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ABSTRACT. These are the lecture notes of a graduate course on super-
rigidity given at Université Paris-Saclay, Orsay, during 2022-2023. The
aim of the course is to prove Margulis’ superrigidity theorem for higher
rank lattices (1975). We will present a recent proof due to Bader—
Furman (2018) that relies on the concept of algebraic representations
of ergodic actions. Topics include: locally compact groups and their
lattices; ergodic group theory (metric ergodicity, amenability); intro-
duction to algebraic groups (algebraic actions on algebraic varieties);
algebraic representations of ergodic actions; Margulis’ superrigidity the-
orem; Mostow—Margulis’ rigidity theorem; Margulis’ arithmeticity theo-
rem.
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CHAPTER 1

Locally compact groups

In this chapter, we give an introduction to the theory
of locally compact groups and their lattices. We show
that SLg(Z) is a lattice in SL4(R) for every d > 2.

1. Generalities on locally compact groups

DEFINITION 1.1. Let G be a group endowed with a Hausdorff topology.
We say that G is a topological group if the map G x G — G : (g, h) — gh™!is
continuous. We then say that G is locally compact if there exists a compact
neighborhood U C G of the identity element e € G.

Let G be a locally compact group. We say that G is

o first countable if there exists a countable neighborhood basis of
e €.

e second countable if there exists a countable basis for the topology
on G.

e o-compact if there exists an increasing sequence of compact subsets
Qn C G such that G = {J,,cn @n-

o compactly generated if there exists a compact subset Q C G such
that e € Q@ and G = {J,,», Q"

e totally disconnected if the connected component of e € G is equal
to {e}.

The identity element e € G has a neighborhood basis consisting of com-
pact subsets (see [DE14, Corollary A.8.2]). Any open subgroup H < G is
also closed since G\ H = | g2 9H. Any compactly generated group G is
o-compact. Any locally compact group G has a compactly generated open
subgroup H < G. Indeed, choose a compact neighborhood U C GG of e € G.
Then H = J,~; (U UU1)" is a compactly generated open subgroup of G.
In particular, any connected locally compact group is compactly generated.
A locally compact group G is second countable if and and only it is first
countable and o-compact (see [St73]). Moreover, any locally compact sec-
ond countable group G is metrizable with a proper left invariant metric (see
[St73]).

The class of locally compact groups is stable under taking closed sub-
groups, finite direct products and quotients with respect to closed normal
subgroups. More precisely, we record the following facts.

PRroOPOSITION 1.2. The following assertions hold:

5



6 1. LOCALLY COMPACT GROUPS

(i) If G is a locally compact group and H < G is a closed subgroup,
then H endowed with the induced topology is locally compact.

(ii)) Ifd > 1 and G1, ..., G4 are locally compact groups, then the product
group G = G1 % - --x Gy endowed with the product topology is locally
compact.

(iii) If G is a locally compact group and N < G is a closed normal sub-
group, the quotient group G/N endowed with the quotient topology
18 locally compact.

(iv) If G is a locally compact group acting continuously on a locally com-
pact group H by continuous automorphisms, then the semi-direct
product group G X H endowed with the product topology is locally
compact.

The proof of Proposition 1.2 is left to the reader as an exercise.

ExaMPLES 1.3. Here are some examples of locally compact groups. Let
d>1.

(i) Any group G endowed with the discrete topology is locally compact.
In these notes, any countable group will always be endowed with
its discrete topology.

(ii) Any compact group K is locally compact. In particular, the fol-
lowing compact groups

Td:{(zl,...,zd)eCd\Vlgz’gd,\zﬂ:l}
SO4(R) = {A € SLy(R) | A*A = AA* = 14}
U (d) = {A € GLy(C) | A*A = AA* = 15}

are locally compact.
(iii) Any (finite dimensional) real Lie group G is locally compact.

— The abelian group (R%, +) endowed with the usual topology is
locally compact.

— The general linear group GL4(R) can be regarded as the open
(dense) subset of invertible matrices in Mg(R) = R, En-
dowed with the topology coming from RdQ, the group GL4(R)
is locally compact.

— The special linear group SL4(R) = ker(det) is a closed sub-
group of GL4(R) and so SL;(R) is locally compact.

— The semi-direct product group SLy(R) xR? is locally compact.

(iv) Any (finite dimensional) p-adic Lie group G is totally disconnected
locally compact. In particular, for every prime p € &2, the groups
GL4(Qp) and SL4(Q,) are totally disconnected locally compact.

