∣∣ | ∥ξ∥2, ∥η∥2 ≤ 1

}
.

Since the linear span of
{
(x, y) 7→ ξ(x)η(y), ξ, η ∈ L2(X,X , ν)

}
is ∥·∥2-dense

in L2(X×X,X ⊗X , ν⊗ν), it follows that Kθ is a norm limit of finite rank
operators and so Kθ is a compact operator. Then we may choose a nonzero
eigenvalue λ of Kθ whose λ-eigenspace Kλ ⊂ L2(X,X , ν) is necessarily
finite dimensional. We claim that Kλ is κT -invariant. Indeed, let ξ ∈ Kλ.
Since Kθ(ξ) = λξ, for ν-almost every x ∈ X, we have

Kθ(κT (ξ))(x) =

∫
X
θ(x, y)ξ(T (y)) dν(y)

=

∫
X
θ(T (x), T (y))ξ(T (y)) dν(y)

=

∫
X
θ(T (x), y)ξ(y) dν(y)

= Kθ(ξ)(T (x))

= λξ(T (x))

= λκT (ξ)(x).

Thus, we have Kθ(κT (ξ)) = λκT (ξ) and so Kλ is κT -invariant. By restric-
tion, we may now regard κT : Kλ → Kλ as a linear operator defined on
the finite dimensional space Kλ. Therefore, κT has a nonzero eigenvector
η ∈ Kλ with respect to some eigenvalue µ ∈ T. Since

∫
X×X θ d(ν ⊗ ν) = 0,

η ∈ L2(X,X , ν) is not constant ν-almost everywhere. Therefore, either
µ ̸= 1 or µ = 1 and dimker(κT − 1) ≥ 2. □

Using Theorem 2.34, we infer that rotations are never weakly mixing.
Indeed, let α ∈ R and consider the rotation Tα : T → T : z 7→ exp(i2πα)z.
Then the continuous function θ : (x, y) 7→ exp(i2π(x − y)) is invariant un-
der Tα ⊗ Tα and is not invariant. More generally, rotations on compact
metrizable groups are never weakly mixing.

5. Applications to random walks in SLd(R)

In this section, we give a brief introduction to the topic of matrix random
products. For more information, we refer the reader to [Fu00].

5.1. Definition of the first Lyapunov exponent. Let d ≥ 2. De-
note by V = Rd the d-dimensional real vector space endowed with its canon-
ical euclidean structure. Denote by G = SLd(R) the special linear group.
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We define the norm ∥ · ∥ on G by the formula

∥g∥ = sup

{
∥gv∥2
∥v∥2

| v ∈ V \ {0}
}
.

Then we have ∥gh∥ ≤ ∥g∥ ∥h∥ for all g, h ∈ G.
Denote by K = SOd(R) < G the special orthogonal subgroup and ob-

serve that K < G is compact. Define the subset A+ ⊂ G of diagonal
matrices by

A+ = {diag(λ1, . . . , λd) | λ1 ≥ · · · ≥ λd > 0, λ1 · · ·λd = 1} ⊂ G

and by A < G the subgroup of diagonal matrices generated by A+.

Lemma 2.35 (Cartan decomposition). We have G = K ·A+ ·K.

Proof. Let g ∈ G be a matrix. By polar decomposition, we may write
g = k0h where k0 ∈ K and h ∈ G is symmetric positive definite. By
diagonalization, there exists k2 ∈ K such that k2hk

−1
2 = a ∈ A+. Then

g = k1ak2 with k1 = k0k
−1
2 ∈ K. □

As a consequence of Lemma 2.35, we infer that for every g ∈ G, we have
∥g∥ ≥ 1 and ∥g−1∥ ≤ ∥g∥d−1.

Let µ ∈ Prob(G) be a Borel probability measure on G and denote by

Gµ = ⟨supp(µ)⟩ < G the closed subgroup generated by the support of µ.
We will assume throughout this section that µ has a finite first moment
meaning that ∫

G
log(∥g∥) dµ(g) < +∞.

Set (Ω,B,P) = (GN∗
,B(G)⊗N∗

, µ⊗N∗
). Consider the forward Bernoulli

shift S : (Ω,B,P) → (Ω,B,P) : (yn)n 7→ (yn+1)n. Recall that the pmp
dynamical system (Ω,B,P, S) is ergodic (see Proposition 2.8). For every
n ≥ 1 and every ω = (gk)k ∈ Ω, define Sn(ω) = gn · · · g1. The sequence of
random products (Sn)n is called the random walk on G with law µ.

The following proposition provides a noncommutative analogue of the
strong law of large numbers (see Corollary 2.30).

Proposition 2.36. There exists λ = λ1(µ) ∈ R+ such that for P-almost
every ω = (gn)n ∈ Ω, we have

λ1(µ) = lim
n

1

n
log(∥gn · · · g1∥) = inf

n

∫
Ω

1

n
log(∥gn · · · g1∥) dP(ω).

Proof. For every n ≥ 1, set fn = log(∥Sn( · )∥) and observe that fn ≥ 0.
Since µ has a finite first moment, we have f1 ∈ L1(Ω,B,P). Moreover, for
P-almost every ω = (gk)k ∈ Ω and all m,n ≥ 1, we have

fm+n = log(∥Sm+n(ω)∥) = log(∥Sm(Sn(ω))Sn(ω)∥)
≤ log(∥Sm(Sn(ω))∥) + log(∥Sn(ω)∥)
= fm ◦ Sn + fn.
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Then the sequence (fn)n satisfies the subadditivity relation and in particular
(fn)n is a sequence in L1(Ω,B,P). By Theorem 2.31, there exists λ =
λ1(µ) ∈ R such that for P-almost every ω = (gn)n ∈ Ω, we have

λ1(µ) = lim
n

1

n
log(∥gn · · · g1∥)

= lim
n

∫
Ω

1

n
log(∥gn · · · g1∥) dP(ω)

= inf
n≥1

∫
Ω

1

n
log(∥gn · · · g1∥) dP(ω) ≥ 0.

This finishes the proof. □

Definition 2.37. The nonnegative real number λ1(µ) is called the first
Lyapunov exponent of the random walk on SLd(R) with law µ.

Recall that for every n ≥ 1, the convolution product µ∗n ∈ Prob(G)
is defined as the pushforward measure µ∗n = πn∗µ

⊗n, where πn : Gn →
G : (gn, . . . , g1) 7→ gn · · · g1. By definition of the convolution product, we
moreover have the formula

λ1(µ) = lim
n

1

n

∫
G
log(∥g∥) dµ∗n(g) = inf

n

1

n

∫
G
log(∥g∥) dµ∗n(g).

5.2. Positivity of the first Lyapunov exponent. In this subsection,
we follow the exposition given by Emmanuel Breuillard.

Definition 2.38. We say that a subgroup H < SLd(R) is
• irreducible if {0} and V are the only subspaces invariant under H.
• strongly irreducible if {{0}}, {V } and {{0}, V } are the only finite
sets of subspaces of V invariant under H.

The main result of this subsection gives a sufficient condition regarding
positivity of the first Lyapunov exponent.

Theorem 2.39 (Furstenberg). Let µ ∈ Prob(G) be a Borel probability
measure with a finite first moment. Assume that Gµ is noncompact and
strongly irreducible. Then λ1(µ) > 0.

Theorem 2.39 means that under the assumptions that Gµ is noncom-
pact and strongly irreducible, the norm of the random walk (Sn)n grows
exponentially with exponential rate given by λ1(µ) > 0.

Firstly, we observe that it suffices to prove Theorem 2.39 under the
extra assumption that µ({e}) > 0. Indeed, let µ ∈ Prob(G) be a Borel
probability measure with a finite first moment. Let ε ∈ (0, 1) and define
µε = εδe + (1 − ε)µ ∈ Prob(G). Then µε ∈ Prob(G) still has a finite first
moment and Gµε = Gµ.

Claim 2.40. We λ1(µε) = (1− ε)λ1(µ).
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Indeed, for every n ≥ 1, we have µ∗nε =
∑n

k=0C
k
n ε

n−k(1− ε)kµ∗k. Using
Proposition 2.36, for every n ≥ 1, we have

1

n

∫
G
log(∥g∥) dµ∗nε (g)

= (1− ε)
n∑

k=1

Ck−1
n−1ε

n−k(1− ε)k−1 · 1
k

∫
G
log(∥g∥) dµ∗k(g)

≥ (1− ε)
n∑

k=1

Ck−1
n−1ε

n−k(1− ε)k−1 · λ1(µ)

= (1− ε)λ1(µ).

Since this holds true for every n ≥ 1, we infer that λ1(µε) ≥ (1 − ε)λ1(µ).
Conversely, let δ > 0 and choose N ∈ N, such that 1

k

∫
G log(∥g∥) dµ∗k(g) ≤

λ1(µ) + δ for every k ≥ N + 1. For every 1 ≤ k ≤ N , we have Ck−1
n−1 ≤ nN

and so

lim
n

N∑
k=1

Ck−1
n−1ε

n−k(1− ε)k−1 · 1
k

∫
G
log(∥g∥) dµ∗k(g) = 0.

Therefore, we obtain

λ1(µε) = lim
n

1

n

∫
G
log(∥g∥) dµ∗nε (g)

≤ (1− ε) lim sup
n

N∑
k=1

Ck−1
n−1ε

n−k(1− ε)k−1 · 1
k

∫
G
log(∥g∥) dµ∗k(g)

+ (1− ε) lim sup
n

n∑
k=N+1

Ck−1
n−1ε

n−k(1− ε)k−1 · (λ1(µ) + δ)

≤ (1− ε)(λ1(µ) + δ).

Since this holds true for every δ > 0, we infer that λ1(µε) ≤ (1 − ε)λ1(µ).
Therefore, we have λ1(µε) = (1− ε)λ1(µ).

We endow the d-dimensional real vector space V with the unique (up
to multiplicative constant) infinite Lebesgue measure λV . Observe that
the linear action G ↷ V preserves the Lebesgue measure λV . Set H =
L2(V,B(V ), λV ). We may then define the unitary representation π : G →
U (H ) by the formula

∀g ∈ G,∀ξ ∈ H , (π(g)ξ)(v) = ξ(g−1v).

Moreover, the map π : G→ U (H ) is strongly continuous in the sense that
for every ξ ∈ H , the map G → H : g 7→ π(g)ξ is continuous (see Chapter
3). Then we may define the Markov operator π(µ) : H → H by the formula

∀ξ, η ∈ H , ⟨π(µ)ξ, η⟩ =
∫
G
⟨π(g)ξ, η⟩ dµ(g).
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Observe that

∀ξ, η ∈ H , |⟨π(µ)ξ, η⟩| ≤
∫
G
|⟨π(g)ξ, η⟩|dµ(g) ≤ ∥ξ∥ ∥η∥.

This shows that ∥π(µ)∥ ≤ 1. We simply say that π(µ) is a contraction.
The next proposition shows that under the assumptions of Theorem

2.39, the Markov operator π(µ) has a spectral gap.

Proposition 2.41. Let µ ∈ Prob(G) be a Borel probability measure such
that µ({e}) > 0. Assume that Gµ is noncompact and strongly irreducible.
Then π(µ) has a spectral gap, meaning that ∥π(µ)∥ < 1.

Let us prove Theorem 2.39 using Proposition 2.41.

Proof of Theorem 2.39. Recall that using Lemma 2.35, for every
g ∈ G, we have ∥g∥ ≥ 1 and ∥g−1∥ ≤ ∥g∥d−1. Moreover, using Claim 2.40,
we may assume that µ({e}) > 0.

Fix c > d/2 and define ξ ∈ H by the formula ξ(v) = min{1, ∥v∥−c} for
every v ∈ V . Then for every v ∈ V such that 1 ≤ ∥v∥ ≤ 2 and every g ∈ G,
we have

ξ(g−1v) = min{1, ∥g−1v∥−c} ≥ 2−c∥g−1∥−c ≥ 2−c∥g∥−c(d−1)

Then using Fubini’s theorem, for every n ≥ 1, we have π(µ)n = π(µ∗n) and
so〈

π(µ)nξ,1{1≤∥v∥≤2}
〉
=

∫
1≤∥v∥≤2

(π(µ)nξ)(v) dλV (v)

=

∫
G

∫
1≤∥v∥≤2

ξ(g−1v) dλV (v) dµ
∗n(g)

≥ 2−c

∫
G

∫
1≤∥v∥≤2

∥g∥−c(d−1) dµ∗n(g) dλV (v)

≥ 2−c volV ({1 ≤ ∥v∥ ≤ 2})
∫
G
∥g∥−c(d−1) dµ∗n(g).

Therefore, we obtain∫
G
∥g∥−c(d−1) dµ∗n(g) ≤ κ∥π(µ)∥n

for some constant κ > 0 independent of n ≥ 1. Since log is a concave function
and since (g 7→ ∥g∥−c(d−1)) ∈ L1(G,B(G), µ∗n), by Jensen’s inequality, we
have ∫

G
log(∥g∥−c(d−1)) dµ∗n(g) ≤ log

(∫
G
∥g∥−c(d−1) dµ∗n(g)

)
≤ log(κ) + n log(∥π(µ)∥).

Using Proposition 2.41, this finally implies that

λ1(µ) = lim
n

1

n

∫
G
log(∥g∥) dµ∗n(g) ≥ − 1

c(d− 1)
log(∥π(µ)∥) > 0.
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This finishes the proof. □

Recall that the projective space P(V ) is a compact metrizable space.
Moreover, for every nonzero vector subspace W ⊂ V , P(W ) ⊂ P(V ) is a
closed subset. We simply denote by p : V \ {0} → P(V ) : v 7→ Rv the
canonical map. The linear action G ↷ V naturally induces the projective
action G ↷ P(V ). For every nonzero vector subspace W ⊂ V , denote by
PW : V → W the canonical orthogonal projection. Denote by Gr(V ) the
Grassmannian manifold that consists of all nonzero vector subspaces W ⊂
V . Define the metric d : Gr(V )×Gr(V ) → R+ : (W1,W2) 7→ ∥PW1 − PW2∥.
Then (Gr(V ), d) is a compact metric space.

For the proof of Proposition 2.41, we need the following useful result.

Lemma 2.42 (Furstenberg). Let η ∈ Prob(P(V )) be a Borel probability
measure on the projective space P(V ). Then at least one of the following
assertions holds.

• The stabilizer group StabG(η) is compact.
• The measure η is degenerate in the sense that η is supported on
P(V1) ∪ P(V2) where V1, V2 ⊂ V are proper nonzero subspaces.

Proof. Assume thatH = StabG(η) is not compact. Then using Lemma
2.35, there exists a noninvertible matrix A ∈ Md(R) and a sequence (gn)n
in H such that limn

1
∥gn∥gn = A. Upon passing to a subsequence, we may

further assume that gn(kerA) → V1 in Gr(V ) where V1 ⊂ V is a nonzero
subspace. Set V2 = rng(A).

If p(v) ∈ P(kerA), then any cluster point of the sequence gnp(v) neces-
sarily lies in P(V1). If p(v) ∈ P(V ) \ P(kerA), then

lim
n
gnp(v) = lim

n
p

(
1

∥gn∥
gnv

)
= p(Av) ∈ P(V2).

Let φ ∈ C(P(V )) be a continuous function such that supp(φ) ⊂ P(V ) \
(P(V1) ∪ P(V2)). Then for every v ∈ V \ {0}, we have limn φ(gnp(v)) = 0.
Then Lebesgue’s dominated convergence theorem implies that∫

P(V )
φ(p(v)) dη(p(v)) =

∫
P(V )

φ(p(v)) d(g−1
n ∗η)(p(v))

=

∫
P(V )

φ(gnp(v)) dη(p(v)) → 0.

This shows that η is supported on P(V1) ∪ P(V2). □

We are now ready to prove Proposition 2.41.

Proof of Proposition 2.41. Assume that ∥π(µ)∥ = 1. Denote by
µ ∈ Prob(G) the pushforward measure of µ under the inversion map G →
G : g 7→ g−1. Then denote by µ ∗ µ ∈ Prob(G) the convolution product.
We may consider the contractions π(µ) : H → H and π(µ ∗ µ) : H → H .
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A straightforward computation shows that π(µ) = π(µ)∗ and π(µ ∗ µ) =
π(µ)π(µ) = π(µ)∗π(µ). Then we have

∥π(µ ∗ µ)∥ = ∥π(µ)∗π(µ)∥ = ∥π(µ)∥2 = 1.

Moreover since µ({e}) > 0, we clearly have Gµ∗µ = Gµ. Therefore, upon
replacing µ by µ ∗ µ, we may assume that µ = µ0 ∗ µ0 for some Borel
probability measure µ0 and that ∥π(µ)∥ = 1.

Since π(µ) is a selfadjoint positive operator, its spectrum σ(π(µ)) is con-
tained in the segment [0, ∥π(µ)∥]. Since ∥π(µ)∥ = 1, we have 1 ∈ σ(π(µ)).
Since 1 = ∥π(µ)∥ = sup {⟨π(µ)ξ, ξ⟩ | ξ ∈ H , ∥ξ∥ = 1}, there exists a se-
quence (ξn)n of unit vectors in H such that limn⟨π(µ)ξn, ξn⟩ = 1.

For every n ∈ N, we have∫
G
∥π(g)ξn − ξn∥2 dµ(g) = 2(1− ⟨π(µ)ξn, ξn⟩).

Then limn

∫
G ∥π(g)ξn − ξn∥2 dµ(g) = 0. Upon passing to a subsequence,

we may assume that for µ-almost every g ∈ G, we have limn ∥π(g)ξn −
ξn∥2 = 0. For every n ∈ N and every g ∈ G, simply write gξn = π(g)ξn ∈
L2(V,B(V ), λV ), g|ξn| = π(g)|ξn| ∈ L2(V,B(V ), λV ) and g|ξn|2 = |gξn|2 ∈
L1(V,B(V ), λV ). Then for µ-almost every g ∈ G, using Cauchy–Schwarz
inequality, we have

lim sup
n

∥g|ξn|2 − |ξn|2∥1 ≤ lim sup
n

∥g|ξn|+ |ξn|∥2 · ∥g|ξn| − |ξn|∥2

≤ 2 lim sup
n

∥gξn − ξn∥2 = 0.

For every n ∈ N, denote by νn ∈ Prob(V ) the Borel probability measure
on V whose density with respect to λV is given by |ξn|2 ∈ L1(V,B(V ), λV ).
Then every n ∈ N, g∗νn ∈ Prob(V ) is the Borel probability measure on
V whose density with respect to λV is given by g|ξn|2 ∈ L1(V,B(V ), λV ).
Denote by (M (V ), ∥·∥M (V )) the Banach space of all bounded complex Borel
measures on V . Then for µ-almost every g ∈ G, we have

∥g∗νn − νn∥M (V ) = 2 sup {|(g∗νn)(A)− νn(A)| | A ∈ B(V )}
= lim

n
∥g|ξn|2 − |ξn|2∥1 = 0.

Recall that p : V \ {0} → P(V ) is the canonical map. For every n ∈ N,
denote by ηn = p∗νn ∈ Prob(P(V )) the pushforward measure of νn under p.
We have limn ∥gηn − ηn∥M (P(V )) = 0 for µ-almost every g ∈ G. Since P(V )
is compact, choose η ∈ Prob(P(V )) a weak-∗ limit point for the sequence
(ηn)n. We then have gη = η for µ-almost every g ∈ G. By continuity of the
G-action on P(V ), we have gη = η for all g ∈ Gµ. Thus, Gµ ⊂ StabG(η).

By Lemma 2.42, we obtain that Gµ is compact or that there exist proper
nonzero subspaces V1, V2 ⊂ V such that the measure η is supported on
P(V1) ∪ P(V2). In the latter case, set

r = min {dimW | {0} ≠W ⊂ V and η(P(W )) ̸= 0} .
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We know that 1 ≤ r < dimV . For all subspaces W1 ̸= W2 of dimension r,
we have

η(P(W1) ∪ P(W2)) = η(P(W1)) + η(P(W2))− η(P(W1 ∩W2))

= η(P(W1)) + η(P(W2)).

More generally, for every family (Wj)1≤j≤k of pairwise distinct subspaces of
dimension r, we have

η(P(W1) ∪ · · · ∪ P(Wk)) =
k∑

j=1

η(P(Wj)).