(v) Let T = (V,E) be a locally finite tree and denote by Aut(T) the
automorphism group of T. Endowed with the topology of point-
wise convergence, the group Aut(T) is totally disconnected locally
compact.
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Let X be a locally compact space, meaning that every x € X has a
compact neighborhood. We denote by (X)) the o-algebra of Borel subsets
of X. We say that a Borel measure v on X, that is, a measure defined on
AB(X) is regular if the following conditions are satisfied:

(i) For every Borel subset B C X, we have
v(B) =inf {v(V) |V is open and B C V'}.
(ii) For every open subset U C X, we have
v(U) =sup{v(K) | K is compact and K C U}.
(iii) For every compact subset K C X, we have v(K) < +oo.
When v is nonzero, define the support of v by

supp(v) = [ |{F | F C X is closed and »(X \ F) = 0}.

Observe that supp(v) is closed and v(X \ supp(v)) = 0.

If any open subset of X is o-compact, then any Borel measure on X that
satisfies condition (iii) is regular (see [Ru87, Theorem 2.18]). In particular,
using [DE14, Lemma A.8.1(i)], if X is a locally compact second countable
space, then any open subset of X is o-compact and thus any Borel measure
on X that satisfies condition (iii) is regular.

Denote by C.(X) the space of compactly supported continuous functions
on X. We say that a linear functional ® : C.(X) — C is positive if ®(f) > 0
for every f € C.(X)+. By Riesz’s representation theorem (see [Ru87,
Theorem 2.14]), for every positive linear functional ® : C.(X) — C, there
exists a unique regular Borel measure v on X such that

WGC&@,¢U%iéﬂ@®@)

In that case, we will simply write ® = v. Note that for every regular Borel
measure v on X and every p € [1,400), the space C.(X) is || - ||,-dense
in the Banach space LP(X, 2", v) of all v-equivalence classes of p-integrable
functions on X.

THEOREM 1.4 (Haar). Let G be a locally compact group. Then there
exists a nonzero reqular Borel measure mg on G that is unique up to mul-
tiplicative constant and that satisfies one of the following equivalent condi-
tions:

(i) For every Borel subset B C G and every g € G, mg(gB) = mg(B).
(ii) For every f € C.(G) and every g € G,

| rta mamen) = [ g dme
We say that mq is a left invariant Haar measure on G.

For a proof of Theorem 1.4, we refer the reader to [HR79, Chapter 15].
The locally compact group G is o-compact if and only if the left invariant
Haar measure mg is o-finite.
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Theorem 1.4 also implies that there exists a nonzero regular Borel mea-
sure pug on G that is unique up to multiplicative constant and that satisfies
one of the following equivalent conditions:

(i) For every Borel subset B C G and every g € G, uc(Bg) = pa(B).
(ii) For every f € C.(G) and every g € G,

/ f(hg) duc(h) = / £(h) duc(h)
G G

We say that ug is a right invariant Haar measure on G. Indeed, any left
invariant Haar measure mg on G gives rise to a right invariant Haar measure
g on G by the formula

VB € #(G), pa(B)=mg(B™").

The next proposition shows that any left invariant Haar measure has
full support.

PRrROPOSITION 1.5. Let G be a locally compact group and mqg a left in-

variant Haar measure on G. Then supp(mg) = G. Moreover, for every
f € Co(G) 4 such that f # 0, we have [, f(h)dmg(h) > 0.

PROOF. Since mg # 0, Conditions (ii) and (iii) in the definition of
regularity imply that there exists a compact subset K C G such that 0 <
ma(K) < 4o0o. Let U C G be a nonempty open subset. There exist
g1,---,9n € G such that K C (J;_; ¢;U. This implies that

0 <ma(K) <ma(| JaU) < ma(gl) =n-ma(U)
i=1 i=1
and so mg(U) > 0. Thus, supp(mg) = G.
Moreover, let f € C.(G)4 such that f # 0. Then there exist ¢ > 0 and
an open subset U C G such that f(h) > e for every h € U. This implies
that

/ f(h)dmg(h) > / edmag(h) =€ -mg(U) > 0.
G U
This finishes the proof. ([

The next proposition gives a characterization of compact groups in terms
of the Haar measure.

PRrROPOSITION 1.6. Let G be a locally compact group and mqg a left in-
variant Haar measure on G.
Then G is compact if and only if mg(G) < +oo.