Thus, for every ε > 0, there are only finitely many subspaces W ⊂ V of
dimension r such that η(P(W )) ≥ ε. Set

δ = max {η(P(W )) | dimW = r}
and

F = {W ⊂ V | dimW = r and η(P(W )) = δ} .
Then F is a finite set of proper subspaces of V . Since η is Gµ-invariant, for
every W ∈ F and every g ∈ Gµ, we have

η(P(g−1W )) = gη(P(W )) = η(P(W )) = δ.

Therefore g−1W ∈ F for every g ∈ Gµ and so the set F is Gµ-invariant.
This implies that Gµ is not strongly irreducible. □

6. Measure entropy

6.1. Information and Shannon entropy. Let (X,X , ν) be a prob-
ability space. Let ξ = {A1, . . . , An} be a finite measurable partition of X
(modulo ν-null sets). Define the information function of ξ by the formula

Iξ = −
n∑

i=1

log(ν(Ai))1Ai .

Intuitively, the value Iξ(x) measures how much information we gain from
knowing that x ∈ X belongs to one of the elements Ai of the partition
ξ. Then define the Shannon entropy of ξ as the integral of the function Iξ
against the probability measure ν, that is,

H(ξ) =

∫
X
Iξ dν = −

n∑
i=1

ν(Ai) log(ν(Ai)).

Intuitively, the Shannon entropy H(ξ) measures the average information
of the elements of the partition ξ. When we want to emphasize that we
consider the Shannon entropy of ξ with respect to the probability measure
ν, we write Hν(ξ) instead of H(ξ). When no confusion is possible, we simply
write H(ξ).

We can also define a conditional version of the information function and
of Shannon entropy. Let ξ = {A1, . . . , An} and η = {B1, . . . , Bp} be two
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finite measurable partitions ofX (modulo ν-null sets). Define the conditional
information function of ξ with respect to η by the formula

Iξ,η = −
p∑

j=1

n∑
i=1

log

(
ν(Ai ∩Bj)

ν(Bj)

)
1Ai∩Bj .

Intuitively, the value Iξ,η(x) measures how much information we gain from
knowing that x ∈ X belongs to one of the elements Ai of the partition
ξ given that we already know x ∈ X belongs to one of the elements Bj

of the partition η. Denote by σ(η) the σ-subalgebra of X generated by
η and denote by Eν( · |σ(η)) : L∞(X,X , ν) → L∞(X,σ(η), ν) the unique
ν-preserving conditional expectation. Then we have

n∑
i=1

− log (Eν(1Ai |σ(η)))1Ai =
n∑

i=1

− log

 p∑
j=1

ν(Ai ∩Bj)

ν(Bj)
1Bj

1Ai

= −
n∑

i=1

p∑
j=1

log

(
ν(Ai ∩Bj)

ν(Bj)

)
1Bj1Ai

= Iξ,η.

Then define the conditional Shannon entropy of ξ with respect to η as the
integral of the function Iξ,η against the probability measure ν, that is,

H(ξ|η) =
∫
X
Iξ,η dν = −

p∑
j=1

n∑
i=1

ν(Ai ∩Bj) log

(
ν(Ai ∩Bj)

ν(Bj)

)
.

Intuitively, the conditional Shannon entropy H(ξ|η) measures the average
information of the elements of the partition ξ given the partition η. When
we want to emphasize that we consider the conditional Shannon entropy
of ξ given η with respect to the probability measure ν, we write Hν(ξ|η)
instead of H(ξ|η). When no confusion is possible, we simply write H(ξ|η).
For every j ∈ {1, . . . , p} such that ν(Bj) > 0, define the probability measure

νj ∈ Prob(X) by the formula νj(A) =
ν(A∩Bj)
ν(Bj)

. Then we have

p∑
j=1

ν(Bj)Hνj (ξ) = −
p∑

j=1

n∑
i=1

ν(Bj)νj(Ai) log(νj(Ai)) = H(ξ|η).

If τ = {X} denotes the trivial partition of X, then we have H(ξ|τ) = H(ξ)
for every finite measurable partition ξ of X.

Let ξ = {A1, . . . , An} and η = {B1, . . . , Bp} be finite measurable parti-
tions of X (modulo ν-null sets). We say that η is a refinement of ξ and write
ξ ≤ η if every element Bj of η is contained in some element Ai of ξ ν-almost
everywhere. The common refinement ξ∨η is the finite measurable partition
{Ai ∩ Bj | 1 ≤ i ≤ n, 1 ≤ j ≤ p} of X (modulo ν-null sets). We say that ξ
and η are independent if ν(Ai ∩ Bj) = ν(Ai)ν(Bj) for every i ∈ {1, . . . , n}
and every j ∈ {1, . . . , p}. We say that a sequence (ξn)n of finite measurable
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partitions of X is generating for X if the σ-algebra σ((ξn)n) generated by⋃
n∈N ξn coincides with X (modulo ν-null sets).
Define the continuous function φ : [0, 1] → R+ by φ(0) = 0 and φ(x) =

−x log(x) for every x ∈ (0, 1]. For every x ∈ (0, 1], we have φ′′(x) = − 1
x < 0.

Then φ is strictly concave, that is, for all n ≥ 1, all x1, . . . , xn ∈ [0, 1] and
all λ1, . . . , λn > 0 such that

∑n
i=1 λi = 1, we have

φ

(
n∑

i=1

λixi

)
≥

n∑
i=1

λiφ(xi)

with equality if and only if x1 = · · · = xn.
Next, we record the following elementary properties of (conditional)

Shannon entropy that we will use without comment.

Proposition 2.43. Let ξ = {A1, . . . , An}, η = {B1, . . . , Bp} and ζ =
{C1, . . . , Cq} be finite measurable partitions of X. Let (X,X , ν, T ) be a pmp
dynamical system. The following assertions hold:

(i) 0 ≤ H(ξ) ≤ log(n) and H(ξ) = log(n) if and only if ν(A1) = · · · =
ν(An) =

1
n .

(ii) If ξ ≤ η, then H(ξ|ζ) ≤ H(η|ζ) and if ζ ≤ η, then H(ξ|η) ≤ H(ξ|ζ).
(iii) 0 ≤ H(ξ|η) ≤ H(ξ) and H(ξ|η) = H(ξ) if and only if ξ and η are

independent.
(iv) H(ξ|η) = 0 if and only if ξ ≤ η.
(v) H(ξ ∨ η|ζ) = H(ξ|ζ) +H(η|ξ ∨ ζ).
(vi) H(ξ ∨ η) = H(ξ) +H(η|ξ) ≤ H(ξ) +H(η).
(vii) H(T−1(ξ)|T−1(η)) = H(ξ|η) and H(T−1(ξ)) = H(ξ).

Proof. (i) By definition, we have 0 ≤ H(ξ). Applying the strict con-
cavity of φ to xi = ν(Ai) and λi =

1
n for every i ∈ {1, . . . , n}, we obtain

1

n
log(n) = φ

(
1

n

n∑
i=1

xi

)
≥ 1

n

n∑
i=1

φ(xi) =
1

n
H(ξ).

Then we have H(ξ) ≤ log(n) and H(ξ) = log(n) if and only if x1 = · · · =
xn = 1

n .
(v) For every i ∈ {1, . . . , n}, every j ∈ {1, . . . , p}, every k ∈ {1, . . . , q}

and every x ∈ Ai ∩Bj ∩ Ck, we have

Iξ∨η,ζ(x) = − log

(
ν(Ai ∩Bj ∩ Ck)

ν(Ck)

)
= − log

(
ν(Ai ∩ Ck)

ν(Ck)
· ν(Ai ∩Bj ∩ Ck)

ν(Ai ∩ Ck)

)
= − log

(
ν(Ai ∩ Ck)

ν(Ck)

)
− log

(
ν(Ai ∩Bj ∩ Ck)

ν(Ai ∩ Ck)

)
= Iξ,ζ(x) + Iη,ξ∨ζ(x).
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This implies that Iξ∨η,ζ = Iξ,ζ+Iη,ξ∨ζ and soH(ξ∨η|ζ) = H(ξ|ζ)+H(η|ξ∨ζ)
after integrating.

(ii) If ξ ≤ η, then ξ ∨ η = η and since H(η|ξ ∨ ζ) ≥ 0, we have

H(η|ζ) = H(ξ ∨ η|ζ) = H(ξ|ζ) +H(η|ξ ∨ ζ) ≥ H(ξ|ζ).
Next, assume that ζ ≤ η. For every i ∈ {1, . . . , n}, every j ∈ {1, . . . , p},
every k ∈ {1, . . . , q}, set xi,j =

ν(Ai∩Bj)
ν(Bj)

and λj,k =
ν(Bj∩Ck)
ν(Ck)

. Since ζ ≤ η,

ν(Bj ∩ Ck) = ν(Bj) if Bj ⊂ Ck ν-almost everwhere and ν(Bj ∩ Ck) = 0
otherwise. This further implies that for i, k fixed, we have

∑p
j=1 λj,kxi,j =∑

Bj⊂Ck

ν(Ai∩Bj)
ν(Ck)

= ν(Ai∩Ck)
ν(Ck)

. Using concavity of φ, we infer that

H(ξ|η) =
p∑

j=1

n∑
i=1

ν(Bj)φ(xi,j)

=

p∑
j=1

n∑
i=1

(
q∑

k=1

ν(Ck)λj,k

)
φ(xi,j)

=

q∑
k=1

n∑
i=1

ν(Ck)

p∑
j=1

λj,kφ(xi,j)

≤
q∑

k=1

n∑
i=1

ν(Ck)φ

 p∑
j=1

λj,kxi,j


=

q∑
k=1

n∑
i=1

ν(Ck)φ

(
ν(Ai ∩ Ck)

ν(Ck)

)
= H(ξ|ζ).

(iii) By definition, we have 0 ≤ H(ξ|η). Since τ ≤ η, we have H(ξ|η) ≤
H(ξ|τ) = H(ξ). If ξ and η are independent, then we have

H(ξ|η) = −
p∑

j=1

n∑
i=1

ν(Ai ∩Bj) log

(
ν(Ai ∩Bj)

ν(Bj)

)

= −
p∑

j=1

n∑
i=1

ν(Ai ∩Bj) log(ν(Ai))

= −
n∑

i=1

ν(Ai) log(ν(Ai)) = H(ξ).

Conversely, assume that H(ξ|η) = H(ξ). Then we have

n∑
i=1

−
p∑

j=1

ν(Bj)φ

(
ν(Ai ∩Bj)

ν(Bj)

)
+ φ(ν(Ai))

 = 0.

For every fixed i ∈ {1, . . . , n}, set λj = ν(Bj) and xj =
ν(Ai∩Bj)
ν(Bj)

and apply

strict concavity of φ. Then the quantity
ν(Ai∩Bj)
ν(Bj)

does not depend on j and
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we set λi =
ν(Ai∩Bj)
ν(Bj)

. Then we have

λi =

p∑
j=1

λiν(Bj) =

p∑
j=1

ν(Ai ∩Bj) = ν(Ai).

This further implies that ξ and η are independent.
(iv) If ξ ≤ η, then for every i ∈ {1, . . . , n} and every j ∈ {1, . . . , p}, we

have either ν(Ai ∩Bj) = 0 or
ν(Ai∩Bj)
ν(Bj)

= 1. Then we have

H(ξ|η) = −
p∑

j=1

n∑
i=1

ν(Ai ∩Bj) log

(
ν(Ai ∩Bj)

ν(Bj)

)
= 0.

Conversely, assume that

0 = H(ξ|η) =
p∑

j=1

n∑
i=1

ν(Bj)φ

(
ν(Ai ∩Bj)

ν(Bj)

)
.

Then for every j ∈ {1, . . . , p} and every i ∈ {1, . . . , n} such that ν(Bj) > 0

and ν(Ai ∩ Bj) > 0, we have φ(
ν(Ai∩Bj)
ν(Bj)

) = 0 which further implies that

ν(Ai ∩ Bj) = ν(Bj) and so Bj ⊂ Ai ν-almost everywhere. This shows that
ξ ≤ η.

(vi) We may apply (v) to ξ, η and ζ = τ the trivial partition and we
obtain

H(ξ∨η) = H(ξ∨η|τ) = H(ξ|τ)+H(η|ξ∨τ) = H(ξ)+H(η|ξ) ≤ H(ξ)+H(η).

(vii) Since T∗ν = ν, this is obvious from the definitions. □

6.2. Measure entropy of a pmp dynamical system. We fix a pmp
dynamical system (X,X , ν, T ). For every finite measurable partition ξ of
X and every n ≥ 1, define the finite measurable partition ξn = ξ ∨T−1(ξ)∨
· · · ∨ T−n+1(ξ). For all m,n ≥ 1, we have

Hν(ξm+n) = Hν(ξm ∨ T−m(ξn))

≤ Hν(ξm) +Hν(T
−m(ξn))

= Hν(ξm) +Hν(ξn).

Since the sequence (Hν(ξn))n is subadditive, Lemma 1.17 implies that the
sequence ( 1nHν(ξn))n is convergent and we set

hν(T, ξ) = lim
n

1

n
Hν(ξn) = inf

n

1

n
Hν(ξn).

Then hν(T, ξ) is the measure entropy of T with respect to the finite measur-
able partition ξ.

The next proposition shows that hν(T, ξ) is the average information
added by the present state on condition that all past states are known.

Proposition 2.44. Let ξ be a finite measurable partition of X. Then
hν(T, ξ) = limnHν(ξ|T−1(ξn)).
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Proof. Since the sequence (T−1(ξn))n is increasing, it follows that the
sequence (Hν(ξ|T−1(ξn))n is decreasing and so it is convergent. For every
n ≥ 1, we have Hν(ξn+1) = Hν(T

−1(ξn)) +Hν(ξ|T−1(ξn)) and so

Hν(ξ|T−1(ξn)) = Hν(ξn+1)−Hν(T
−1(ξn)) = Hν(ξn+1)−Hν(ξn).

By summation, we obtain

Hν(ξn)−Hν(ξ) =
n∑

k=1

Hν(ξ|T−1(ξk)).

Dividing by n ≥ 1 and passing to the limit, we obtain

hν(T, ξ) = lim
n

1

n

n∑
k=1

Hν(ξ|T−1(ξk)).

By Cesàro average, we necessarily have hν(T, ξ) = limnHν(ξ|T−1(ξn)). □

We record the following elementary properties that we will use without
comment.

Proposition 2.45. Let ξ and η be finite measurable partitions of X.
Then the following assertions hold:

(i) hν(T, ξ) = hν(T, T
−1(ξ)). If (X,X , ν, T ) is invertible, then we

have hν(T, ξ) = hν(T, T (ξ)).

(ii) hν(T, ξ) = hν(T,
∨k

i=0 T
−i(ξ)) for every k ∈ N. If (X,X , ν, T ) is

invertible, then hν(T, ξ) = hν(T,
∨k

i=−k T
−i(ξ)) for every k ∈ N.

(iii) hν(T, ξ) ≤ hν(T, η)+Hν(ξ|η) and if ξ ≤ η, then hν(T, ξ) ≤ hν(T, η).
(iv) hν(T, ξ ∨ η) ≤ hν(T, ξ) + hν(T, η).

Proof. (i) For every n ≥ 1, we have T−1(ξ)n = T−1(ξ)∨· · ·∨T−n(ξ) =
T−1(ξn). This implies that

hν(T, T
−1(ξ)) = lim

n

1

n
Hν(T

−1(ξn)) = lim
n

1

n
Hν(ξn) = hν(T, ξ).

Assume moreover that (X,X , ν, T ) is invertible. Then with respect to the
transformation T−1, for every n ≥ 1, we have T (ξ)n = T (ξ) ∨ · · · ∨ Tn(ξ) =
T (ξn). This implies that

hν(T, T (ξ)) = lim
n

1

n
Hν(T (ξn)) = lim

n

1

n
Hν(ξn) = hν(T, ξ).

(ii) For every k ∈ N and every n ∈ N, we have ξn ≤ (
∨k

i=0 T
−i(ξ))n and

so Hν(ξn) ≤ Hν((
∨k

i=0 T
−i(ξ))n). This implies that

hν(T, ξ) = lim
n

1

n
Hν(ξn) ≤ lim

n

1

n
Hν((

k∨
i=0

T−i(ξ))n) = hν(T,
k∨

i=0

T−i(ξ)).
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For the reverse inequality, for every k ∈ N and every n ∈ N, we have

(
∨k

i=0 T
−i(ξ))n = ξn ∨ T−n(ξ ∨ · · · ∨ T−(k−1)(ξ)) and so

Hν(
k∨

i=0

T−i(ξ))n) = Hν(ξn ∨ T−n(ξ ∨ · · · ∨ T−(k−1)(ξ)))

≤ Hν(ξn) +Hν(T
−n(ξ ∨ · · · ∨ T−(k−1)(ξ)))

≤ Hν(ξn) + kHν(ξ).

This implies that

hν(T,
k∨

i=0

T−i(ξ)) = lim
n

1

n
Hν(

k∨
i=0

T−i(ξ))n)

≤ lim
n

1

n
Hν(ξn) + lim

n

k

n
Hν(ξ)

= hν(T, ξ).

Assume moreover that (X,X , ν, T ) is invertible. Then the exact same argu-

ment as above shows that hν(T, ξ) = hν(T,
∨k

i=−k T
−i(ξ)) for every k ∈ N.

(iii) For every n ≥ 1, we have

Hν(ξn|ηn) ≤
n−1∑
i=0

Hν(T
−i(ξ)|ηn) ≤

n−1∑
i=0

Hν(T
−i(ξ)|T−i(η)) = n ·Hν(ξ|η)

and so

Hν(ξn) ≤ Hν(ηn ∨ ξn) = Hν(ηn) +Hν(ξn|ηn) = Hν(ηn) + n ·Hν(ξ|η).

This implies that

hν(T, ξ) = lim
n

1

n
Hν(ξn) ≤ lim

n

1

n
Hν(ηn) +Hν(ξ|η) = hν(T, η) +Hν(ξ|η).

If ξ ≤ η, then Hν(ξ|η) = 0 and so hν(T, ξ) ≤ hν(T, η).
(iv) For every n ≥ 1, we have (ξ ∨ η)n = ξn ∨ ηn and so

Hν((ξ ∨ η)n) = Hν(ξn ∨ ηn) ≤ Hν(ξn) +Hν(ηn).

This implies that

hν(T, ξ ∨ η) ≤ lim
n

1

n
Hν(ξn) + lim

n

1

n
Hν(ηn) = hν(T, ξ) + hν(T, η).

This finishes the proof. □

Definition 2.46. The measure entropy of (X,X , ν, T ) is defined as

hν(T ) = sup
ξ
hν(T, ξ)

where the supremum is taken over all finite measurable partitions ξ of X.
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The measure entropy is an invariant of measurable conjugacy meaning
that if two pmp dynamical systems (X1,X1, ν1, T1) and (X2,X2, ν2, T2) are
measurably conjugate, then they must have the same measure entropy, that
is, hν1(T1) = hν2(T2).

Let ξ be a finite measurable partition of X. If (X,X , ν, T ) is noninvert-
ible, then we say that ξ is a generator for T if the sequence ξn =

∨n
i=0 T

−i(ξ)
is generating for X. If (X,X , ν, T ) is invertible, then we say that ξ is a gen-
erator for T if the sequence ξn =

∨n
i=−n T

−i(ξ) is generating for X. The
following result due to Kolmogorov and Sinai allows in many situations to
calculate hν(T ).

Theorem 2.47. Let ξ be a finite measurable partition of X. If ξ is a
generator for T , then hν(T ) = hν(T, ξ).

Before proving Theorem 2.47, we need the following technical result.

Lemma 2.48. Let ξ be a finite measurable partition of X and ε > 0.
Then there exists δ > 0 such that for every finite measurable partition η of
X with the property that for every element A of ξ, there exists an element
B of the σ-algebra σ(η) generated by η satisfying ν(A△B) < δ, we have
Hν(ξ|η) < ε.