ProOOF. Firstly, assume that G is compact. Then by regularity we have
mag(G) < +oo.

Secondly, assume that G is not compact. Take a compact neighborhood
K C G of e € G and set gy = e. We have mg(K) > 0 by Proposition 1.5.
Since KK ~! is compact, there exists g; € G such that g1 € G\ KK~
This implies that gtK N K = (). By induction, define g, € G so that
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g €EG\ (KU KU---Ug, 1 K)K~'. It follows that (¢,K), are pairwise
disjoint. This implies that

ma(G) = ma(| J gnK) =D ma(gnK) = 400 - mg(K) = +o0.
neN neN

This finishes the proof. O

Let G be a locally compact group and mg a left invariant Haar measure
on (G. The measure m¢g need not be right invariant. For every g € G,
define the nonzero regular Borel measure m¢, on G by the formula mf,(B) =
mq(Byg) for every B € (G). Since m{, is a left invariant Haar measure,
there exists an element Ag(g) € R% such that mf, = Ag(g)mg. Then
Ag : G = RY : g = Ag(g) is a group homomorphism and is called the
modular function on G. The modular function Ag does not depend on the
choice of the left invariant Haar measure mg on G. Moreover, we have

(1.1) Vf € Cu(G), Vg € G, /Gf(hg_l)dm(;(h):Ag(g)/af(h)dmg(h).

The left invariant Haar measure mg is right invariant if and only if Ag = 1.
In that case, we say that G is unimodular. We then simply refer to m¢g as
a Haar measure on G.

PROPOSITION 1.7. Let G be a locally compact group and mg a left in-
variant Haar measure on G. Then the modular function Ag : G — R is
continuous. Moreover, we have

Vf € Cu(G /f ) dme( )—/GAG(h_l)f(h)de(h).

PROOF. Choose ¢ € C.(G) such that x = [, ¢(h)dmg(h) # 0. Set
@ = supp(p). Then we have
Jo p(hg™") dma(h)
Jo e(h) dma(h)

Choose a compact neighborhood K C G of e € G. Let ¢ > 0. Since ¢ is

uniformly continuous by Lemma 1.8, there exists a neighborhood U of e € G
such that U ¢ K, U~! = U and

Yu e U, Sup{|g0(hu*1)— e(h)| | he G} <

Vge G, Aqlg) =

(QK)
Then for every u € U, we have
1
Al =11 < - [ Jol™) = o(n)] dma(h)
1 ER
< ;mG(QK)m =€

This implies that Ag : G — R is continuous at the identity element e € G
and so Ag is continuous.
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Next, observe that both of the positive linear functionals

C.(G) > C: f»—>/f ) dme(h)

C(G) > T f s /G ARV (k) dma(h)

define a nonzero right invariant regular Borel measure on G. Thus, there
exists ¢ > 0 such that

Vf e CulG / £ dma () = | Mg () dma(h)

Define ¢ € C.(G) by the formula @(h) = <p(h 1) for every h € G. Then we
have

07 [ ety amo(n) = [ G0 dma(h

- / Ac(h™)@(h) dma(h)
= [ Aali et dma(h)
_ / Ac(h Y Ag(h)e(h) dme(h)
=c / o(h) dmg(h).
G
This implies that ¢ = 1. [l

In the proof of Proposition 1.7, we used the following technical result.
Denote by (Cy(G), || - ||so) the Banach space of all bounded continuous func-
tions on G endowed with the supremum norm. Denote by A : G ~ Cp(G)
(resp. p : G ~ Cp(@)) the left (resp. right) translation action defined by
(A(g)f)(h) = f(g~'h) (resp. (p(9)f)(h) = f(hg)) for all g,h € G and all
f € C(G).

LEMMA 1.8. Let G be a locally compact group and f € C.(G) a com-
pactly supported continuous function. Then for every € > 0, there exists a
symmetric neighborhood U C G of e € G such that

sup {[|A(u) f = flloos llo(u) f = flloo [u € U} <.

Then we say that f € C.(G) is uniformly continuous.

PrOOF. Let f € C.(G) and set @ = supp(f). Let ¢ > 0 and fix a
symmetric compact neighborhood V' C G of e € G. For every g € G,
there exists an open neighborhood W, C G of g € G such that for all
wi,wy € Wy, we have |f(wi) — f(we)| < €. For every g € G, choose an
open symmetric neighborhood U, C G of e € G such that gU,U, UU,Uyg C
Wy. Then for every g € G, gU, NUyg is an open neighborhood of g € G.
Since VQV is compact, there exist n > 1 and g¢i1,...,9, € G such that
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VQV C U;—y 9iUg, N Uy, gi. Define U =V N, U,, which is a symmetric
neighborhood of the identity e € G. Then for every u € U and every g € G,
we consider the following situations:

o If g € VQV, then there exists 1 < ¢ < n such that g € g;Uy, N
Ug,gi- Since u € U C Uy, we have gu € ¢;U,U, C W, and
ug € Uy Uggi C Wy, Tt follows that |f(gu) — f(g9)] < ¢ and

|f(gu) = f(g)| <e.
e If g ¢ VQV, then gu ¢ @ and ug ¢ Q. It follows that f(g) =

f(ug) = f(gu) = 0.
We have showed that for every u € U and every g € G, we have |f(gu) —
f(g)l < e and [f(gu) = f(g)| <e. O

Let (G, ma,Ag) and (H, mg, Ap) be locally compact groups with their
respective left invariant Haar measure and modular function. Let o : G ~ H
be a continuous action by continuous group automorphisms and write G'x H
for the locally compact semi-direct product group. Recall that the group
law on G x H is given by

Vg1,92 € G,Yhi,hy € H, (g1,h1) - (92, ha) = (9192, 0, (h1)ha).

The next proposition provides an explicit calculation of the Haar measure
and the modular function on G x H.

PROPOSITION 1.9. The regular Borel measure mayx g defined on G x H
by the formulae

(1.2) Vf € Co(G x H), /G (g. ) dmeur (1)

= [ ([ a0 mato) ) amati
:/G(/Hf(g,h)de(h)> dmea(g)

is a left invariant Haar measure on G x H. Moreover, the modular function
Agwr : G x H — R satisfies

V(g,h) € Gx H, Agur(g,h) = p(g) Ac(g) Ar(h)
where p : G — RY is the continuous function defined by the formula

Vi € Co(H) Vg € G, /H F(04(h)) dma(h) = p(g) /H F(h) dmg ().

PROOF. Fubini’s theorem implies that for every f € C.(G x H), we have

[ ([ sta.manc) amu = [ ([ 0.0 amu)) dmeta)
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Denote by mgxg the unique regular Borel measure on G x H defined by
(1.2). For every f € C.(G x H) and every (g1,h1) € G x H, we have

/ (g1, 11) - (g2, b)) dm (g2, ha)
GxH

- /G F(9192, 0 (ha)ha) Az (g2, ho)
x H

:/G</H f(9192,h2)de(h2)> dme(g2)

:/H </Gf(92,h2)dmc(92)> dmp (ha)
—/G[XHf(gg,hz)dexH(g%hQ)'

This shows that max g is a left invariant Haar measure on G x H.
Consider the function p : G — R% as defined above. For every f €
Cc(G x H) and every (g2, h2) € G x H, we have

/ F((g1,hn) - (g2, ha) ™) dmerr (g1, )
Gx H
- / F(9195, 043 (h1h3 1)) dmuerr (g1, h)
GxH
~Auth) | ( / f<glgzl,o—g2<hl>>de<hl>) dmes(g1)
~ plaa) B(hz) | ( [ gt m) de<h1>) dmes(g1)
~ plg2) Do) Aua(he) [ ( /| f<gl,h1>dma<gl>> dmp(hn)

Zﬂ(g2)AG(92)AH(h2)/G Hf(gl,hl)dele(glahl)

and hence Agyw (g2, he) = p(g2) Ac(g2) Ag(he). O

ExaMPLES 1.10. Here are some examples of unimodular locally compact
groups. Let d > 1.

(i) Any group G endowed with the discrete topology is unimodular.
Indeed, in that case the counting measure m¢ is a nonzero regular
Borel measure on G that is clearly both left and right invariant.

(ii) Any compact group G is unimodular. Indeed, fix a left invariant
Haar measure mg on G. Then Ag(G) < RY is a compact sub-
group and so Ag(G) = {1}. This shows that Ag =1 and so G is
unimodular.