Proof. Write ξ = {A1, . . . , An}. Let δ, ρ > 0 with δ to be determined in
relation to ρ and ρ in relation to ε. Let η be a finite measurable partition of
X and denote by σ(η) the σ-algebra generated by η. Assume that for every
i ∈ {1, . . . , n}, there exists an element Bi of σ(η) such that ν(Ai△Bi) < δ.
Define the finite measurable partition ζ = {C1, . . . , Cn} of X recursively by
C1 = B1, Ci+1 = Bi+1 \ (C1 ∪ · · · ∪ Ci) for every i ∈ {1, . . . , n − 2} and
Cn = X \ (C1 ∪ · · · ∪ Cn−1). Recall that

Hν(ξ|ζ) = −
n∑

j=1

n∑
i=1

ν(Ai ∩ Cj) log

(
ν(Ai ∩ Cj)

ν(Cj)

)
.

If we choose δ > 0 small enough in relation to ρ, then by construction,

we have ν(Ai∩Ci)
ν(Ci)

> 1 − ρ for all i ∈ {1, . . . , n} and ν(Ai ∩ Cj) < ρ for all

i, j ∈ {1, . . . , n} such that i ̸= j. If we choose ρ > 0 small enough in relation
to ε, it is clear that Hν(ξ|ζ) < ε. Since η refines ζ, that is, ζ ≤ η, we have
Hν(ξ|η) ≤ Hν(ξ|ζ) < ε. □

We are now ready to prove Theorem 2.47.

Proof of Theorem 2.47. Since the proofs of the noninvertible case
and the invertible case are completely analogous, we only prove the nonin-
vertible case. Let (X,X , ν, T ) be a noninvertible pmp dynamical system

and ξ a generator for T . For every n ∈ N, set ξn =
∨n−1

i=0 T
−i(ξ). Let η

be a finite measurable partition of X. We show that hν(T, η) ≤ hν(T, ξ).
Let ε > 0 and choose δ > 0 according to Lemma 2.48. Since the σ-algebra
generated by

⋃
n∈N ξn coincides with X (modulo ν-null sets), there exists
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n ∈ N large enough such that for every element A of η, there exists an
element B of the σ-algebra σ(ξn) generated by ξn satisfying ν(A△B) < δ.
Then we have Hν(η|ξn) ≤ ε. This further implies that

hν(T, η) ≤ hν(T, ξn) +Hν(η|ξn) = hν(T, ξ) +Hν(η|ξn) ≤ hν(T, ξ) + ε.

Since this holds true for every ε > 0, it follows that hν(T, η) ≤ hν(T, ξ).
Since this holds true for every finite measurable partition η of X, it follows
that hν(T ) = hν(T, ξ). □

An increasing sequence (ζm)m of finite measurable partitions of X is
said to be generating if the σ-algebra generated by

⋃
m∈N ζm coincides with

X (modulo ν-null sets). Observe that any standard Borel probability space
possesses a generating increasing sequence (ζm)m of finite measurable parti-
tions of X (see [KL16, Appendix A]). By modifying the proof of Theorem
2.47, we can prove the following useful result.

Proposition 2.49. Let (ζm)m be a generating increasing sequence of
finite measurable partitions of X. Then we have hν(T ) = limm hν(T, ζm).

Proof. Since the sequence (ζm)m is increasing, Proposition 2.45 implies
that (hν(T, ζm))m is increasing and so limm hν(T, ζm) = supm hν(T, ζm) ≤
hν(T ). Let ξ be an arbitrary finite measurable partition of X. We show
that hν(T, ξ) ≤ limm hν(T, ζm). Let ε > 0 and choose δ > 0 according to
Lemma 2.48. Since the σ-algebra generated by

⋃
m∈N ζm coincides with X

(modulo ν-null sets), there exists m ∈ N large enough such that for every
element A of ξ, there exists an element B of the σ-algebra σ(ζm) generated
by ζm satisfying ν(A△B) < δ. Then we have Hν(ξ|ζm) ≤ ε. This further
implies that

hν(T, ξ) ≤ hν(T, ζm) +Hν(ξ|ζm) ≤ lim
n
hν(T, ζn) + ε.

Since this holds true for every ε > 0, we have hν(T, ξ) ≤ limm hν(T, ζm). By
taking the supremum over all finite measurable partitions ξ of X, we obtain
hν(T ) ≤ limm hν(T, ζm). Therefore, we have hν(T ) = limm hν(T, ζm). □

We collect some useful properties of measure entropy.

Proposition 2.50. Let (X,X , ν, T ) be a pmp dynamical system on a
standard probability space.

(i) For every m ∈ N, we have hν(T
m) = mhν(T ).

(ii) If (X,X , ν, T ) is invertible, then hν(T
−1) = hν(T ). Thus, for

every m ∈ Z, we have hν(T
m) = |m|hν(T ).

For every i ∈ {1, 2}, let (Xi,Xi, νi, Ti) be a pmp dynamical system on a
standard probability space.

(iii) We have hν1⊗ν2(T1 × T2) = hν1(T1) + hν2(T2).
(iv) If (X2,X2, ν2, T2) is a pmp factor of (X1,X1, ν1, T1), then we have

hν2(T2) ≤ hν1(T1).
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Proof. (i) Let m ≥ 1. Let ξ be a finite measurable partition of X. We
have

hν(T
m, ξ) = lim

n

1

n
Hν(ξ ∨ T−m(ξ) ∨ · · · ∨ T−m(n−1)(ξ))

≤ m lim
n

1

mn
Hν(ξ ∨ T−1(ξ) ∨ · · · ∨ T−mn+1(ξ))

= mhν(T, ξ)

≤ mhν(T ).

By taking the supremum over all finite measurable partitions ξ of X, we
obtain hν(T

m) ≤ mhν(T ).
Conversely, let ξ be a finite measurable partition of X and set η =

ξ ∨ · · · ∨ T−m+1(ξ). We have

hν(T, ξ) =
1

m
lim
n

1

n
Hν(ξ ∨ T−1(ξ) ∨ · · · ∨ T−mn+1(ξ))

=
1

m
lim
n

1

n
Hν(η ∨ T−m(η) ∨ · · · ∨ T−m(n−1)(η))

=
1

m
hν(T

m, η)

≤ 1

m
hν(T

m).

By taking the supremum over all finite measurable partitions ξ of X, we
obtain hν(T ) ≤ 1

mhν(T
m). Therefore, we have hν(T

m) = mhν(T ).
(ii) Let ξ be a finite measurable partition of X. We have

hν(T, ξ) = lim
n

1

n
Hν(ξ ∨ T−1(ξ) ∨ · · · ∨ T−n+1(ξ))

= lim
n

1

n
Hν(T

n−1(ξ ∨ T−1(ξ) ∨ · · · ∨ T−n+1(ξ)))

= lim
n

1

n
Hν(T

n−1(ξ) ∨ · · · ∨ T (ξ) ∨ ξ)

= hν(T
−1, ξ).

By taking the supremum over all finite measurable partitions ξ of X, we
obtain hν(T ) = hν(T

−1).
(iii) For every i ∈ {1, 2}, let (ζim)m be a generating increasing sequence

of finite measurable partitions of Xi. For everym ∈ N, set ζ̂1m = ζ1m×X2 and

ζ̂2m = X1 × ζ2m. Then (ζ̂1m)m and (ζ̂1m)m are independent and (ζ̂1m ∨ ζ̂2m)m is
a generating increasing sequence of finite measurable partitions of X1 ×X2.
Using Proposition 2.49, we have

hν1⊗ν2(T1 × T2) = lim
m
hν1⊗ν2(T1 × T2, ζ̂

1
m ∨ ζ̂2m)

= lim
m

lim
n

1

n
Hν1⊗ν2((ζ̂

1
m ∨ ζ̂2m)n)

= lim
m

lim
n

1

n

(
Hν1((ζ

1
m)n) +Hν2((ζ

2
m)n)

)
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= lim
m

(
hν1(T1, ζ

1
m) + hν2(T2, ζ

2
m)
)

= hν1(T1) + hν2(T2).

(iv) Let η be a finite measurable partition of X2. Then ξ = π−1(η) is a
finite measurable partition of X1. For every n ≥ 1, we have

Hν2(η ∨ · · · ∨ T−n+1
2 (η)) = Hν1(π

−1(η ∨ · · · ∨ T−n+1
2 (η)))

= Hν1(ξ ∨ · · · ∨ T−n+1
1 (ξ)).

This implies that

hν2(T2, η) = lim
n

1

n
Hν2(η ∨ · · · ∨ T−n+1

2 (η))

= lim
n

1

n
Hν1(ξ ∨ · · · ∨ T−n+1

1 (ξ))

= hν1(T1, ξ)

≤ hν1(T1).

By taking the supremum over all finite measurable partitions η of X2, we
obtain hν2(T2) ≤ hν1(T1). □

We use Theorem 2.47 to compute the measure entropy of Bernoulli shifts.

Proposition 2.51. Let r ≥ 2. Set Y = {1, . . . , r} and Y = P(Y ).
Let η ∈ Prob(Y ) be an arbitrary probability measure on Y . Consider the
forward Bernoulli shift (Y N,Y ⊗N, η⊗N, Sr) as well as the Bernoulli shift
(Y Z,Y ⊗Z, η⊗Z, Tr). Then hη⊗N(Sr) = hη⊗Z(Tr) =

∑r
i=1 φ(η(i)).

Proof. We only prove the result for the forward Bernoulli shift. The
proof for the Bernoulli shift is completely analogous. Set (X,X , ν) =
(Y N,Y ⊗N, η⊗N). For every 1 ≤ i ≤ r, define the cylinder set

Ai = {(yn)n ∈ X | y0 = i} .

Then ξ = {A1, . . . , Ar} is a finite measurable partition of X that is a gen-
erator for Sr. Moreover, we have ν(Ai) = η(i) for every 1 ≤ i ≤ r. By
Theorem 2.47, we have hν(Sr) = hν(Sr, ξ) = limn

1
nHν(ξn). By Proposition

2.43, we have Hν(ξn) = n · Hν(ξ) for every n ≥ 1. Therefore, we have
hν(Sr) = Hν(ξ) =

∑r
i=1 φ(η(i)). □

Observe that when η = ηr ∈ Prob(Y ) is the uniform measure, meaning
that ηr(i) =

1
r for every 1 ≤ i ≤ r, Proposition 2.51 implies that hη⊗N

r
(Sr) =

hη⊗Z
r

(Tr) = log(r). Since the measure entropy is an invariant of measurable

conjugacy, it follows that the Bernoulli shifts

({1, . . . , r}⊗Z,P({1, . . . , r})⊗Z, η⊗Z
r , Tr)r≥1

are pairwise not measurable conjugate. Also, observe that in this case, the
measure entropy hη⊗N

r
(Sr) = hη⊗Z

r
(Tr) = log(r) coincides with the topologi-

cal entropy h(Sr) = h(Tr) = log(r) (see Proposition 1.25).
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We also compute the measure entropy of rotations on compact metriz-
able groups. Before doing so, we need the following lemma.

Lemma 2.52. Let ξ1, . . . , ξm be finite measurable partitions of X. Then
we have

Hν(ξ1 ∨ · · · ∨ ξm) ≤ Hν(ξ1) +
m∑
j=2

Hν(ξj |ξ1).

Proof. Using repeatedly Proposition 2.43, we have

Hν(ξ1 ∨ · · · ∨ ξm) = Hν(ξ1 ∨ · · · ∨ ξn−1) +Hν(ξn|ξ1 ∨ · · · ∨ ξn−1)

= · · ·

= Hν(ξ1) +

m∑
j=2

Hν(ξj |ξ1 ∨ · · · ∨ ξj−1)

≤ Hν(ξ1) +

m∑
j=2

Hν(ξj |ξ1).

This finishes the proof. □

Proposition 2.53. Let G be a compact metrizable group and denote
by B(G) its σ-algebra of Borel subsets and by mG its unique Haar Borel
probability measure. Let g ∈ G and consider the rotation Tg : G → G : x 7→
gx. Then hmG(Tg) = 0.

Proof. Simply write T = Tg and ν = mG. Let ε > 0 and ξ =
{A1, . . . , Am} be a finite measurable partition of G. We start by proving
the following key technical result.

Claim 2.54. There exists a finite partition Z = C1 ⊔ · · · ⊔ Cr such that
for every 1 ≤ j ≤ r and all p, q ∈ Cj , we have Hν(T

p(ξ)|T q(ξ)) ≤ ε.

Fix a left invariant compatible metric dG : G × G → R+. Consider
the left regular unitary representation λG : G → U (L2(G,B(G),mG)) (see
Chapter 3). Then for every A ∈ B(G), the map

G→ R+ : h 7→ ν(hA△A) = ∥λG(h)(1A)− 1A∥22
is continuous. Choose δ > 0 according to Lemma 2.48. Then choose ρ > 0
such that for every h ∈ B(e, ρ), we have ν(hAi△Ai) < δ for every 1 ≤
i ≤ m. Observe that for every n ∈ Z, we have κTgn

= λG(g
n). Since

G =
⋃

h∈GB(h, ρ), by compactness, there exist h1, . . . , hr ∈ G such that
G =

⋃r
j=1B(hj , ρ). Define recursively the finite partition Z = C1 ⊔ · · · ⊔Cr

by C1 = {n ∈ Z | gn ∈ B(h1, ρ)} and Cj = {n ∈ Z | gn ∈ B(hj , ρ)} \ (C1 ∪
· · ·∪Cj−1) for every 2 ≤ j ≤ r. Then using Lemma 2.48, for every 1 ≤ j ≤ r
and all p, q ∈ Cj , we have Hν(T

p(ξ)|T q(ξ)) ≤ ε. This finishes the proof of
Claim 2.54.

For every n ∈ Z, set ξn =
∨n

i=−n T
i(ξ). Then for every 1 ≤ j ≤ r,

set ξjn =
∨

i∈{−n,...,n}∩Cj
T i(ξ) so that ξn = ξ1n ∨ · · · ∨ ξrn. Then we have
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Hν(ξn) ≤
∑r

j=1Hν(ξ
j
n). If {−n, . . . , n} ∩ Cj = ∅, then Hν(ξ

j
n) = 0. If

{−n, . . . , n}∩Cj ̸= ∅, then choosing nj ∈ {−n, . . . , n}∩Cj and using Lemma
2.52 and Claim 2.54, we have

Hν(ξ
j
n) ≤ Hν(T

nj (ξ)) +
∑

p∈{−n,...,n}∩Cj\{nj}

Hν(T
p(ξ)|Tnj (ξ))

≤ Hν(ξ) + |{−n, . . . , n} ∩ Cj | · ε.
Then for every n ≥ 1, we have

Hν(ξn) ≤
r∑

j=1

Hν(ξ
j
n)

≤
r∑

j=1

(Hν(ξ) + |{−n, . . . , n} ∩ Cj | · ε)

= rHν(ξ) + (2n+ 1)ε.

This implies that

hν(T, ξ) = lim
n

1

2n+ 1
Hν(T

n(ξn)) = lim
n

1

2n+ 1
Hν(ξn) ≤ ε.

Since this holds true for every finite measurable partition ξ of X and every
ε > 0, it follows that hν(T ) = 0. □

6.3. The Shannon–McMillan–Breiman theorem. In this subsec-
tion, we assume that (X,X , ν, T ) is an ergodic pmp dynamical system. Let
ξ = {A1, . . . , Am} be a finite measurable partition of X. For every n ≥ 1,
set ξn = ξ ∨ · · · ∨ T−n+1(ξ). The Shannon–McMillan–Breiman theorem
uses entropy to measure how large sets in the nth joint ξn are. Typically,
they decrease exponentially and the exponential rate is exactly the measure
entropy. More precisely, we prove the following theorem.

Theorem 2.55 (Shannon–McMillan–Breiman). Keep the same notation
as above. Then the sequence ( 1nIξn)n converges to hν(T, ξ) ν-almost every-

where and in L1(X,X , ν).

For every n ≥ 1 and every x ∈ X, denote by ξn(x) the unique element
of ξn that contains x. Then Theorem 2.55 implies that for ν-almost every
x ∈ X, we have

lim
n

− 1

n
log ν(ξn(x)) = lim

n

1

n
Iξn(x) = hν(T, ξ).

Before proving Theorem 2.55, we need to introduce some further nota-
tion and prove some preliminary results.

Set η1 = τ and for every n ≥ 2, set ηn = T−1(ξ) ∨ · · · ∨ T−n+1(ξ). For
every n ≥ 1, denote by Fn = σ(ηn) the σ-subalgebra of X generated by ηn.
Denote by F∞ =

∨∞
n=1 Fn the σ-subalgebra of X generated by

⋃∞
n=1 Fn.

For every n ≥ 1, set gn = Iξ,ηn = −
∑m

i=1 log(Eν(1Ai |Fn))1Ai . Observe that
g1 = Iξ,τ = Iξ. Set g∞ = −

∑m
i=1 log(Eν(1Ai |F∞))1Ai .
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Lemma 2.56. The following assertions hold:

(i) g∗ = supn≥1 gn ∈ L1(X,X , ν).

(ii) gn → g∞ ν-almost everywhere and in L1(X,X , ν).
(iii)

∫
X g∞ dν = hν(T, ξ).

Proof. (i) Note that gn ≥ 0 for every n ≥ 1. Let 1 ≤ i ≤ m and
t ∈ R+. For every n ≥ 1, define the measurable subset Bi,n,t ∈ X as
the set of all x ∈ X for which n ≥ 1 is the smallest integer such that
− log(Eν(1Ai |Fn)) > t. Then we have Ai ∩ {g∗ > t} =

⊔
n≥1Ai ∩ Bi,n,t.

Moreover, we have

ν(Ai ∩Bi,n,t) = ν
(
Eν(1Ai1Bi,n,t |Fn)

)
= ν

(
1Bi,n,tEν(1Ai |Fn)

)
≤ ν

(
1Bi,n,t exp(−t)

)
= exp(−t)ν(Bi,n,t).

This implies that

ν(Ai ∩ {g∗ > t}) =
∑
n≥1

ν(Ai ∩Bi,n,t) ≤ exp(−t)
∑
n≥1

ν(Bi,n,t) ≤ exp(−t).

Thus, ν(Ai ∩ {g∗ > t}) ≤ min {ν(Ai), exp(−t)}. Since g∗ ≥ 0, we have∫
Ai

g∗ dν =

∫ ∞

0
ν(Ai ∩ {g∗ > t}) dt

≤
∫ ∞

0
min {ν(Ai), exp(−t)}dt

≤
∫ − log(ν(Ai))

0
ν(Ai) dt+

∫ ∞

− log(ν(Ai))
exp(−t) dt

= −ν(Ai) log(ν(Ai)) + ν(Ai).

This further implies that∫
X
g∗ dν =

m∑
i=1

∫
Ai

g∗ dν ≤
m∑
i=1

(−ν(Ai) log(ν(Ai)) + ν(Ai)) = Hν(ξ) + 1.

Therefore, g∗ ∈ L1(X,X , ν).
(ii) Using the martingale convergence theorem (see Theorem A.1), for

every 1 ≤ i ≤ m, we have Eν(1Ai |Fn) → Eν(1Ai |F∞) ν-almost everywhere.
This implies that gn → g∞ ν-almost everywhere. Since g∗ = supn≥1 gn ∈
L1(X,X , ν), Lebesgue’s dominated convergence theorem implies that gn →
g∞ in L1(X,X , ν).

(iii) Combining Proposition 2.44 and (ii), we obtain

hν(T, ξ) = lim
n
Hν(ξ|ηn) = lim

n

∫
X
gn dν =

∫
X
g∞ dν.

This finishes the proof. □
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We are now ready to prove Theorem 2.55.

Proof of Theorem 2.55. Using repeatedly Proposition 2.43, for ev-
ery n ≥ 1, we have

Iξn(x) = Iηn(x) + gn(x)

= Iξn−1(T (x)) + gn(x)

= · · ·
= g1(T

n−1(x)) + · · ·+ gn(x)

=
n−1∑
j=0

gn−j(T
j(x))

=

n−1∑
j=0

g∞(T j(x)) +

n−1∑
j=0

(gn−j − g∞)(T j(x)).

Using Theorem 2.28, for ν-almost every x ∈ X, we have that

lim
n

1

n

n−1∑
j=0

g∞(T j(x)) =

∫
X
g∞ dν = hν(T, ξ).

It remains to show that 1
n

∑n−1
j=0 (gn−j − g∞)(T j(x)) → 0 for ν-almost

every x ∈ X. For every N ≥ 1, set GN = supn>N |gn − g∞| and HN =∑N
k=1(gk + g∗) ◦ TN−k ∈ L1(X,X , ν). Then we have supN GN ≤ g∞ + g∗

and GN → 0 ν-almost everywhere. By Lebesgue’s dominated convergence
theorem, we have

lim
N

∫
X
GN dν =

∫
X
lim
N
GN dν = 0.

Define ℓ(x) = lim supn
1
n

∑n−1
j=0 |gn−j−g∞|(T j(x)) for ν-almost every x ∈ X.

For every N ≥ 1 and for ν-almost every x ∈ X, using again Theorem 2.28,
we have

ℓ(x) ≤ lim sup
n

1

n

n−N−1∑
j=0

|gn−j − g∞|(T j(x))

+ lim sup
n

1

n

n−1∑
j=n−N

|gn−j − g∞|(T j(x))

≤ lim sup
n

1

n

n−N−1∑
j=0

GN (T j(x)) + lim sup
n

1

n
HN (Tn−N (x))

=

∫
X
GN dν.

Then ℓ(x) ≤ limN

∫
X GN dν = 0 for ν-almost every x ∈ X. This finishes

the proof of the theorem. □
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6.4. The variational principle. In this subsection, we assume that
(X, d) is a compact metric space. We prove the variational principle for
measure entropy due to Dinaburg [Di71] and Goodman [Go71] which as-
serts that for a topological dynamical system on X, the topological entropy
is the supremum of the measure entropies over all invariant Borel probability
measures.

Theorem 2.57. Let T : X → X be a topological dynamical system.
Then we have

h(T ) = sup {hν(T ) | ν ∈ ProbT (X)} .

Before proving Theorem 2.57, we need some preparation.

Lemma 2.58. Let ν, η ∈ Prob(X) and ξ = {A1, . . . , Am} a finite mea-
surable partition of X. Then for every t ∈ [0, 1], we have

tHν(ξ) + (1− t)Hη(ξ) ≤ Htν+(1−t)η(ξ).

Proof. We use the concavity of the function φ : [0, 1] → R defined by
φ(0) = 0 and φ(x) = −x log x for every x ∈ (0, 1]. For every t ∈ [0, 1], we
have

tHν(ξ) + (1− t)Hη(ξ) =
m∑
i=1

(tφ(ν(Ai)) + (1− t)φ(η(Ai)))

≤
m∑
i=1

φ(tν(Ai) + (1− t)η(Ai))

= Htν+(1−t)η(ξ).

This finishes the proof. □

For every A ∈ X , denote by ∂A = A ∩ X \A the boundary of A.
For every finite measurable partition ξ = {A1, . . . , Am} of X, denote by
∂ξ =

⋃m
i=1 ∂Ai the boundary of ξ.

Lemma 2.59. Let ν ∈ Prob(X). The following assertions hold:

(i) For every x ∈ X and every δ > 0, there exists 0 < ε < δ such that
ν(∂B(x, ε)) = 0.

(ii) For every δ > 0, there exists a finite measurable partition ξ of
X for which all elements have diameter less than δ and such that
ν(∂ξ) = 0.

(iii) Whenever (νn)n is sequence in Prob(X) such that νn → ν with
respect to the weak-∗ topology and A ∈ X is a measurable set such
that ν(∂A) = 0, we have ν(A) = limn νn(A).

Proof. (i) Let x ∈ X and δ > 0. For every ε > 0, define the sphere
S(x, ε) = {y ∈ X | d(x, y) = ε}. Then we have B(x, δ) =

⋃
0<ε<δ S(x, ε).

Since the open interval (0, δ) is uncountable, there exists 0 < ε < δ such that
ν(S(x, ε)) = 0. Since ∂B(x, ε) ⊂ S(x, ε), it follows that ν(∂B(x, ε)) = 0.
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(ii) By compactness and using item (i), we may choose a finite open
cover U = {B1, . . . , Bm} by open balls of radius less then δ

2 such that

ν(∂U ) = 0. Set C1 = B1 and for every 2 ≤ j ≤ m, define recursively
Cj = Bj \ (B1 ∪ · · · ∪ Bj−1). Then ∂ξ =

⋃m
i=1 ∂Ci ⊂

⋃m
i=1 ∂Bi. Therefore,

ξ = {C1, . . . , Cm} is a finite measurable partition of X whose all elements
have diameter less than δ and such that ν(∂ξ) = 0.

(iii) Let (νn)n be a sequence in Prob(X) such that νn → ν with respect to
the weak-∗ topology. Let A ∈ X be a measurable set such that ν(∂A) = 0.
For every k ∈ N, define fk = 1 −min(kd( · , A), 1) ∈ C(X). Then 1A ≤ fk
and fk → 1A pointwise. Then for every fixed k ∈ N, we have

lim sup
n

νn(A) ≤ lim sup
n

νn(A) ≤ lim sup
n

νn(fk) = ν(fk).

Taking the limit as k → ∞, we have

lim sup
n

νn(A) ≤ lim
k
ν(fk) = ν(A) = ν(A).

Similarly, we have

lim sup
n

νn(X \A) ≤ ν(X \A).

Thus, we obtain limn νn(A) = ν(A). □

We are now ready to prove Theorem 2.57.

Proof of Theorem 2.57. We follow the argument due to Misiurewicz
[Mi76]. Set hsup(T ) = sup {hν(T ) | ν ∈ ProbT (X)}. Recall the notation
from Chapter 1.

Firstly, we prove the inequality h(T ) ≤ hsup(T ). Let ε > 0. For every
n ≥ 1, choose an (n, ε)-separating set Fn,ε ⊂ X of maximum cardinal-
ity, that is, |Fn,ε| = sep(n, ε, T ). Then define ηn = 1

|Fn,ε|
∑

x∈Fn,ε
δx ∈

Prob(X) and νn = 1
n

∑n−1
k=0 T

k
∗ ηn ∈ Prob(X). Fix ν ∈ Prob(X) and

an increasing sequence (nk)k in N such that limk
1
nk

log(sep(nk, ε, T )) =

lim supn
1
n log(sep(n, ε, T )) and limk νnk

= ν with respect to the weak-∗
topology. The proof of Lemma 2.17 shows that ν ∈ ProbT (X) is T -invariant.
Note that ν a priori depends on ε.

By Lemma 2.59, we may choose a finite measurable partition ξ of X with
elements of diameter less than ε and such that ν(∂ξ) = 0. For every A ∈ ξn,
since the dn-diameter of A is less than ε, either ηn(A) = 0 or ηn(A) =

1
|Fn,ε| .

This implies that Hηn(ξn) = log(|Fn,ε|) = log(sep(n, ε, T )).

Fix 0 ≤ k < q < n and assume that n ≥ k + q. Set a(k) = ⌊n−k
q ⌋ ≥ 1.

Set C = {k + rq + i | 0 ≤ r ≤ a(k)− 1, 0 ≤ i ≤ q − 1} and D = {0, . . . , n −
1} \ C. Then we have

ξn =
n−1∨
j=0

T−j(ξ) =

a(k)−1∨
r=0

T−(k+rq)(ξq) ∨
∨
j∈D

T−j(ξ).
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Since |D| ≤ 2q, this further implies that

log(sep(n, ε, T )) = Hηn(ξn)

≤
a(k)−1∑
r=0

Hηn(T
−(k+rq)(ξq)) +

∑
j∈D

Hηn(T
−j(ξ))

≤
a(k)−1∑
r=0

H
T

(k+rq)
∗ ηn

(ξq) + 2q log(|ξ|).

Summing over k, dividing by n and using Lemma 2.58, we obtain

q

n
log(sep(n, ε, T )) =

1

n

q−1∑
k=0

Hηn(ξn)

≤
q−1∑
k=0

a(k)−1∑
r=0

1

n
H

T
(k+rq)
∗ ηn

(ξq)

+
2q2

n
log(|ξ|)

≤
n−1∑
j=0

1

n
H

T j
∗ηn

(ξq) +
2q2

n
log(|ξ|)

≤ Hνn(ξq) +
2q2

n
log(|ξ|).

Since for every n ≥ 1, we have ν(∂ξn) = 0, Lemma 2.59 implies that for
every fixed q ≥ 1, we have

lim sup
n

1

n
log(sep(n, ε, T )) = lim

k

1

nk
log(sep(nk, ε, T ))

≤ 1

q
lim
k
Hνnk

(ξq)

=
1

q
Hν(ξq).

Then taking the limit as q → +∞, we obtain

(2.5) lim sup
n

1

n
log(sep(n, ε, T )) ≤ lim

q

1

q
Hν(ξq) = hν(T, ξ) ≤ hν(T ).

Finally, we obtain

h(T ) = lim
ε→0+

lim sup
n

1

n
log(sep(n, ε, T )) ≤ hsup(T ).

Secondly, we prove the inequality hsup(T ) ≤ h(T ). Let ν ∈ ProbT (X).
Let ξ = {A1, . . . , Am} be a finite measurable partition. Choose ε > 0
so that m log(m)ε ≤ 1. By regularity of the Borel probability measure
ν, for every 1 ≤ i ≤ m, we may choose a compact subset Bi ⊂ Ai such
that ν(Ai \ Bi) < ε. Set B0 = X \

⋃m
i=1Bi and observe that B0 ⊂ X
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is an open subset such that ν(B0) ≤ mε. Define the new finite partition
β = {B0, B1, . . . , Bm}. Then we have

Hν(ξ|β) = −
m∑
i=1

m∑
j=0

ν(Ai ∩Bj) log

(
ν(Ai ∩Bj)

ν(Bj)

)

= −
m∑
i=1

m∑
j=1

ν(Ai ∩Bj) log

(
ν(Ai ∩Bj)

ν(Bj)

)

−
m∑
i=1

ν(Ai ∩B0) log

(
ν(Ai ∩B0)

ν(B0)

)

= −ν(B0)

m∑
i=1

ν(Ai ∩B0)

ν(B0)
log

(
ν(Ai ∩B0)

ν(B0)

)
≤ ν(B0) log(m) ≤ 1.

Then Proposition 2.45 implies that

hν(T, ξ) ≤ hν(T, β) +Hν(ξ|β)+ ≤ hν(T, β) + 1.

We now consider the open cover U = {B0 ⊔B1, . . . , B0 ⊔Bm}. Note
that for every 1 ≤ i ≤ m,

B0 ⊔Bj = X \
⋃
i ̸=j

Bi

is indeed open. Let n ≥ 1. Every element of Un = U ∨ T−1(U ) ∨ · · · ∨
T−n+1(U ) is of the form

(B0 ⊔Bi0) ∩ T−1(B0 ⊔Bi1) ∩ · · · ∩ T−n+1(B0 ⊔Bin−1)

where i0, . . . , in−1 ∈ {1, . . . ,m}. Therefore, every element of Un can be
written as a pairwise disjoint union of 2n elements of βn (some of which
may be emptyset). This implies that |βn| ≤ 2nN(Un) and so

Hν(βn) ≤ log(|βn|) ≤ n log(2) + log(N(Un)).

Theorem 1.20 implies that

h(T ) ≥ lim
n

1

n
log(N(Un))

≥ lim
n

1

n
Hν(βn)− log(2)

= hν(T, β)− log(2)

≥ hν(T, ξ)− log(2)− 1.

Taking the supremum over all finite measurable partitions ξ of X, it follows
that hν(T ) ≤ h(T ) + log(2) + 1. Observe that this inequality holds true for
every topological dynamical system S : X → X and every S-invariant Borel
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probability measure η ∈ ProbS(X). In particular, using Propositions 1.22
and 2.50, for every m ≥ 1, we have

hν(T ) =
1

m
hν(T

m) ≤ 1

m
h(Tm) +

log(2) + 1

m
= h(T ) +

log(2) + 1

m
.

Taking the limit as m → ∞, it follows that hν(T ) ≤ h(T ). Since this holds
true for every ν ∈ ProbT (X), we finally obtain hsup(T ) ≤ h(T ). □

For expansive topological dynamical systems, there always exists an in-
variant Borel probability measure of maximal entropy.

Proposition 2.60. Let T : X → X be an expansive topological dy-
namical system. Then there exists a T -invariant Borel probability measure
ν ∈ ProbT (X) such that h(T ) = hν(T ).

Proof. Let κ > 0 be a constant of expansiveness for T . Choose 0 <
ε < κ

2 . By Proposition 1.24, we know that h2ε(T ) = h(T ). Using Lemma
1.18 and the proof of Theorem 2.57, specifically (2.5), we obtain

h(T ) = h2ε(T ) ≤ lim sup
n

1

n
log(sep(n, ε, T )) ≤ hν(T ).

Therefore, Theorem 2.57 implies that h(T ) = hν(T ). □



CHAPTER 3

Topics in homogeneous dynamics

In this chapter, we give an introduction to the theory
of locally compact groups and their lattices. We show
that SLd(Z) is a lattice in SLd(R) for every d ≥ 2. We
also prove that SLd(R) has the Howe–Moore property
for every d ≥ 2. As an application, we obtain Moore’s
ergodicity theorem.

1. Locally compact groups

Definition 3.1. Let G be a group endowed with a Hausdorff topology.
We say that G is a topological group if the map G×G→ G : (g, h) 7→ gh−1 is
continuous. We then say that G is locally compact if there exists a compact
neighborhood U ⊂ G of the identity element e ∈ G.

Let G be a locally compact group. We say that G is

• first countable if there exists a countable neighborhood basis of
e ∈ G.

• second countable if there exists a countable basis for the topology
on G.

• σ-compact if there exists an increasing sequence of compact subsets
Qn ⊂ G such that G =

⋃
n∈NQn.

• compactly generated if there exists a compact subset Q ⊂ G such
that e ∈ Q and G =

⋃
n≥1Q

n.
• totally disconnected if the connected component of e ∈ G is equal
to {e}.

The identity element e ∈ G has a neighborhood basis consisting of com-
pact subsets (see [DE14, Corollary A.8.2]). Any open subgroup H < G is
also closed since G \H =

⋃
gH ̸=H gH. Any compactly generated group G is

σ-compact. Any locally compact group G has a compactly generated open
subgroup H < G. Indeed, choose a compact neighborhood U ⊂ G of e ∈ G.
Then H =

⋃
n≥1(U ∪ U−1)n is a compactly generated open subgroup of G.

In particular, any connected locally compact group is compactly generated.
A locally compact group G is second countable if and and only it is first
countable and σ-compact (see [St73]). Moreover, any locally compact sec-
ond countable group G is metrizable with a proper left invariant metric (see
[St73]).

75
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The class of locally compact groups is stable under taking closed sub-
groups, finite direct products and quotients with respect to closed normal
subgroups. More precisely, we record the following facts.

Proposition 3.2. The following assertions hold:

(i) If G is a locally compact group and H ≤ G is a closed subgroup,
then H endowed with the induced topology is locally compact.

(ii) If d ≥ 1 and G1, . . . , Gd are locally compact groups, then the product
group G = G1×· · ·×Gd endowed with the product topology is locally
compact.

(iii) If G is a locally compact group and N ◁G is a closed normal sub-
group, the quotient group G/N endowed with the quotient topology
is locally compact.

(iv) If G is a locally compact group acting continuously on a locally com-
pact group H by continuous automorphisms, then the semi-direct
product group G ⋉ H endowed with the product topology is locally
compact.

The proof of Proposition 3.2 is left to the reader as an exercise.

Examples 3.3. Here are some examples of locally compact groups. Let
d ≥ 1.

(i) Any groupG endowed with the discrete topology is locally compact.
In these notes, any countable group will always be endowed with
its discrete topology.

(ii) Any compact group K is locally compact. In particular, the fol-
lowing compact groups

Td =
{
(z1, . . . , zd) ∈ Cd | ∀1 ≤ i ≤ d, |zi| = 1

}
SOd(R) = {A ∈ SLd(R) | A∗A = AA∗ = 1d}

U (d) = {A ∈ GLd(C) | A∗A = AA∗ = 1d}
are locally compact.

(iii) Any (finite dimensional) real Lie group G is locally compact.
– The abelian group (Rd,+) endowed with the usual topology is

locally compact.
– The general linear group GLd(R) can be regarded as the open

(dense) subset of invertible matrices in Md(R) ∼= Rd2 . En-

dowed with the topology coming from Rd2 , the group GLd(R)
is locally compact.

– The special linear group SLd(R) = ker(det) is a closed sub-
group of GLd(R) and so SLd(R) is locally compact.

– The semi-direct product group SLd(R) ⋉Rd is locally compact.
(iv) Any (finite dimensional) p-adic Lie group G is totally disconnected

locally compact. In particular, for every prime p ∈ P, the groups
GLd(Qp) and SLd(Qp) are totally disconnected locally compact.
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(v) Let T = (V,E) be a locally finite tree and denote by Aut(T) the
automorphism group of T. Endowed with the topology of point-
wise convergence, the group Aut(T) is totally disconnected locally
compact.

Let X be a locally compact space, meaning that every x ∈ X has a
compact neighborhood. We denote by B(X) the σ-algebra of Borel subsets
of X. We say that a Borel measure ν on X, that is, a measure defined on
B(X) is regular if the following conditions are satisfied:

(i) For every Borel subset B ⊂ X, we have

ν(B) = inf {ν(V ) | V is open and B ⊂ V } .
(ii) For every open subset U ⊂ X, we have

ν(U) = sup {ν(K) | K is compact and K ⊂ U} .
(iii) For every compact subset K ⊂ X, we have ν(K) < +∞.

When ν is nonzero, define the support of ν by

supp(ν) =
⋂

{F | F ⊂ X is closed and ν(X \ F ) = 0} .

Observe that supp(ν) is closed and ν(X \ supp(ν)) = 0.
If any open subset of X is σ-compact, then any Borel measure on X that

satisfies condition (iii) is regular (see [Ru87, Theorem 2.18]). In particular,
using [DE14, Lemma A.8.1(i)], if X is a locally compact second countable
space, then any open subset of X is σ-compact and thus any Borel measure
on X that satisfies condition (iii) is regular.

Denote by Cc(X) the space of compactly supported continuous functions
on X. We say that a linear functional Φ : Cc(X) → C is positive if Φ(f) ≥ 0
for every f ∈ Cc(X)+. By Riesz’s representation theorem (see [Ru87,
Theorem 2.14]), for every positive linear functional Φ : Cc(X) → C, there
exists a unique regular Borel measure ν on X such that

∀f ∈ Cc(X), Φ(f) =

∫
X
f(x) dν(x).

In that case, we will simply write Φ = ν. Note that for every regular Borel
measure ν on X and every p ∈ [1,+∞), the space Cc(X) is ∥ · ∥p-dense
in the Banach space Lp(X,X , ν) of all ν-equivalence classes of p-integrable
functions on X.

Theorem 3.4 (Haar). Let G be a locally compact group. Then there
exists a nonzero regular Borel measure mG on G that is unique up to mul-
tiplicative constant and that satisfies one of the following equivalent condi-
tions:

(i) For every Borel subset B ⊂ G and every g ∈ G, mG(gB) = mG(B).
(ii) For every f ∈ Cc(G) and every g ∈ G,∫

G
f(g−1h) dmG(h) =

∫
G
f(h) dmG(h)
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We say that mG is a left invariant Haar measure on G.

For a proof of Theorem 3.4, we refer the reader to [HR79, Chapter 15].
The locally compact group G is σ-compact if and only if the left invariant
Haar measure mG is σ-finite.

Theorem 3.4 also implies that there exists a nonzero regular Borel mea-
sure µG on G that is unique up to multiplicative constant and that satisfies
one of the following equivalent conditions:

(i) For every Borel subset B ⊂ G and every g ∈ G, µG(Bg) = µG(B).
(ii) For every f ∈ Cc(G) and every g ∈ G,∫

G
f(hg) dµG(h) =

∫
G
f(h) dµG(h)

We say that µG is a right invariant Haar measure on G. Indeed, any left
invariant Haar measuremG on G gives rise to a right invariant Haar measure
µG on G by the formula

∀B ∈ B(G), µG(B) = mG(B
−1).

The next proposition shows that any left invariant Haar measure has
full support.

Proposition 3.5. Let G be a locally compact group and mG a left in-
variant Haar measure on G. Then supp(mG) = G. Moreover, for every
f ∈ Cc(G)+ such that f ̸= 0, we have

∫
G f(h) dmG(h) > 0.