(iii) Any abelian locally compact group G is unimodular. The Lebesgue
measure dz; - - - dzg on R? is a Haar measure.
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(iv) Recall that the general linear group GL4(R) can be regarded as the
open (dense) subset of invertible matrices in Mg(R) = R?x - - - x R4,
For every g € GL4(R), the Jacobian of the diffeomorphism

Lg: Mg(R) = Mg(R) : (21,...,2a) = (921, .., g%a)

is equal to |det(g)|?. It follows that a left invariant Haar measure
mq on G = GLy(R) is given by

dmg(g) = \det o I 95 9= (9:3)is-
1<z J<d
For every g € GL4(R), since the Jacobian of the diffeomorphism
Ry : My(R) = My(R) : 2 — 2g

is also equal to | det(g)|¢, it follows that mg is right invariant and
so G = GL4(R) is unimodular.

(v) Recall that the special linear group SL4(R) < GL4(R) is defined
by SL4(R) = ker(det). It is known that the only normal sub-
groups of SL4(R) are {1}, {£1} and SL4(R). This implies that
ker(Agr,,(r)) = SLa(R) and so SLy4(R) is unimodular.

(vi) For every d > 2, the strict upper triangular subgroup G = T4(R)
defined as the group of all matrices g = (g;5)i; such that g;; = 0

forall1 <j<i<dandg;=1for all 1 <i<d is homeomorphic
(d—1)
2

. Under this identification, the Lebesgue measure on
dd-1) . . . . .
2 gives rise to a left and right invariant Haar measure mg on

G defined as

dmg(n H dnij, n = (ni)ij-
1<i<j<d

Indeed, for all i < j and all g,n € Ty(R), we have (gn);; = gij +
Nij + D ik GikTkj- Endow the set {(i,5) [ 1 < i < j < d} with
the lexicographical order. Then for every g € T4(R), the Jacobian
matrix of the diffeomorphism Ty4(R) — T4(R) : n +— gn is lower
triangular with diagonal entries all equal to 1. This implies that
the Jacobian of the diffeomorphism Ty(R) — T4(R) : n +— gn is
equal to 1. The same argument shows that for every g € Ty(R),
the Jacobian of the diffeomorphism Ty(R) — T4(R) : n +— ng is
equal to 1. Thus, G = T4(R) is unimodular.

2. Lattices in locally compact groups

Let G be a locally compact group and I' < G a discrete subgroup. We
say that a Borel subset .# C G is a Borel fundamental domain (for the right
translation action I' ~ G) if

V1,7 €T, £ = FunFyp=0 and |JFy=0G.
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Denote by G/T" = {gI" | g € G} the quotient space and by p: G — G/T" :
g — gI' the quotient map. Endow G/T" with the quotient topology.

ProPOSITION 1.11. Keep the same notation as above. The following
assertions hold:

(i) The quotient map p : G — G/I' is continuous and open and G/’
is Hausdorff and locally compact. Moreover, the action map G X
G/I' = G/I': (g,x) — gz is continuous.

(ii) If G/T is compact, then there exists a Borel fundamental domain
F C G that is relatively compact in G.

(iii) If G is second countable, then G /T is second countable. Moreover,
there exists a Borel fundamental domain % C G such that for every
compact subset Y C G/T, the subset p~1(Y)N.F C G is relatively
compact in G.

PrOOF. (i) Endow the quotient space G/I" = {gI' | ¢ € G} with the
quotient topology. By definition, a subset V' C G/T " is open if and only if
p~1(V) C G is open. Then the quotient topology is the finest topology on
G /T that makes the quotient map p : G — G/T" continuous. Let now U C G
be an open set. Then p~!(p(U)) = p~'({RT | h € U}) = U, er U~ is open
and so is p(U) C G/T" is open. This shows that p: G — G/T" is open.

Let x1,29 € G/T with x; # x9. Write 1 = ¢1I" and z9 = goI'. Note
that go ¢ g1I". Choose a compact neighborhood U; C G (resp. Us C G3) of
g1 € G (resp. g2 € G). Since U{lUl C G is compact and since I' < G is
discrete, the set A = {y € ' | Uy NUyy # 0} is finite. For every v € A, since
g1 # g27, there exist neighborhoods U, of g; € G and V, of g2y € G such
that U, NV, = (). Set

Wy=Uin (U, and Wo=0Tpn (] Vyy "
YEA vEA
Then for every v € T', we have W1 N Way = (. Indeed, if v € T\ A,
then Uy NUsy = 0. If v € A, then U, N (Vo7 1)y = 0. Thus, we have
p(W1) Np(W3) = 0. This shows that G/I" is Hausdorff.

Let z = gI' € G/I". Choose a compact neighborhood K C G of e € G.
Then gK is a compact neighborhood of g € G and so p(gK) is a compact
neighborhood of z € G/I'. This shows that G/T" is locally compact.