Proof. Since mG ̸= 0, Conditions (ii) and (iii) in the definition of
regularity imply that there exists a compact subset K ⊂ G such that 0 <
mG(K) < +∞. Let U ⊂ G be a nonempty open subset. There exist
g1, . . . , gn ∈ G such that K ⊂

⋃n
i=1 giU . This implies that

0 < mG(K) ≤ mG(
n⋃

i=1

giU) ≤
n∑

i=1

mG(giU) = n ·mG(U)

and so mG(U) > 0. Thus, supp(mG) = G.
Moreover, let f ∈ Cc(G)+ such that f ̸= 0. Then there exist ε > 0 and

an open subset U ⊂ G such that f(h) ≥ ε for every h ∈ U . This implies
that ∫

G
f(h) dmG(h) ≥

∫
U
ε dmG(h) = ε ·mG(U) > 0.

This finishes the proof. □

The next proposition gives a characterization of compact groups in terms
of the Haar measure.

Proposition 3.6. Let G be a locally compact group and mG a left in-
variant Haar measure on G.

Then G is compact if and only if mG(G) < +∞.
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Proof. Firstly, assume that G is compact. Then by regularity we have
mG(G) < +∞.

Secondly, assume that G is not compact. Take a compact neighborhood
K ⊂ G of e ∈ G and set g0 = e. We have mG(K) > 0 by Proposition 3.5.
Since KK−1 is compact, there exists g1 ∈ G such that g1 ∈ G \ KK−1.
This implies that g1K ∩ K = ∅. By induction, define gn ∈ G so that
gn ∈ G \ (K ∪ g1K ∪ · · · ∪ gn−1K)K−1. It follows that (gnK)n are pairwise
disjoint. This implies that

mG(G) ≥ mG(
⋃
n∈N

gnK) =
∑
n∈N

mG(gnK) = +∞ ·mG(K) = +∞.

This finishes the proof. □

Let G be a locally compact group and mG a left invariant Haar measure
on G. The measure mG need not be right invariant. For every g ∈ G,
define the nonzero regular Borel measure mg

G on G by the formula mg
G(B) =

mG(Bg) for every B ∈ B(G). Since mg
G is a left invariant Haar measure,

there exists an element ∆G(g) ∈ R∗
+ such that mg

G = ∆G(g)mG. Then
∆G : G → R∗

+ : g 7→ ∆G(g) is a group homomorphism and is called the
modular function on G. The modular function ∆G does not depend on the
choice of the left invariant Haar measure mG on G. Moreover, we have

(3.1) ∀f ∈ Cc(G), ∀g ∈ G,

∫
G
f(hg−1) dmG(h) = ∆G(g)

∫
G
f(h) dmG(h).

The left invariant Haar measure mG is right invariant if and only if ∆G ≡ 1.
In that case, we say that G is unimodular. We then simply refer to mG as
a Haar measure on G.

Proposition 3.7. Let G be a locally compact group and mG a left in-
variant Haar measure on G. Then the modular function ∆G : G → R∗

+ is
continuous. Moreover, we have

∀f ∈ Cc(G),

∫
G
f(h−1) dmG(h) =

∫
G
∆G(h

−1)f(h) dmG(h).

Proof. Choose φ ∈ Cc(G) such that κ =
∫
G φ(h) dmG(h) ̸= 0. Set

Q = supp(φ). Then we have

∀g ∈ G, ∆G(g) =

∫
G φ(hg

−1) dmG(h)∫
G φ(h) dmG(h)

.

Choose a compact neighborhood K ⊂ G of e ∈ G. Let ε > 0. Since φ is
uniformly continuous by Lemma 3.8, there exists a neighborhood U of e ∈ G
such that U ⊂ K, U−1 = U and

∀u ∈ U, sup
{
|φ(hu−1)− φ(h)| | h ∈ G

}
≤ εκ

mG(QK)
.

Then for every u ∈ U , we have

|∆G(u)− 1| ≤ 1

κ

∫
G
|φ(hu−1)− φ(h)|dmG(h)
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≤ 1

κ
mG(QK)

εκ

mG(QK)
= ε.

This implies that ∆G : G→ R∗
+ is continuous at the identity element e ∈ G

and so ∆G is continuous.
Next, observe that both of the positive linear functionals

Cc(G) → C : f 7→
∫
G
f(h−1) dmG(h)

Cc(G) → C : f 7→
∫
G
∆(h−1)f(h) dmG(h)

define a nonzero right invariant regular Borel measure on G. Thus, there
exists c > 0 such that

∀f ∈ Cc(G),

∫
G
f(h−1) dmG(h) = c

∫
G
∆G(h

−1)f(h) dmG(h)

Define φ̂ ∈ Cc(G) by the formula φ̂(h) = φ(h−1) for every h ∈ G. Then we
have

0 ̸=
∫
G
φ(h) dmG(h) =

∫
G
φ̂(h−1) dmG(h)

= c

∫
G
∆G(h

−1)φ̂(h) dmG(h)

= c

∫
G
∆G(h

−1)φ(h−1) dmG(h)

= c2
∫
G
∆G(h

−1)∆G(h)φ(h) dmG(h)

= c2
∫
G
φ(h) dmG(h).

This implies that c = 1. □

In the proof of Proposition 3.7, we used the following technical result.
Denote by (Cb(G), ∥ · ∥∞) the Banach space of all bounded continuous func-
tions on G endowed with the supremum norm. Denote by λ : G ↷ Cb(G)
(resp. ρ : G ↷ Cb(G)) the left (resp. right) translation action defined by
(λ(g)f)(h) = f(g−1h) (resp. (ρ(g)f)(h) = f(hg)) for all g, h ∈ G and all
f ∈ Cb(G).

Lemma 3.8. Let G be a locally compact group and f ∈ Cc(G) a com-
pactly supported continuous function. Then for every ε > 0, there exists a
symmetric neighborhood U ⊂ G of e ∈ G such that

sup {∥λ(u)f − f∥∞, ∥ρ(u)f − f∥∞ | u ∈ U} < ε.

Then we say that f ∈ Cc(G) is uniformly continuous.

Proof. Let f ∈ Cc(G) and set Q = supp(f). Let ε > 0 and fix a
symmetric compact neighborhood V ⊂ G of e ∈ G. For every g ∈ G,
there exists an open neighborhood Wg ⊂ G of g ∈ G such that for all
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w1, w2 ∈ Wg, we have |f(w1) − f(w2)| < ε. For every g ∈ G, choose an
open symmetric neighborhood Ug ⊂ G of e ∈ G such that gUgUg ∪UgUgg ⊂
Wg. Then for every g ∈ G, gUg ∩ Ugg is an open neighborhood of g ∈ G.
Since V QV is compact, there exist n ≥ 1 and g1, . . . , gn ∈ G such that
V QV ⊂

⋃
i=1 giUgi ∩ Ugigi. Define U = V ∩

⋂n
i=1 Ugi which is a symmetric

neighborhood of the identity e ∈ G. Then for every u ∈ U and every g ∈ G,
we consider the following situations:

• If g ∈ V QV , then there exists 1 ≤ i ≤ n such that g ∈ giUgi ∩
Ugigi. Since u ∈ U ⊂ Ugi , we have gu ∈ giUgiUgi ⊂ Wgi and
ug ∈ UgiUgigi ⊂ Wgi . It follows that |f(gu) − f(g)| < ε and
|f(gu)− f(g)| < ε.

• If g /∈ V QV , then gu /∈ Q and ug /∈ Q. It follows that f(g) =
f(ug) = f(gu) = 0.

We have showed that for every u ∈ U and every g ∈ G, we have |f(gu) −
f(g)| < ε and |f(gu)− f(g)| < ε. □

Let (G,mG,∆G) and (H,mH ,∆H) be locally compact groups with their
respective left invariant Haar measure and modular function. Let σ : G↷ H
be a continuous action by continuous group automorphisms and write G⋉H
for the locally compact semi-direct product group. Recall that the group
law on G⋉H is given by

∀g1, g2 ∈ G,∀h1, h2 ∈ H, (g1, h1) · (g2, h2) = (g1g2, σ
−1
g2 (h1)h2).

The next proposition provides an explicit calculation of the Haar measure
and the modular function on G⋉H.

Proposition 3.9. The regular Borel measure mG⋉H defined on G⋉H
by the formulae

∀f ∈ Cc(G⋉H),

∫
G⋉H

f(g, h) dmG⋉H(h)(3.2)

=

∫
H

(∫
G
f(g, h) dmG(g)

)
dmH(h)

=

∫
G

(∫
H
f(g, h) dmH(h)

)
dmG(g)

is a left invariant Haar measure on G⋉H. Moreover, the modular function
∆G⋉H : G⋉H → R∗

+ satisfies

∀(g, h) ∈ G⋉H, ∆G⋉H(g, h) = ρ(g)∆G(g)∆H(h)

where ρ : G→ R∗
+ is the continuous function defined by the formula

∀f ∈ Cc(H),∀g ∈ G,

∫
H
f(σg(h)) dmH(h) = ρ(g)

∫
H
f(h) dmH(h).

Proof. Fubini’s theorem implies that for every f ∈ Cc(G⋉H), we have∫
H

(∫
G
f(g, h) dmG(g)

)
dmH(h) =

∫
G

(∫
H
f(g, h) dmH(h)

)
dmG(g).
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Denote by mG⋉H the unique regular Borel measure on G ⋉ H defined by
(3.2). For every f ∈ Cc(G⋉H) and every (g1, h1) ∈ G⋉H, we have∫

G⋉H
f((g1, h1) · (g2, h2)) dmG⋉H(g2, h2)

=

∫
G⋉H

f(g1g2, σ
−1
g2 (h1)h2) dmG⋉H(g2, h2)

=

∫
G

(∫
H
f(g1g2, h2) dmH(h2)

)
dmG(g2)

=

∫
H

(∫
G
f(g2, h2) dmG(g2)

)
dmH(h2)

=

∫
G⋉H

f(g2, h2) dmG⋉H(g2, h2).

This shows that mG⋉H is a left invariant Haar measure on G⋉H.
Consider the function ρ : G → R∗

+ as defined above. For every f ∈
Cc(G⋉H) and every (g2, h2) ∈ G⋉H, we have∫

G⋉H
f((g1, h1) · (g2, h2)−1) dmG⋉H(g1, h1)

=

∫
G⋉H

f(g1g
−1
2 , σg2(h1h

−1
2 )) dmG⋉H(g1, h1)

= ∆H(h2)

∫
G

(∫
H
f(g1g

−1
2 , σg2(h1)) dmH(h1)

)
dmG(g1)

= ρ(g2)∆H(h2)

∫
G

(∫
H
f(g1g

−1
2 , h1) dmH(h1)

)
dmG(g1)

= ρ(g2)∆G(g2)∆H(h2)

∫
H

(∫
G
f(g1, h1) dmG(g1)

)
dmH(h1)

= ρ(g2)∆G(g2)∆H(h2)

∫
G⋉H

f(g1, h1) dmG⋉H(g1, h1)

and hence ∆G⋉H(g2, h2) = ρ(g2)∆G(g2)∆H(h2). □

Examples 3.10. Here are some examples of unimodular locally compact
groups. Let d ≥ 1.

(i) Any group G endowed with the discrete topology is unimodular.
Indeed, in that case the counting measure mG is a nonzero regular
Borel measure on G that is clearly both left and right invariant.

(ii) Any compact group G is unimodular. Indeed, fix a left invariant
Haar measure mG on G. Then ∆G(G) < R∗

+ is a compact sub-
group and so ∆G(G) = {1}. This shows that ∆G ≡ 1 and so G is
unimodular.

(iii) Any abelian locally compact group G is unimodular. The Lebesgue
measure dx1 · · · dxd on Rd is a Haar measure.
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(iv) Recall that the general linear group GLd(R) can be regarded as the
open (dense) subset of invertible matrices in Md(R) ∼= Rd×· · ·×Rd.
For every g ∈ GLd(R), the Jacobian of the diffeomorphism

Lg : Md(R) → Md(R) : (x1, . . . , xd) 7→ (gx1, . . . , gxd)

is equal to |det(g)|d. It follows that a left invariant Haar measure
mG on G = GLd(R) is given by

dmG(g) =
1

|det(g)|d
∏

1≤i,j≤d

dgij , g = (gij)ij .

For every g ∈ GLd(R), since the Jacobian of the diffeomorphism

Rg : Md(R) → Md(R) : x 7→ xg

is also equal to |det(g)|d, it follows that mG is right invariant and
so G = GLd(R) is unimodular.

(v) Recall that the special linear group SLd(R) < GLd(R) is defined
by SLd(R) = ker(det). It is known that the only normal sub-
groups of SLd(R) are {1}, {±1} and SLd(R). This implies that
ker(∆SLd(R)) = SLd(R) and so SLd(R) is unimodular.

(vi) For every d ≥ 2, the strict upper triangular subgroup G = Td(R)
defined as the group of all matrices g = (gij)ij such that gij = 0
for all 1 ≤ j < i ≤ d and gii = 1 for all 1 ≤ i ≤ d is homeomorphic

with R
d(d−1)

2 . Under this identification, the Lebesgue measure on

R
d(d−1)

2 gives rise to a left and right invariant Haar measure mG on
G defined as

dmG(n) =
∏

1≤i<j≤d

dnij , n = (nij)ij .

Indeed, for all i < j and all g, n ∈ Td(R), we have (gn)ij = gij +
nij +

∑
i<k<j giknkj . Endow the set {(i, j) | 1 ≤ i < j ≤ d} with

the lexicographical order. Then for every g ∈ Td(R), the Jacobian
matrix of the diffeomorphism Td(R) → Td(R) : n 7→ gn is lower
triangular with diagonal entries all equal to 1. This implies that
the Jacobian of the diffeomorphism Td(R) → Td(R) : n 7→ gn is
equal to 1. The same argument shows that for every g ∈ Td(R),
the Jacobian of the diffeomorphism Td(R) → Td(R) : n 7→ ng is
equal to 1. Thus, G = Td(R) is unimodular.

2. Lattices in locally compact groups

Let G be a locally compact group and Γ < G a discrete subgroup. We
say that a Borel subset F ⊂ G is a Borel fundamental domain (for the right
translation action Γ ↷ G) if

∀γ1, γ2 ∈ Γ, γ1 ̸= γ2 ⇒ Fγ1 ∩ Fγ2 = ∅ and
⋃
γ∈Γ

Fγ = G.
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Denote by G/Γ = {gΓ | g ∈ G} the quotient space and by p : G → G/Γ :
g 7→ gΓ the quotient map. Endow G/Γ with the quotient topology.

Proposition 3.11. Keep the same notation as above. The following
assertions hold:

(i) The quotient map p : G → G/Γ is continuous and open and G/Γ
is Hausdorff and locally compact. Moreover, the action map G ×
G/Γ → G/Γ : (g, x) 7→ gx is continuous.

(ii) If G/Γ is compact, then there exists a Borel fundamental domain
F ⊂ G that is relatively compact in G.

(iii) If G is second countable, then G/Γ is second countable. Moreover,
there exists a Borel fundamental domain F ⊂ G such that for every
compact subset Y ⊂ G/Γ, the subset p−1(Y ) ∩ F ⊂ G is relatively
compact in G.

Proof. (i) Endow the quotient space G/Γ = {gΓ | g ∈ G} with the
quotient topology. By definition, a subset V ⊂ G/Γ is open if and only if
p−1(V ) ⊂ G is open. Then the quotient topology is the finest topology on
G/Γ that makes the quotient map p : G→ G/Γ continuous. Let now U ⊂ G
be an open set. Then p−1(p(U)) = p−1({hΓ | h ∈ U}) =

⋃
γ∈Γ Uγ is open

and so is p(U) ⊂ G/Γ is open. This shows that p : G→ G/Γ is open.
Let x1, x2 ∈ G/Γ with x1 ̸= x2. Write x1 = g1Γ and x2 = g2Γ. Note

that g2 /∈ g1Γ. Choose a compact neighborhood U1 ⊂ G (resp. U2 ⊂ G2) of
g1 ∈ G (resp. g2 ∈ G). Since U−1

2 U1 ⊂ G is compact and since Γ < G is
discrete, the set Λ = {γ ∈ Γ | U1 ∩U2γ ̸= ∅} is finite. For every γ ∈ Λ, since
g1 ̸= g2γ, there exist neighborhoods Uγ of g1 ∈ G and Vγ of g2γ ∈ G such
that Uγ ∩ Vγ = ∅. Set

W1 = U1 ∩
⋂
γ∈Λ

Uγ and W2 = U2 ∩
⋂
γ∈Λ

Vγγ
−1.

Then for every γ ∈ Γ, we have W1 ∩ W2γ = ∅. Indeed, if γ ∈ Γ \ Λ,
then U1 ∩ U2γ = ∅. If γ ∈ Λ, then Uγ ∩ (Vγγ

−1)γ = ∅. Thus, we have
p(W1) ∩ p(W2) = ∅. This shows that G/Γ is Hausdorff.

Let x = gΓ ∈ G/Γ. Choose a compact neighborhood K ⊂ G of e ∈ G.
Then gK is a compact neighborhood of g ∈ G and so p(gK) is a compact
neighborhood of x ∈ G/Γ. This shows that G/Γ is locally compact.

Define the action map a : G × G/Γ → G/Γ : (g, x) 7→ gx. Recall
that the multiplication map m : G × G → G is continuous. Since the map
idG×p : G × G → G × G/Γ : (g, h) 7→ (g, hΓ) is continuous and open, the
commutative diagram

G×G G

G×G/Γ G/Γ

m

id×p p

a

shows that the action map a : G×G/Γ → G/Γ is continuous.
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(ii) Since Γ < G is discrete, there exists an open neighborhood V ⊂ G
of e ∈ G such that V ∩ Γ = {e}. Since the map G×G→ G : (g, h) 7→ g−1h
is continuous, there exists an open neighborhood U ⊂ G of e ∈ G such that
U−1U ⊂ V . Replacing U with U ∩K where K is a relatively compact open
neighborhood of e ∈ G, we may assume that U ⊂ G is relatively compact.
Since G/Γ is compact and since (p(gU)g∈G) is an open covering of G/Γ,
there exist g1, . . . , gn ∈ G such that G/Γ =

⋃n
i=1 p(giU). Define the Borel

subset

F =
n⋃

i=1

giU \
⋃
j<i

gjUΓ

 .

By construction, F ⊂ G is relatively compact. Then we have
⋃

γ∈Γ Fγ =⋃n
i=1 giUΓ = p−1(

⋃n
i=1 p(giU)) = p−1(G/Γ) = G. Let γ1, γ2 ∈ Γ be elements

such that Fγ1∩Fγ2 ̸= ∅. Upon exchanging γ1 and γ2, we may assume that
there exist i ≥ j and u1, u2 ∈ U such that giu1γ1 = gju2γ2. By construction

and since giu1 = gju2γ2γ
−1
1 ∈ giU ∩ gjUΓ, we necessarily have i = j. Then

u1γ1 = u2γ2 and so u−1
2 u1 = γ2γ

−1
1 ∈ U−1U ∩ Γ ⊂ V ∩ Γ = {e}. This shows

that γ1 = γ2 and thus F ⊂ G is a Borel fundamental domain.
(iii) Choose a countable basis (Un)n for the topology on G. Let V ⊂ G/Γ

be an open set. Then p−1(V ) ⊂ G is open and so there exists a subfamily
(Unk

)k such that p−1(V ) =
⋃

k Unk
. Then we have V = p(p−1(V )) =⋃

k p(Unk
). This shows that (p(Un))n is a countable basis for the quotient

topology on G/Γ and so G/Γ is second countable. For every n ∈ N, choose
gn ∈ Un.

As before, there exist open neighborhoods U, V ⊂ G of e ∈ G such that
U ⊂ G is relatively compact, U−1U ⊂ V and V ∩ Γ = {e}. We claim that
G =

⋃
n∈N gnU . Indeed, for every g ∈ G, gU−1 ⊂ G is an open set and

hence there exists n ∈ N such that Un ⊂ gU−1. This implies that there
exists u ∈ U such that gn = gu−1 or equivalently g = gnu and thus g ∈ gnU .
Define the Borel subset

F =
⋃
n∈N

(
gnU \

⋃
k<n

gkUΓ

)
.

Then we have
⋃

γ∈Γ Fγ =
⋃

n∈N gnUΓ = G. Let γ1, γ2 ∈ Γ be elements such

that Fγ1∩Fγ2 ̸= ∅. Upon exchanging γ1 and γ2, we may assume that there
exist m ≥ n and u1, u2 ∈ U such that gmu1γ1 = gnu2γ2. By construction
and since gmu1 = gnu2γ2γ

−1
1 ∈ gmU ∩ gnUΓ, we necessarily have m = n.

Then u1γ1 = u2γ2 and so u−1
2 u1 = γ2γ

−1
1 ∈ U−1U ∩ Γ ⊂ V ∩ Γ = {e}.

This shows that γ1 = γ2 and thus F ⊂ G is a Borel fundamental domain.
Let Y ⊂ G/Γ be a compact subset. Since (p(gnU))n is an open covering of

Y , there exist n1 ≤ · · · ≤ nk such that Y ⊂
⋃k

i=1 p(gniU). Then we have
p−1(Y ) ∩ F ⊂

⋃nk
j=0(gjU \

⋃
i<j giUΓ) and so p−1(Y ) ∩ F ⊂ G is relatively

compact. □
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Observe that when G is a locally compact σ-compact group, any discrete
subgroup Γ < G is necessarily countable. Indeed, since G is σ-compact,
the left invariant Haar measure mG is σ-finite. We may then choose a
Borel probability measure µ ∈ Prob(G) such that µ ∼ mG. We may also
choose open neighborhoods U, V ⊂ G of e ∈ G such that UU−1 ⊂ V and
V ∩ Γ = {e}. Then (γU)γ∈Γ is a family of pairwise disjoint open subsets.
Moreover, since mG(γU) = mG(U) > 0 for every γ ∈ Γ, it follows that
µ(γU) > 0 for every γ ∈ Γ. This implies that Γ is necessarily countable.

Corollary 3.12. Let G be a locally compact second countable group
and Γ < G a discrete subgroup. Then there exists a Borel map σ : G/Γ → G
such that

• σ(G/Γ) = F is a Borel fundamental domain,
• σ(Γ) = e,
• x = σ(x)Γ for every x ∈ G/Γ,
• σ(Y ) ⊂ G is relatively compact for every compact subset Y ⊂ G/Γ.

We then simply say that σ : G/Γ → G is a Borel section.

Proof. Choose a Borel fundamental domain F ⊂ G as in Proposition
3.11(iii) such that e ∈ F . Then p|F : F → G/Γ is Borel and bijective. This
implies that the map σ = (p|F )−1 : G/Γ → G is Borel (see [Zi84, Theorem
A.4]) and satisfies all the required properties. □

Definition 3.13. LetG be a locally compact group and Γ < G a discrete
subgroup. We say that Γ < G is uniform or cocompact if G/Γ is compact.

We say that Γ < G is a lattice if there exists a G-invariant regular Borel
probability measure ν ∈ Prob(G/Γ).

Define the linear mapping T : Cc(G) → Cc(G/Γ) : f 7→ f by the
formula

∀g ∈ G, f(gΓ) =
∑
γ∈Γ

f(gγ).

We claim that T : Cc(G) → Cc(G/Γ) is surjective. Indeed, let φ ∈ Cc(G/Γ)
be a function and denote by Q = supp(φ) ⊂ G/Γ its compact support.
Choose a relatively compact open neighborhood V ⊂ G of e ∈ G. Then there
exist g1, . . . , gn ∈ G such that Q ⊂

⋃n
i=1 p(giV ). SetK = p−1(Q)∩

⋃n
i=1 giV .

Then K ⊂ G is a compact subset such that p(K) = Q. By Urysohn’s lemma
(see e.g. [DE14, Lemma A.8.1(ii)]), we may choose fK ∈ Cc(G)+ such that
f |K ≡ 1K .

Define the function f : G → C by the formula f(g) = φ(gΓ)
T (fK)(gΓ)fK(g)

if T (fK)(gΓ) ̸= 0 and f(g) = 0 otherwise. Then supp(f) ⊂ supp(fK) is
compact and f is continuous on G since T (fK)(gΓ) > 0 on a neighborhood
of Q. Thus, f ∈ Cc(G) and we have T (f) = φ.

Proposition 3.14. Let G be a locally compact group and Γ < G a
uniform discrete subgroup. Then G is unimodular and Γ < G is a lattice.

If G is moreover compactly generated, then Γ < G is finitely generated.
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Proof. Fix a right invariant Haar measure µG on G. Consider the
positive linear functional

Φ : Cc(G/Γ) → C : f 7→
∫
G
f(g) dµG(g).

In order to check that Φ is well-defined, it suffices to show that if φ ∈ Cc(G)
is such that φ = 0, then we have

∫
G φ(g) dµG(g) = 0. Indeed, for every

ψ ∈ Cc(G), using Fubini’s theorem, we have∫
G
φ(hΓ)ψ(h) dµG(h) =

∑
γ∈Γ

∫
G
φ(hγ)ψ(h) dµG(h)

=
∑
γ∈Γ

∫
G
φ(h)ψ(hγ−1) dµG(h)

=

∫
G
φ(h)ψ(hΓ) dµG(h).

Since the map Cc(G) → Cc(G/Γ) : f 7→ f is surjective, there exists ψ ∈
Cc(G) such that ψ ≡ 1 on the compact subset supp(φ)Γ ⊂ G/Γ. Therefore,
we obtain∫

G
φ(h) dµG(h) =

∫
G
φ(h)ψ(hΓ) dµG(h) =

∫
G
φ(hΓ)ψ(h) dµG(h) = 0.

By Riesz’s representation theorem, there exists a unique regular Borel mea-
sure ν on G/Γ such that

∀f ∈ Cc(G),

∫
G
f(h) dµG(h) =

∫
G
f(hΓ) dν(hΓ).

Note that the above argument does not use the fact that Γ < G is uniform.
However, since Γ < G is uniform, G/Γ is compact and we have 0 <

ν(G/Γ) < +∞. Up to normalization, we may assume that ν(G/Γ) = 1.
Define the left invariant Haar measuremG onG by the formulamG(B) =

µG(B
−1) for every B ∈ B(G). Then for every B ∈ B(G) and every g ∈ G,

we have

(g∗µG)(B) = µG(g
−1B) = mG(B

−1g) = ∆G(g)mG(B
−1) = ∆G(g)µG(B)

and so g∗µG = ∆G(g)µG. By uniqueness in the previous construction, we
obtain g∗ν = ∆G(g) ν for every g ∈ G. Since ν ∈ Prob(G/Γ) is a probability
measure, we obtain ∆G(g) = 1 and g∗ν = ν for every g ∈ G. Thus, ∆G ≡ 1
and so G is unimodular. Moreover, ν ∈ Prob(G/Γ) is G-invariant and so
Γ < G is a lattice.

Assume moreover that G is compactly generated. Choose a compact
subset Q ⊂ G such that e ∈ Q and G =

⋃
n≥1Q

n. Since G/Γ is compact,

we may choose a compact subset K ⊂ G such that p(K) = G/Γ (see the
proof of surjectivity of the map T : Cc(G) → Cc(G/Γ)). Upon replacing
Q by Q ∪K, we may further assume that Q · Γ = G. Then S0 = Q ∩ Γ is
finite. Moreover, since Q2 is compact, there exists a finite subset S1 ⊂ Γ
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such that Q2 ⊂ QS1. Indeed, otherwise we could find sequences (gn)n in
Q2, (hn)n in Q and (γn)n in Γ such that gn = hnγn for every n ∈ N and
(γn)n are pairwise distinct. This would imply that γn = h−1

n gn ∈ Q3 ∩ Γ
for every n ∈ N. Since Q3 is compact and Γ < G is discrete, Q3 ∩ Γ must
be finite, a contradiction. Set S = S0 ∪ S1 ⊂ Γ. Then Q ∩ Γ ⊂ S and for
every n ≥ 1, we have Qn+1 ⊂ QSn. We claim that S is a finite generating
set for Γ. Indeed, by construction, we have Q ∩ Γ ⊂ S. Next, let n ≥ 1 and
γ ∈ Qn+1 ∩ Γ ⊂ QSn ∩ Γ. Then γ = gγn where g ∈ Q and γn ∈ Sn. This
implies that γγ−1

n = g ∈ Q ∩ Γ ⊂ S. Then γ = gγn ∈ SSn = Sn+1 and
hence Qn+1∩Γ ⊂ Sn+1. This implies that Γ =

⋃
n≥1Q

n∩Γ ⊂
⋃

n≥1 S
n and

so Γ is finitely generated. □

Proposition 3.15. Let G be a locally compact group that possesses a
lattice Γ < G. Then G is unimodular. Moreover, there is a unique G-
invariant regular Borel probability measure ν ∈ Prob(G/Γ).

Proof. Let ν ∈ Prob(G/Γ) be a G-invariant regular Borel probability
measure. We claim that there exists a unique left invariant Haar measure
mG on G such that

(3.3) ∀f ∈ Cc(G),

∫
G
f(h) dmG(h) =

∫
G/Γ

f(gΓ) dν(gΓ).

Indeed, the well-defined positive linear functional

Cc(G) → C : f 7→
∫
G/Γ

f(gΓ) dν(gΓ)

is left invariant. By Riesz’s representation theorem, there exists a unique
left invariant Haar measure mG on G for which (3.3) holds.

Applying (3.1), for every f ∈ Cc(G) and every γ ∈ Γ, letting fγ =
f( · γ−1) ∈ Cc(G), we have

∆G(γ)

∫
G
f(h) dmG(h) =

∫
G
fγ(h) dmG(h)

=

∫
G/Γ

fγ(hΓ) dν(hΓ)

=

∫
G/Γ

f(hΓ) dν(hΓ)

=

∫
G
f(h) dmG(h).

This implies that ∆G(γ) = 1 for every γ ∈ Γ. Consider the well-defined con-
tinuous mapping ∆ : G/Γ → R∗

+ : gΓ 7→ ∆G(g). Then η = ∆∗ν ∈ Prob(R∗
+)

is a Borel probability measure that is invariant under multiplication by
∆G(g) for every g ∈ G. This implies that ∆G ≡ 1 and so G is unimod-
ular.
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Observe that (3.3) together with surjectivity of T : Cc(G) → Cc(G/Γ)
imply that there is a unique G-invariant regular Borel probability measure
ν ∈ Prob(G/Γ). □

The next proposition provides a group-theoretic characterization of uni-
form lattices in locally compact groups.

Proposition 3.16. Let G be a locally compact group and Γ < G a
lattice. The following assertions are equivalent:

(i) Γ < G is uniform.
(ii) There exists a compact neighborhood U ⊂ G of e ∈ G such that for

every g ∈ G, we have gΓg−1 ∩ U = {e}.

Proof. (i) ⇒ (ii) Assume that Γ < G is uniform. Since Γ < G is
discrete, we may choose a compact neighborhoodW ⊂ G of e ∈ G such that
Γ ∩W = {e}. Next, we may choose a symmetric compact neighborhood
V ⊂ W of e ∈ G such that V V V ⊂ W . Observe that for every h ∈ V , we
have

hΓh−1 ∩ V ⊂ h(Γ ∩ h−1V h)h−1 ⊂ h(Γ ∩W )h−1 = {e}.
By compactness of G/Γ, there exist n ≥ 1 and g1, . . . , gn ∈ G such that
G/Γ =

⋃n
i=1 gip(V ). Set U =

⋂n
i=1 giV g

−1
i . Then for every g ∈ G, there

exist 1 ≤ i ≤ n and h ∈ V such that gΓ = gihΓ and hence

gΓg−1 ∩ U = gihΓh
−1g−1

i ∩ U ⊂ gi(hΓh
−1 ∩ V )g−1

i = {e}.

(ii) ⇒ (i) Denote by ν ∈ Prob(G/Γ) the uniqueG-invariant regular Borel
probability measure and by mG the unique Haar measure on G such that
(3.3) holds. Assume that there exists such a compact neighborhood U ⊂ G
of e ∈ G. Choose a compact neighborhood V ⊂ G of e ∈ G such that
V −1V ⊂ U . Choose a nonnegative function φ ∈ Cc(G) such that 0 ≤ φ ≤ 1
and supp(φ) ⊂ V . Set ε =

∫
G φ(h) dmG(h).

For every g ∈ G, define φg = φ( · g−1) ∈ Cc(G). Note that 0 ≤ φg ≤ 1
and supp(φg) ⊂ V g. Moreover, we have supp(φg) ⊂ V gΓ. Since mG is right
invariant, we have

ε =

∫
G
φ(h) dmG(h)

=

∫
G
φg(h) dmG(h)

=

∫
G/Γ

φg(hΓ) dν(hΓ)

=

∫
V gΓ

φg(hΓ) dν(hΓ)

=

∫
V gΓ

∑
γ∈Γ

φg(hγ) dν(hΓ).
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We claim that for every h ∈ V gΓ, there is at most one γ ∈ Γ such that
hγ ∈ V g. Indeed, if γ1, γ2 ∈ Γ are elements such that hγ1, hγ2 ∈ V g, then
gγ−1

1 γ2g
−1 ∈ V −1V ⊂ U . Since gΓg−1 ∩ U = {e}, we have γ1 = γ2. Since

0 ≤ φg ≤ 1 and supp(φg) ⊂ Vg, it follows that

ε =

∫
V gΓ

∑
γ∈Γ

φg(hγ) dν(hΓ) ≤
∫
V gΓ

1 dν(hΓ) = ν(V gΓ).

We have showed that ν(V gΓ) ≥ ε for every g ∈ G.
Let F ⊂ G be a finite subset for which for every g, h ∈ F such that

g ̸= h, we have V gΓ ∩ V hΓ = ∅. Then we have

♯F · ε ≤
∑
g∈F

ν(V gΓ) = ν(
⋃
g∈F

V gΓ) ≤ 1

and hence ♯F ≤ ε−1. We may then choose a maximal finite subset F ⊂ G
with the aforementioned property. It follows that for every g ∈ G, we have
V gΓ ∩ V FΓ ̸= ∅ and hence gΓ ∈ V −1V FΓ ⊂ UFΓ. Since UFΓ ⊂ G/Γ is
compact, it follows that G/Γ = UFΓ is compact. □

When G is a locally compact second countable group, we prove a very
useful criterion to ensure that a discrete subgroup Γ < G is a lattice.

Theorem 3.17. Let G be a locally compact second countable group and
Γ < G a discrete subgroup. The following assertions are equivalent:

(i) Γ < G is a lattice.
(ii) G is unimodular and there is a Borel fundamental domain F ⊂ G

for the right translation action Γ ↷ G such that 0 < mG(F ) <
+∞.

(iii) G is unimodular and there is a Borel subset S ⊂ G such that
S · Γ = G and 0 < mG(S) < +∞.

Proof. Recall that since G is a locally compact second countable group,
the discrete subgroup Γ < G is necessarily countable.

(i) ⇒ (ii) We already know that G is unimodular by Proposition 3.15.
Denote by ν ∈ Prob(G/Γ) the unique G-invariant regular Borel probability
measure. Denote by mG the unique Haar measure on G satisfying (3.3).
Since G is locally compact second countable, (3.3) holds for every nonnega-
tive Borel function f : G → R+. In particular, for f = 1F , we have f ≡ 1
and so

mG(F ) =

∫
G
f(h) dmG(h) =

∫
G/Γ

f dν(hΓ) = 1 < +∞.

Since mG(G) > 0, G =
⋃

γ∈Γ Fγ and mG(Fγ) = mG(F ) for every γ ∈ Γ,

we also have mG(F ) > 0.
(ii) ⇒ (iii) It is trivial.
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(iii) ⇒ (i) Following the proof of Proposition 3.14 and since mG is right
invariant, we may consider the well-defined nonzero left invariant linear func-
tional

Φ : Cc(G/Γ) → C : f 7→
∫
G
f(g) dmG(g).

By Riesz’s representation theorem, there exists a unique nonzero G-invariant
regular Borel measure ν on G/Γ such that (3.3) holds. Since G is locally
compact second countable, (3.3) holds for every nonnegative Borel function
f : G→ R+. In particular, for f = 1S, we have f ≥ 1 and so

ν(G/Γ) ≤
∫
G/Γ

f dν(hΓ) =

∫
G
f(h) dmG(h) = mG(S) < +∞.

Then 1
ν(G/Γ)ν ∈ Prob(G/Γ) is a G-invariant regular Borel probability mea-

sure and so Γ < G is a lattice. □

Let us point out that when Γ < G is a lattice, all Borel fundamental
domains for the right translation action Γ ↷ G have the same finite Haar
measure. Indeed, whenever F1,F2 ⊂ G are Borel fundamental domains,
since the Haar measure mG on G is right invariant, we have

mG(F1) =
∑
γ∈Γ

mG(F1 ∩ F2γ)

=
∑
γ∈Γ

mG(F1γ
−1 ∩ F2)

= mG(F2).

Examples 3.18. Here are some examples of lattices in locally compact
groups.

(i) For every d ≥ 1, the discrete subgroup Zd < Rd is a uniform lattice.
(ii) More generally, any lattice Γ < G in a locally compact second

countable abelian group G is necessarily uniform.
(iii) The discrete Heisenberg group H3(Z) < H3(R) is a uniform lattice

in the continuous Heisenberg group H3(R):

H3(Z) =


1 x z
0 1 y
0 0 1

 | x, y, z ∈ Z


H3(R) =


1 x z
0 1 y
0 0 1

 | x, y, z ∈ R

 .

(iv) More generally, any lattice Γ < G in a locally compact second
countable nilpotent group G is necessarily uniform.
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3. SLd(Z) is a lattice in SLd(R), d ≥ 2

In this section, we prove the following theorem due to Minkowski.

Theorem 3.19 (Minkowski). For every d ≥ 2, the discrete subgroup
SLd(Z) < SLd(R) is a nonuniform lattice.

Before proving Theorem 3.19, we need to prove some preliminary results
that are also of independent interest.

Let d ≥ 1. Endow Rd with its canonical euclidean structure. Denote by
K = SOd(R) < SLd(R) the special orthogonal subgroup and observe that
K < SLd(R) is compact. Denote by A < SLd(R) the subgroup of diagonal
matrices with positive entries, that is,

A = {a = diag(λ1, . . . , λd) | λ1, . . . , λd > 0, λ1 · · ·λd = 1} < SLd(R).
Denote by N = Td(R) < SLd(R) the strict upper triangular subgroup as in
Example 3.10(vi).

Lemma 3.20 (Iwasawa decomposition). The map K×A×N → SLd(R) :
(k, a, n) 7→ kan is a homeomorphism. We simply write SLd(R) = K ·A ·N .

Proof. Denote by (e1, . . . , ed) the canonical basis of Rd. The map
Ψ : K × A × N → SLd(R) : (k, a, n) 7→ kan is clearly continuous. Con-
versely, let g ∈ SLd(R) and write vi = gei ∈ Rd for every 1 ≤ i ≤ d.
By Gram–Schmidt’s orthogonalization process, set w1 = v1 and wi+1 =
vi+1 − PVi(vi+1) where Vi = Vect(v1, . . . , vi) for every 1 ≤ i ≤ d − 1. Then
( w1
∥w1∥ , . . . ,

wd
∥wd∥) is an orthonormal basis for Rd and we may find k ∈ Od(R)

such that kei = wi
∥wi∥ for every 1 ≤ i ≤ d. Then the matrix k−1g is

upper triangular and (k−1g)ii = ∥wi∥ for every 1 ≤ i ≤ d. It follows
that det(k−1) = det(k−1g) = ∥w1∥ · · · ∥wd∥ > 0 and hence k ∈ SOd(R).
Letting a = diag(∥w1∥, . . . , ∥wd∥) ∈ A, we have g = kan and the map
SLd(R) → K × A × N : g 7→ (k, a, n) is continuous. Since its inverse is
Ψ, we have showed that Ψ : K × A × N → SLd(R) : (k, a, n) 7→ kan is a
homeomorphism. □

Lemma 3.21. Endow (K,dk), (A,da), (N, dn) with their respective Haar
measure. Then the pushforward measure of∏

1≤i<j≤d

λi
λj

dk da dn

under the map K × A × N → SLd(R) : (k, a, n) 7→ kan is a Haar measure
on SLd(R).

Proof. Consider the product map Ψ : K × AN → SLd(R) : (k, p) 7→
k−1p. Since SLd(R) is unimodular, the regular Borel measure (Ψ−1)∗mSLd(R)
on K×AN is right invariant. Then (Ψ−1)∗mSLd(R) is a right invariant Haar
measure on the locally compact second countable group K ×AN and hence
(Ψ−1)∗mSLd(R) = µK ⊗ µAN where µK is a right invariant Haar measure on
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K and µAN is a right invariant Haar measure on AN . Since K is compact,
µK is also left invariant and hence we may assume that dµK(k) = dk. It

remains to prove that
∏

1≤i<j≤d
λi
λj

dadn is a right invariant Haar measure

on AN .
As explained in Examples 3.10(vi), we may assume that dmN (n) =

dn =
∏

1≤i<j≤d dnij . Observe that N ◁ AN is a normal subgroup and

define the conjugation action Ad : A↷ N by Ad(a)(n) = ana−1 for a ∈ A,
n ∈ N . Then AN = A ⋉ N and da dn is a left invariant measure on
AN by Proposition 3.9. A simple calculation shows that Ad(a)∗mN =

(
∏

1≤i<j≤d
λi
λj
)−1 ·mN . Then Proposition 3.9 implies that

∏
1≤i<j≤d

λi
λj

da dn

is a right invariant Haar measure on AN . □

For all t, u > 0, set

At = {a = diag(λ1, . . . , λd) ∈ A | ∀1 ≤ i ≤ d− 1, λi ≤ tλi+1}
Nu = {n = (nij)ij ∈ N | ∀1 ≤ i < j ≤ d, |nij | ≤ u}

St,u = K ·At ·Nu.

The Borel subset St,u ⊂ G is called a Siegel domain. We now have all the
tools to prove Theorem 3.19.

Proof of Theorem 3.19. For every t ≥ 2√
3
and every u ≥ 1

2 , we

show that SLd(R) = St,u · SLd(Z) and that St,u has finite Haar measure.
By Theorem 3.17, this implies that SLd(Z) < SLd(R) is a lattice. We divide
the proof into a series of claims.

Claim 3.22. For all t, u > 0, the Siegel domain St,u has finite Haar
measure.

Indeed, note that since K and Nu are both compact in SLd(R), using
Lemma 3.21 it suffices to prove that

κt =

∫
At

∏
1≤i<j≤d

λi
λj

da < +∞.

Observe that the map

Θ : A→ Rd−1 : diag(λ1, . . . , λd) 7→
(
log

λ2
λ1
, . . . , log

λd
λd−1

)
is a topological group isomorphism. We may choose the Haar measure da
on A that is the pushforward of the Lebesgue measure on Rd−1 by Θ−1. We
then have

κt =

∫
Rd−1

∏
1≤i<j≤d

exp(−(si + · · ·+ sj−1))1{s1,...,sd−1≥− log t} ds1 · · · dsd−1

=
d−1∏
k=1

∫ +∞

− log t
exp(−k(d− k)sk) dsk < +∞.
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Claim 3.23. For every u ≥ 1
2 , we have N = Nu · (N ∩ SLd(Z)).

Indeed, it suffices to prove Claim 3.23 for u = 1
2 . We proceed by induc-

tion over d ≥ 1. For d = 1, there is nothing to prove. Assume that the
result is true for d − 1 ≥ 1 and let us prove it for d. Let n ∈ N = Td(R)
that we write

n =

(
1 ∗
0 n0

)
where n0 ∈ Td−1(R).

By induction hypothesis, there exists γ0 ∈ Td−1(R) ∩ SLd−1(Z) such that
n1 = n0γ

−1
0 ∈ Td−1(R)1/2. Write

n

(
1 0
0 γ−1

0

)
=

(
1 x
0 n1

)
where x ∈ Rd−1.

Choose y ∈ Zd−1 such that x− y ∈ [−1/2, 1/2]d−1. Then

n =

(
1 x
0 n1

)(
1 0
0 γ0

)
=

(
1 x− y
0 n1

)(
1 y
0 1

)(
1 0
0 γ0

)
where (

1 x− y
0 n1

)
∈ N1/2 and

(
1 y
0 1

)(
1 0
0 γ0

)
∈ N ∩ SLd(Z).

This shows the result is true for d and finishes the proof of Claim 3.23.

Claim 3.24. For every t ≥ 2√
3
, we have SLd(R) = K ·At ·N · SLd(Z).

Indeed, it suffices to prove Claim 3.24 for t = 2√
3
. We proceed by

induction over d ≥ 1. For d = 1, there is nothing to prove. Assume that the
result is true for d− 1 ≥ 1 and let us prove it for d. Denote by (e1, . . . , ed)
the canonical basis of Rd. Let g ∈ SLd(R). Since Λ = gZd is a lattice in Rd,
there must exist a vector v1 ∈ Λ \ {0} such that

∥v1∥ = min {∥v∥ | v ∈ Λ \ {0}} .
By minimality of the norm of v1 ∈ Λ \ {0}, we may find v2, . . . , vd ∈ Λ \ {0}
such that (v1, . . . , vd) is a basis of Λ (see e.g. [Ca71, Corollary I.3]). Upon
further replacing v1 by −v1, there exists γ ∈ SLd(Z) such that γei = g−1vi
for every 1 ≤ i ≤ d. Note that gγe1 = v1.

Next, consider the Iwasawa decomposition gγ = kan and write

an =

(
λd−1 ∗
0 λ−1g0

)
where λ ∈ R∗

+, g0 ∈ SLd−1(R).

By induction hypothesis, there exist k0 ∈ SOd−1(R) and γ0 ∈ SLd−1(Z) such
that k−1

0 g0γ
−1
0 ∈ (Ad−1)2/

√
3 · Td−1(R). If we consider

h =

(
1 0
0 k−1

0

)
k−1gγ

(
1 0
0 γ−1

0

)
=

(
λd−1 ∗
0 λ−1 k−1

0 g0γ
−1
0

)
∈ AN
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we obtain that the diagonal coefficients of h satisfy hi,i ≤ 2√
3
hi+1,i+1 for

every 2 ≤ i ≤ d − 1. It remains to prove that h1,1 ≤ 2√
3
h2,2. Observe that

for every w ∈ Zd \ {0}, we have

∥he1∥ = ∥gγ
(
1 0
0 γ−1

0

)
e1∥ = ∥gγe1∥ = ∥v1∥ ≤ ∥gγ

(
1 0
0 γ−1

0

)
w∥ = ∥hw∥.

Using Claim 3.23, write h = diag(h11, . . . , hdd)n1γ1 where n1 ∈ N1/2 and
γ1 ∈ N ∩ SLd(Z). Then he1 = diag(h11, . . . , hdd)e1 = h11e1 and with w =
γ−1
1 e2 ∈ Zd \ {0}, we have hw = diag(h11, . . . , hdd)n1e2 = h11n12e1 + h22e2.

Then we obtain

h211 = ∥he1∥2 ≤ ∥hw∥2 = h211n
2
12 + h222 ≤

1

4
h211 + h222

and so h211 ≤ 4
3h

2
22. This finishes the proof of Claim 3.24.

A combination of Claims 3.22, 3.23, 3.24 and Theorem 3.17 implies that
SLd(Z) < SLd(R) is a lattice.

It remains to prove that SLd(Z) < SLd(R) is nonuniform. Indeed, regard
SL2(R) < SLd(R) as a subgroup in the top left corner and set

γ =

(
1 1
0 1

)
∈ SL2(Z) < SLd(Z).

Then a simple calculation shows that

gnγg
−1
n =

(
1 n−2

0 1

)
→ e with gn =

(
n−1 0
0 n

)
∈ SL2(R) < SLd(R).

Then Proposition 3.16 implies that SLd(Z) < SLd(R) is nonuniform. □

4. Howe–Moore’s property and Moore’s ergodicity theorem

4.1. Generalities on unitary representations. Let (H , ⟨ · , · ⟩) be
a (complex) Hilbert space. We always assume that ⟨ · , · ⟩ is conjugate linear
in the second variable. We denote by

U (H ) = {u ∈ B(H ) | u∗u = uu∗ = 1H }
the group of unitary operators on H . We simply write 1 = 1H . We endow
U (H ) with the strong operator topology defined as the initial topology on
U (H ) that makes the maps U (H ) → R : u 7→ ∥(u − 1)ξ∥ continuous for
all ξ ∈ H . Then U (H ) is a topological group but U (H ) need not be
locally compact. When H is separable, U (H ) is a Polish group.

Definition 3.25. Let G be a locally compact group. We say that the
mapping π : G → U (Hπ) is a strongly continuous unitary representation if
the following conditions hold:

(i) π : G→ U (Hπ) is a group homomorphism.
(ii) π : G → U (Hπ) is strongly continuous, meaning that π is a con-

tinuous map when U (Hπ) is endowed with the strong operator
topology as above.
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When π : G → U (Hπ) only satisfies condition (i), we simply say that
π is a unitary representation. When G is discrete, condition (ii) is trivially
satisfied.

The next result shows that in order to prove that the unitary represen-
tation π : G→ U (Hπ) is strongly continuous, it is enough to show that the
coefficients of π are measurable functions.

Lemma 3.26. Let G be a locally compact group, Hπ a separable Hilbert
space and π : G → U (Hπ) a unitary representation. Assume that for all
ξ, η ∈ Hπ, the map φξ,η : G → C : g 7→ ⟨π(g)ξ, η⟩ is measurable. Then π is
strongly continuous.

Proof. Let ξ ∈ Hπ be a vector. It suffices to show that the map
G → Hπ : g 7→ π(g)ξ is continuous at e ∈ G. Let Q ⊂ G be a symmetric
compact neighborhood of e ∈ G. Consider the compactly generated open
subgroup H =

⋃
n≥1Q

n < G. It further suffices to show that the map

H → Hπ : g 7→ π(g)ξ is continuous at e ∈ H. Upon replacing G by H, we
may as well assume that G is σ-compact.

As usual, we denote bymG a left invariant Haar measure on G. Let ε > 0
and set B = {g ∈ G | ∥π(g)ξ − ξ∥ < ε/2}. Then B ⊂ G is a measurable sub-
set since B =

{
g ∈ G | 2ℜ(⟨π(g)ξ, ξ⟩) > 2∥ξ∥2 − ε2/4

}
. Moreover, we have

B−1 = B and B2 = BB−1 ⊂ {g ∈ G | ∥π(g)ξ − ξ∥ < ε}. Since π(G)ξ ⊂ Hπ

is separable, there exists a sequence (gn)n in G such that (π(gn)ξ)n is dense
in π(G)ξ. This implies that

⋃
n∈N gnB = G and somG(B) > 0. Since G is σ-

compact, upon replacing B by B∩K for a suitable symmetric compact sub-
set, we may further assume that B = B−1, B ⊂ K and 0 < mG(B) < +∞.
Then 1B ∈ L2(G,B(G),mG) and φ = 1B ∗ 1B ∈ Cc(G) with supp(φ) ⊂
BB ⊂ KK. Since φ(e) = mG(B) > 0, the subset U = φ−1(0,+∞) is open,
e ∈ U and U ⊂ BB ⊂ {g ∈ G | ∥π(g)ξ − ξ∥ < ε}. □

Definition 3.27. Let G be a locally compact group and π : G →
U (Hπ) a strongly continuous unitary representation. We say that

• π has invariant vectors and we write 1G ⊂ π if the subspace of
π(G)-invariant vectors

(Hπ)
G = {ξ ∈ Hπ | ∀g ∈ G, π(g)ξ = ξ}

is nonzero. Otherwise, we say that π is ergodic and we write 1G ̸⊂ π.
• π has almost invariant vectors and we write 1G ≺ π if for every
ε > 0 and every compact subset Q ⊂ G, there exists a unit vector
ξ ∈ Hπ such that

sup
g∈Q

∥π(g)ξ − ξ∥ < ε.

Otherwise, we say that π has spectral gap and we write 1G ⊀ π.

It is clear that if 1G ⊂ π, then 1G ≺ π.

For every i ∈ {1, 2}, let πi : G → U (Hπi) be a strongly continuous
unitary representation. We say that π1 and π2 are unitarily equivalent if
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there exists a unitary operator U : Hπ1 → Hπ2 such that for every g ∈ G,
we have π2(g) = Uπ1(g)U

∗. In this situation, we will identify π1 with π2.

4.2. Examples of unitary representations. Let G be a locally com-
pact group.

The left regular representation λG. Let mG be a left invariant
Haar measure on G and simply denote by L2(G) = L2(G,B(G),mG) the
corresponding Hilbert space of L2-integrable functions on G. Define the left
regular representation λG : G→ U (L2(G)) by the formula

∀g ∈ G, ∀ξ ∈ L2(G), (λG(g)ξ)(h) = ξ(g−1h).

The left regular representation λG : G→ U (L2(G)) is a strongly continuous
unitary representation. This follows from the well known facts that the
subspace Cc(G) of compactly supported continuous functions on G is ∥ · ∥2-
dense in L2(G) and the left translation action λ : G ↷ Cc(G) is ∥ · ∥∞-
continuous (see Lemma 3.8).

Proposition 3.28. Keep the same notation as above. Then 1G ⊂ λG if
and only if G is compact.

Proof. If G is compact, then the left invariant Haar measure mG is
finite. This implies that the constant function 1G belongs to L2(G) and
is λG(G)-invariant. Conversely, assume that there exists a nonzero λG(G)-
invariant vector ξ ∈ L2(G).

Claim 3.29. There exists a σ-compact open subgroup H < G such that
ξ = 1Hξ.

Indeed, define the measurable subsets B = {h ∈ G | ξ(h) ̸= 0} and Bn ={
h ∈ G | |ξ(h)| ≥ n−1

}
for every n ≥ 1. Then B =

⋃
n≥1Bn and mG(Bn) <

+∞ for every n ≥ 1. By regularity, for every n ≥ 1, there exists an open
set Un ⊂ G such that Bn ⊂ Un and mG(Un) < +∞. To prove the claim,
it suffices to show that every open set U ⊂ G with finite Haar measure is
contained in a σ-compact open subgroup H < G.

Let U ⊂ G be a nonempty open set such that mG(U) < +∞. Let L < G
be a σ-compact open subgroup. Then the set Λ = {gL ∈ G/L | U ∩ gL ̸= ∅}
is at most countable. Letting H < G be the subgroup generated by L and
Λ, we have that U ⊂ H and H < G is σ-compact and open. This finishes
the proof of Claim 3.29.

Using Claim 3.29 and the assumption, for every g ∈ G, we have

1Hξ = ξ = λG(g)ξ = λG(g)(1Hξ) = 1gHξ.

Since ξ ̸= 0, we have gH = H for every g ∈ G and so H = G. This shows
that G is σ-compact.

We may now apply Fubini’s theorem. Indeed, since for every g ∈ G and
mG-almost every h ∈ G, we have ξ(g−1h) = ξ(h), Fubini’s theorem implies
that there exists h ∈ G such that for mG-almost every g ∈ G, we have
ξ(g−1h) = ξ(h). This further implies that ξ is essentially constant. If we
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denote by c > 0 the essential value of |ξ|2, we obtain c·mG(G) = ∥ξ∥2 < +∞
and so mG(G) < +∞. Then G is compact by Proposition 3.6. □

The Koopman representation κ. Let G be a locally compact second
countable group and (X,X , ν) a standard probability space. We endow
G with its σ-algebra B(G) of Borel subsets. Endow the product space
G × X with the product σ-algebra B(G) ⊗ X . Let G ↷ (X,X , ν) be a
probability measure preserving (pmp) action, meaning that the action map
G×X → X : (g, x) 7→ gx is measurable and that g∗ν = ν for every g ∈ G.
Denote by L2(X,X , ν) the Hilbert space of L2-integrable functions on X.
Since (X,X , ν) is a standard probability space, L2(X,X , ν) is separable.
Define the Koopman representation κ : G → U (L2(X,X , ν)) associated
with the pmp action G↷ (X,X , ν) by the formula

∀g ∈ G,∀ξ ∈ L2(X,X , ν), (κ(g)ξ)(x) = ξ(g−1x).

The Koopman representation κ : G→ U (L2(X,X , ν)) is a strongly contin-
uous unitary representation. This follows from Lemma 3.26 after noticing
that for all ξ, η ∈ L2(X,X , ν), the map

φξ,η : G→ C : g 7→ ⟨κ(g)ξ, η⟩ =
∫
X
ξ(g−1x)η(x) dν(x)

is measurable thanks to Fubini’s theorem. The constant function 1X is
κ(G)-invariant. For this reason, it is natural to consider the restriction of
the Koopman representation to the orthogonal complement L2(X,X , ν)0 =
L2(X,X , ν)⊖ C1X that we denote by κ0 : G→ U (L2(X,X , ν)0).

We say that a measurable subset Y ⊂ X is

• ν-almost everywhere G-invariant if ν(gY△Y ) = 0 for every g ∈ G.
• strictly G-invariant if gY = Y for every g ∈ G.

The next lemma clarifies the difference between the two notions.

Lemma 3.30. For any ν-almost everywhere G-invariant measurable sub-
set Y ⊂ X, there is a strictly G-invariant measurable subset Z ⊂ X such
that ν(Y△Z) = 0.

Proof. Fix a left invariant Haar measure mG on G. By assumption
and using Fubini’s theorem, the measurable subset

X0 =
{
x ∈ X | G→ C : g 7→ 1Y (g

−1x) is mG-a.e. constant
}

is ν-conull in X. For every x ∈ X0, denote by f(x) the unique essential value
of the measurable function G → C : g 7→ 1Y (g

−1x). For every x ∈ X \X0,
set f(x) = 0. Note that f(X) ⊂ {0, 1}. Fubini’s theorem implies that the
function f : X → C is measurable and f(x) = 1Y (x) for ν-almost every
x ∈ X. For every x ∈ X0 and every h ∈ G, the measurable function G →
C : g 7→ 1Y (g

−1h−1x) is mG-almost everywhere constant, hence h−1x ∈ X0

and f(h−1x) = f(x). This further implies that f is strictly G-invariant
meaning that f(g−1x) = f(x) for every g ∈ G and every x ∈ X. Set
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Z = {x ∈ X | f(x) = 1}. Then Z ⊂ X is a strictly G-invariant measurable
subset such that ν(Y△Z) = 0. □

From now on, we simply say that the measurable subset Y ⊂ X is
G-invariant if for every g ∈ G, we have ν(gY△Y ) = 0. We say that the
pmp action G↷ (X,X , ν) is ergodic if every G-invariant measurable subset
Y ⊂ X is null or conull.

Proposition 3.31. Keep the same notation as above. Then 1G ⊂ κ0 if
and only if the pmp action G↷ (X,X , ν) is not ergodic.

Proof. If the pmp action G↷ (X,X , ν) is not ergodic, then there ex-
ists a G-invariant measurable subset Y ⊂ X such that 0 < ν(Y ) < 1. Then
the nonzero vector ξ = 1Y − ν(Y )1X ∈ L2(X,X , ν)0 is κ0(G)-invariant.
Conversely, assume that there exists a nonzero κ0(G)-invariant vector ξ ∈
L2(X,X , ν)0. Upon taking the real or imaginary part of ξ, we may assume
that ξ is real-valued. Next, upon taking ξ+ = max(ξ, 0) or ξ− = max(−ξ, 0),
we may further assume that ξ ∈ L2(X,X , ν) is κ(G)-invariant, nonnegative
and ξ /∈ C1X . For every t > 0, define the G-invariant measurable subset
Xt =

{
x ∈ X | ξ(x)2 ≥ t

}
. Then the function R∗

+ → R+ : t 7→ ν(Xt) is

measurable, decreasing and satisfies ∥ξ∥2 =
∫ +∞
0 ν(Xt) dt. We claim that

there exists t > 0 such that 0 < ν(Xt) < 1. Indeed otherwise there would
exist s > 0 such that ν(Xt) = 0 for every t > s and ν(Xt) = 1 for every
t ≤ s. This would imply that ξ is ν-almost everywhere constant equal to√
s and thus ξ ∈ C1X , a contradiction. Therefore, there exists t > 0 such

that 0 < ν(Xt) < 1. This shows that the pmp action G↷ (X,X , ν) is not
ergodic. □

The quasi-regular representation λG/Γ. Let G be a locally compact
second countable group and Γ < G a lattice. We endow the locally com-
pact second countable space X = G/Γ with its σ-algebra X = B(G/Γ)
of Borel subsets (see Proposition 3.11(iii)). We denote by ν ∈ Prob(X)
the unique G-invariant Borel probability measure (see Proposition 3.15).
Then the action G ↷ (X,X , ν) is pmp. In that case, we denote by
λX : G → U (L2(X,X , ν)) the Koopman representation and we call it
the quasi-regular representation. Since G ↷ X is transitive, Lemma 3.30
implies that G ↷ (X,X , ν) is ergodic and Proposition 3.31 implies that
λ0X : G→ U (L2(X,X , ν)0) is ergodic. We can strengthen the above result
when Γ < G is a uniform lattice.

Proposition 3.32. Assume that Γ < G is a uniform lattice. Then λ0X
has spectral gap.

Proof. We may choose a Borel section σ : X → G such that σ(X)
is relatively compact in G (see Proposition 3.11 and Corollary 3.12). We
further choose the Haar measure mG on G such that σ∗ν = mG|σ(X). Set

Q = σ(X)σ(X)−1 ⊂ G. Observe that Q = Q−1 is relatively compact in
G and so mG(Q) < +∞. Let (ξn)n be a bounded sequence of vectors in
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L2(X,X , ν)0 such that limn supg∈Q ∥λ0X(g)ξn − ξn∥ = 0. Using Fubini’s
theorem, we obtain∫

X
|ξn(x)|2 dν(x) =

1

2

∫
X

(∫
σ(X)σ(x)−1

|ξn(gx)− ξn(x)|2 dmG(g)

)
dν(x)

≤ 1

2

∫
X

(∫
Q
|ξn(gx)− ξn(x)|2 dmG(g)

)
dν(x)

=
1

2

∫
Q

(∫
X
|ξn(gx)− ξn(x)|2 dν(x)

)
dmG(g)

=
1

2

∫
Q
∥λ0X(g−1)ξn − ξn∥2 dmG(g)

=
1

2
mG(Q) · sup

g∈Q
∥λ0X(g−1)ξn − ξn∥ → 0 as n→ +∞.

This implies that limn ∥ξn∥ = 0 and thus λ0X has spectral gap. □

4.3. Howe–Moore’s property for SLd(R), d ≥ 2. Let H be a (com-
plex) Hilbert space and denote by B(H ) the unital Banach ∗-algebra of all
bounded linear operators T : H → H . Besides the norm topology on
B(H ) given by the supremum norm

∀T ∈ B(H ), ∥T∥∞ = sup {∥Tξ∥ | ξ ∈ H , ∥ξ∥ ≤ 1} ,

we can define two weaker locally convex topologies on B(H ) as follows.

• The strong operator topology on B(H ) is defined as the initial topol-
ogy on B(H ) that makes the maps B(H ) → C : T 7→ ∥Tξ∥ con-
tinuous for all ξ ∈ H .

• The weak operator topology on B(H ) is defined as the initial topol-
ogy on B(H ) that makes the maps B(H ) → C : T 7→ |⟨Tξ, η⟩|
continuous for all ξ, η ∈ H .

Note that we already defined the strong operator topology on U (H ).
As a matter of fact, on U (H ), strong and weak operator topologies coin-
cide. Observe that when H is separable, both strong and weak operator
topologies are metrizable on the unit ball of B(H ) denoted by Ball(B(H )).
Moreover, Ball(B(H )) is weakly compact.

Let G be a locally compact group and π : G → U (Hπ) a strongly con-
tinuous unitary representation. We say that π is mixing if π(g) → 0 weakly
as g → ∞. Note that when G is noncompact, the left regular representation
λG : G → U (L2(G)) is mixing. Let G ↷ (X,X , ν) be a pmp action on
a standard probability space. We say that G ↷ (X,X , ν) is mixing if the
Koopman representation κ0 : G→ U (L2(X,X , ν)0) is mixing. It is easy to
check that G↷ (X,X , ν) is mixing if and only if

∀A,B ∈ X , lim
g→∞

ν(A ∩ gB) = ν(A)ν(B).
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Any mixing strongly continuous unitary representation is ergodic. In
that respect, we introduce the following terminology.

Definition 3.33. Let G be a noncompact locally compact group. We
say that G has the Howe–Moore property if any ergodic strongly continuous
unitary representation π : G→ U (Hπ) is mixing.

Observe that when G has the Howe–Moore property, for every nontrivial
strongly continuous unitary representation π : G → U (Hπ), the subrepre-
sentation π0 : G → U (Hπ ⊖ (Hπ)

G) is ergodic hence mixing. Here are
some properties enjoyed by locally compact groups with the Howe–Moore
property.

Proposition 3.34. Let G be a noncompact locally compact group with
the Howe–Moore property. The following assertions hold:

(i) For every closed normal subgroup N ◁ G, either N is compact or
N = G.

(ii) For every open subgroup H < G, either H is compact or H = G.
(iii) For every ergodic pmp action G ↷ (X,X , ν) and every noncom-

pact closed subgroup H < G, the action H ↷ (X,X , ν) is mixing.

Proof. (i) Let N ◁ G be a proper closed normal subgroup. Define
the quasi-regular representation π : G → U (L2(G/N)) and note that π =
λG/N ◦p where p : G→ G/N is the canonical factor map and λG/N : G/N →
U (L2(G/N)) is the left regular representation of the locally compact group
G/N . Since N ̸= G, we have L2(G/N)G ̸= L2(G/N). By Howe–Moore
property, the subrepresentation π0 : G → U (L2(G/N) ⊖ L2(G/N)G) is
mixing. Since π|N ≡ 1, it follows that π0|N ≡ 1 and thus N is compact.

(ii) Let H < G be a proper open subgroup. Then the homogeneous
space G/H is discrete and nontrivial. Define the strongly continuous unitary
representation π : G→ U (ℓ2(G/H)) by the formula

∀g, h ∈ G, π(g)δhH = δghH .

Since H ̸= G, the unit vector δH ∈ ℓ2(G/H) is not π(G)-invariant and so
ℓ2(G/H)G ̸= ℓ2(G/H). By Howe–Moore property, the subrepresentation
π0 : G → U (ℓ2(G/H) ⊖ ℓ2(G/H)G) is mixing. Since the nonzero vector
ξ = δH−Pℓ2(G/H)G(δH) ∈ ℓ2(G/H)⊖ℓ2(G/H)G is π(H)-invariant, it follows
that H is compact.

(iii) Let G ↷ (X,X , ν) be an ergodic pmp action and H < G a non-
compact closed subgroup. By Proposition 3.31, the Koopman represen-
tation κ0 : G → U (L2(X,X , ν)0) is ergodic. By Howe–Moore property,
κ0 : G→ U (L2(X,X , ν)0) is mixing and so is π|H : H → U (L2(X,X , ν)0).
Therefore, H ↷ (X,X , ν) is mixing. □

The main theorem of this subsection is the following well-known result
due to Howe–Moore [HM77].
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Theorem 3.35 (Howe–Moore). For every d ≥ 2, SLd(R) has the Howe–
Moore property.

As a consequence of Theorem 3.35 and Proposition 3.34(iii), we obtain
the following ergodicity result due to Moore [Mo65].

Corollary 3.36 (Moore). Let d ≥ 2 and set G = SLd(R). Let Γ < G
be a lattice and denote by ν ∈ Prob(G/Γ) the unique G-invariant Borel
probability measure. For every noncompact closed subgroup H < G, the
pmp action H ↷ (G/Γ,B(G/Γ), ν) is ergodic.

In particular, for every g ∈ G that is not contained in a compact sub-
group, the pmp dynamical system (G/Γ,B(G/Γ), ν, Tg) is ergodic.

Before proving Theorem 3.35, we need to prove some preliminary results
that are also of independent interest.

Define the following subgroups of SL2(R):

U+ =

{(
1 x
0 1

)
| x ∈ R

}
U− =

{(
1 0
x 1

)
| x ∈ R

}
A =

{(
λ 0
0 λ−1

)
| λ > 0

}
.

Observe that SL2(R) is generated by U+ ∪ U−.

Lemma 3.37. Let π : SL2(R) → U (Hπ) be a strongly continuous unitary
representation. Every π(U+)-invariant vector is π(SL2(R))-invariant.

Proof. Let ξ ∈ Hπ be a π(U+)-invariant unit vector. Define the con-
tinuous function φ : G → C : g 7→ ⟨π(g)ξ, ξ⟩. By assumption, φ is U+-bi-
invariant. For every n ≥ 1, set

gn =

(
0 −n
1
n 0

)
∈ SL2(R).

A simple calculation shows that for every λ > 0, we have(
1 λn
0 1

)
gn

(
1 n

λ
0 1

)
=

(
λ 0
1
n λ−1

)
→
(
λ 0
0 λ−1

)
.

Since φ is continuous and U+-bi-invariant, it follows that

∀a ∈ A, φ(a) = lim
n
φ(gn) = φ(1) = 1.

This further implies that π(a)ξ = ξ for every a ∈ A. It follows that φ is
A-bi-invariant.

Another simple calculation shows that for every x ∈ R, we have(
n 0
0 1

n

)(
1 0
x 1

)(
1
n 0
0 n

)
=

(
1 0
x
n2 1

)
→
(
1 0
0 1

)
.
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Since φ is continuous and A-bi-invariant, it follows that for every u ∈ U−,
we have φ(u) = 1 and so π(u)ξ = ξ.

We have showed that ξ is both π(U+)-invariant and π(U−)-invariant.
Since SL2(R) is generated by U+ ∪ U−, it follows that ξ is π(SL2(R))-
invariant. □

Let d ≥ 2. For all 1 ≤ a ̸= b ≤ d and all x ∈ R, denote by Eab(x) ∈
SLd(R) the elementary matrix defined by (Eab(x))ij = 1 if i = j, (Eab(x))ij =
x if i = a and j = b, (Eab(x))ij = 0 otherwise. We leave as an exercise to
check that SLd(R) is generated by {Eab(x) | 1 ≤ a ̸= b ≤ d, x ∈ R}. For ev-
ery 2 ≤ k ≤ d, regard SLk(R) < SLd(R) as the following subgroup:

SLk(R) ∼=
{(

A 0d−k,k

0k,d−k 1d−k,d−k

)
| A ∈ SLk(R)

}
.

For all 1 ≤ ℓ1 < ℓ2 ≤ d, denote by Hℓ1,ℓ2 < SLd(R) the (ℓ1, ℓ2)-copy of
SL2(R) in SLd(R) that consists in all matrices g ∈ SLd(R) such that gℓ1ℓ1 =
α, gℓ1ℓ2 = β, gℓ2ℓ1 = γ, gℓ2ℓ2 = δ, gii = 1 for all i ̸= ℓ1, ℓ2, gij = 0 for all
i ̸= j and {i, j} ≠ {ℓ1, ℓ2} and such that(

α β
γ δ

)
∈ SL2(R).

Lemma 3.38. Let d ≥ 2 and π : SLd(R) → U (Hπ) be a strongly contin-
uous unitary representation. Let ξ ∈ Hπ be a π(Hℓ1,ℓ2)-invariant vector for
some 1 ≤ ℓ1 < ℓ2 ≤ d. Then ξ is π(SLd(R))-invariant.

Proof. Upon permuting the indices, we may assume that ℓ1 = 1 and
ℓ2 = 2. We proceed by induction over 2 ≤ k ≤ d. By assumption, ξ is
π(SL2(R))-invariant. Assume that ξ is π(SLk(R))-invariant for 2 ≤ k ≤
d − 1 and let us show that ξ is π(SLk+1(R))-invariant. Let 1 ≤ j ≤ k and
x ∈ R. For every n ≥ 1, denote by gn ∈ SLk(R) < SLk+1(R) any diagonal
matrix such that (gn)ii = 1

n if i = j. Then a simple computation shows

that gnEj(k+1)(x)g
−1
n = Ej(k+1)(

x
n) → 1 as n → ∞ and g−1

n E(k+1)j(x)gn =
E(k+1)j(

x
n) → 1 as n→ ∞. Since π(gn)ξ = ξ, we have

∥π(Ej(k+1)(x))ξ − ξ∥ = lim
n

∥π(Ej(k+1)(x))π(gn)
∗ξ − π(gn)

∗ξ∥

= lim
n

∥π(gnEj(k+1)(x)g
−1
n )ξ − ξ∥ = 0

and so π(Ej(k+1)(x))ξ = ξ. Likewise, we have π(E(k+1)j(x))ξ = ξ. Since
SLk+1(R) is generated by

SLk(R) ∪
{
Ej(k+1)(x), E(k+1)j(x) | 1 ≤ j ≤ k, x ∈ R

}
,

it follows that ξ is π(SLk+1(R))-invariant. By induction over 2 ≤ k ≤ d, we
have that ξ is π(SLd(R))-invariant. □

Let d ≥ 2. Denote by K = SOd(R) < SLd(R) the special orthogonal
subgroup and observe that K < SLd(R) is compact. Define the subset
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A+ ⊂ SLd(R) of diagonal matrices by

A+ = {diag(λ1, . . . , λd) | λ1 ≥ · · · ≥ λd > 0, λ1 · · ·λd = 1} ⊂ SLd(R).
We now have all the tools to prove Theorem 3.35.

Proof of Theorem 3.35. Let d ≥ 2 and π : SLd(R) → U (Hπ) be
a strongly continuous unitary representation. Assuming that π is not mix-
ing, we show that there exists a nonzero π(SLd(R))-invariant vector. Since
SLd(R) is second countable, π(G)ξ is separable for every ξ ∈ Hπ and so
we may assume assume that Hπ is separable. Since π is not mixing, there
exists a sequence (gn)n in G such that gn → ∞ and π(gn) ̸→ 0 weakly.
Upon taking a subsequence, we may assume that there exists T ∈ B(H )
such that T ̸= 0 and π(gn) → T weakly. Using Lemma 2.35, there exist se-
quences (k1,n)n and (k2,n)n in K and (an)n in A+ such that gn = k1,nank2,n
for every n ∈ N. Upon taking another subsequence, we may assume that
k1,n → k1 in K and k2,n → k2 in K. This implies that π(k1,n) → π(k1) and
π(k2,n) → π(k2) strongly. This further implies that π(an) → π(k1)

∗Tπ(k2)
∗

weakly. Set S = π(k1)
∗Tπ(k2)

∗ ∈ B(H ) and observe that S ̸= 0.
For every n ∈ N, write an = diag(λ1,n, . . . , λd,n) with λ1,n ≥ · · · ≥ λd,n

and λ1,n · · ·λd,n = 1. Since an → ∞, it follows that
λ1,n

λd,n
→ +∞. A simple

computation shows that for every x ∈ R,

a−1
n E1d(x)an = E1d(

λd,n
λ1,n

x) → 1.

This implies that for every x ∈ R, we have π(E1d(x))S = S since

∀η1, η2 ∈ Hπ, ⟨π(E1d(x))Sη1, η2⟩ = lim
n
⟨π(E1d(x))π(an)η1, η2⟩

= lim
n
⟨π(a−1

n E1d(x)an)η1, π(a
−1
n )η2⟩

= ⟨η1, S∗η2⟩
= ⟨Sη1, η2⟩.

Choose η ∈ Hπ so that ξ = Sη ̸= 0. Then ξ ∈ Hπ is a nonzero π(E1d(R))-
invariant vector. Denote by H1d < SLd(R) the (1, d)-copy of SL2(R). By
Lemma 3.37, ξ is π(H1d)-invariant and by Lemma 3.38, ξ is π(SLd(R))-
invariant. This finishes the proof of Theorem 3.35. □



APPENDIX A

Appendix

Martingale convergence theorem

Let (X,X , ν) be a probability space. Let Y ⊂ X be a σ-subalgebra.
Regard L1(X,Y , ν) ⊂ L1(X,X , ν) and denote by Eν( · |Y ) : L1(X,X , ν) →
L1(X,Y , ν) the conditional expectation which is the unique ν-preserving
linear positive contraction such that Eν(f |Y ) = f for every f ∈ L1(X,Y , ν).

In this section, we prove Doob’s martingale convergence theorem.

Theorem A.1. Let (Yn)n be an increasing sequence of σ-subalgebras
of X and denote by Y = σ((Yn)n) the σ-subalgebra of X generated by⋃

n∈N Yn. Then for every f ∈ L1(X,X , ν), the sequence (Eν(f |Yn))n con-

verges to Eν(f |Y ) ν-almost everywhere and in L1(X,X , ν).

Proof. Firstly, we prove that for every f ∈ L1(X,X , ν), the asso-
ciated sequence (Eν(f |Yn))n converges to Eν(f |Y ) in L1(X,X , ν). Let
f ∈ L1(X,X , ν) and ε > 0. Since the subspace

⋃
n∈N L1(X,Yn, ν) is

∥ · ∥1-dense in L1(X,Y , ν), there exists n0 ∈ N and g ∈ L1(X,Yn0 , ν) such
that ∥Eν(f |Y ) − g∥1 ≤ ε

2 . For every n ≥ n0, using the triangle inequal-
ity and the contraction property of the conditional expectation and since
g ∈ L1(X,Yn, ν), we have

∥Eν(f |Y )− Eν(f |Yn)∥1 ≤ ∥Eν(f |Y )− g∥1 + ∥g − Eν(f |Yn)∥1
= ∥Eν(f |Y )− g∥1 + ∥Eν(g − Eν(f |Y )|Yn)∥1
≤ 2∥Eν(f |Y )− g∥1 ≤ ε.

Therefore, the sequence (Eν(f |Yn))n converges to Eν(f |Y ) in L1(X,X , ν).
Secondly, we prove that for every f ∈ L1(X,X , ν), the associated se-

quence (Eν(f |Yn))n converges to Eν(f |Y ) ν-almost everywhere. Recall that
for every g ∈ L1(X,X , ν) and every a > 0, we have ν({|g| > a}) ≤
1
a

∫
X |g| dν (Chebyshev’s inequality). We prove the following key result.

Claim A.2. Let g ∈ L1(X,X , ν) be such that g ≥ 0. Set G =
supn Eν(g|Yn) ≥ 0. Then for every a > 0, we have

ν({G > a}) ≤ 1

a

∫
X
g dν.

Let a > 0. For every n ∈ N, denote by Zn ∈ X the measurable sub-
set consisting of all elements x ∈ X for which Eν(g|Yn+1)(x) > a and
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max {Eν(g|Yk)(x) | 0 ≤ k ≤ n} ≤ a. Then we have {G > a} =
⊔

n Zn. For
every n ∈ N, since Zn ∈ Yn+1, we have

ν(Zn) ≤
1

a

∫
X
1ZnEν(g|Yn+1) dν

≤ 1

a

∫
X
Eν(1Zng|Yn+1) dν

=
1

a

∫
X
1Zng dν

=
1

a

∫
Zn

g dν.

Summing over N, we obtain

ν({G > a}) =
∑
n∈N

ν(Zn) ≤
∑
n∈N

1

a

∫
Zn

g dν ≤ 1

a

∫
X
g dν.

This finishes the proof of the claim.
Let f ∈ L1(X,X , ν). Upon taking the real and imaginary parts, we

may assume that f is real-valued. Let ε > 0. Then there exists n0 ∈ N and
g ∈ L1(X,Yn0 , ν) such that ∥Eν(f |Y )− g∥1 ≤ ε2. We may assume that g is
also real valued. For every n ≥ n0, using the triangle inequality and since
g ∈ L1(X,Yn, ν), we have

|Eν(f |Y )− Eν(f |Yn)| ≤ |Eν(f |Y )− g|+ |g − Eν(f |Yn)|
= |Eν(f |Y )− g|+ |Eν(g − Eν(f |Y )|Yn)|
≤ |Eν(f |Y )− g|+ Eν(|Eν(f |Y )− g||Yn).

Using Chebyshev’s inequality and Claim A.2, this further implies that

ν

(
lim sup

n
|Eν(f |Y )− Eν(f |Yn)| ≥ 2ε

)
≤ ν (|Eν(f |Y )− g| ≥ ε) + ν

(
sup
n

Eν(|Eν(f |Y )− g||Yn) ≥ ε

)
≤ 1

ε
∥Eν(f |Y )− g∥1 +

1

ε
∥Eν(f |Y )− g∥1 ≤ 2ε.

Since this holds true for every ε > 0, it follows that lim supn |Eν(f |Y ) −
Eν(f |Yn)| = 0 ν-almost everywhere. This finishes the proof. □
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