Define the action map a : G x G/T' - G/T : (g,x) — gz. Recall
that the multiplication map m : G x G — G is continuous. Since the map
idgxp: GxG— GxGJI':(g,h) — (g,hI') is continuous and open, the
commutative diagram

GxG —2 @

lid xp lp

G x G —— G/T

shows that the action map a : G x G/I" — G/I" is continuous.
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(ii) Since I' < G is discrete, there exists an open neighborhood V- C G
of e € G such that VNT = {e}. Since the map G x G — G : (g,h) — g~ 'h
is continuous, there exists an open neighborhood U C GG of e € G such that
U~'U c V. Replacing U with U N K where K is a relatively compact open
neighborhood of e € G, we may assume that U C G is relatively compact.
Since G/I' is compact and since (p(gU)gec) is an open covering of G/T,
there exist g1,...,9, € G such that G/T' = |J_, p(¢;U). Define the Borel
subset

n
F = LJ gﬂj\\LJngfP

i=1 j<i
By construction, .# C G is relatively compact. Then we have UveF Fy =
UL, gUT =p~ Y (UL, p(q:U)) = p~1(G/T) = G. Let 71,72 € I be elements
such that Fy; N.F~, # (. Upon exchanging 1 and -2, we may assume that
there exist ¢ > j and u, us € U such that g;uiy; = gjuzy2. By construction
and since g;u1 = gju2y27y, LegUn g;UT", we necessarily have i = j. Then
u1y1 = ugye and so u;lul = 'ygfyfl ce U 'UNT c VNI = {e}. This shows
that v1 = 72 and thus .# C G is a Borel fundamental domain.

(iii) Choose a countable basis (U,), for the topology on G. Let V C
G/T be an open set. Then p~1(V) = U,er Vv C G is open and so there
exists a subfamily (U,, ) such that p=2(V) = |J, Un,. Then we have
V =p(p (V) =, p(Un,). This shows that (p(Uy,)), is a countable basis
for the quotient topology on G/I" and so G/T is second countable. For every
n € N, choose g, € U,.

As before, there exist open neighborhoods U,V C G of e € G such that
U C G is relatively compact, U"'U C V and VNT = {e}. We claim that
G = U,en92U. Indeed, for every g € G, gU™! C G is an open set and
hence there exists n € N such that U, C gU~!. This implies that there
exists v € U such that g, = gu™! or equivalently ¢ = g,u and thus g € g,U.
Define the Borel subset

7= (gnU\ U g;J]F) :

neN k<n

Then we have (U, cr #v = U,eny 9nUT = G. Let 71,72 € T be elements such
that .F~1N.Z 7, # (. Upon exchanging 1 and 72, we may assume that there
exist m > n and wuy,us € U such that g,nui1v1 = gnusye. By construction
and since g, u1 = gpuay27y; Le ¢,U N goUT, we necessarily have m = n.
Then u17y1 = ug7ye and so uglul = 727{1 ceU'UNT c VNI = {e}.
This shows that v; = 72 and thus .# C G is a Borel fundamental domain.
Let Y C G/T be a compact subset. Since (p(gnU))n is an open covering of
Y, there exist n; < .-+ < ng such that ¥ C Ulep(gmU). Then we have
p I (Y)NZF C UjL0(9;U \ U, ¢:UT) and so p~H(Y)N.ZF C G is relatively
compact. ([
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Observe that when G is a locally compact o-compact group, any discrete
subgroup I' < G is necessarily countable. Indeed, since G is o-compact,
the left invariant Haar measure mg is o-finite. We may then choose a
Borel probability measure p € Prob(G) such that p ~ mg. We may also
choose open neighborhoods U,V C G of e € G such that UU~! € V and
VNI = {e}. Then (YU) er is a family of pairwise disjoint open subsets.
Moreover, since mg(yU) = mg(U) > 0 for every v € T, it follows that
w(yU) > 0 for every v € I'. This implies that I" is necessarily countable.

COROLLARY 1.12. Let G be a locally compact second countable group
and T’ < G a discrete subgroup. Then there ezists a Borel map o : G/T' — G
such that
o(G/T') = F is a Borel fundamental domain,

o(l) =e,

x =o(x)l for every xz € G/T,

o(Y) C G is relatively compact for every compact subset Y C G/T.
We then simply say that o : G/T' — G is a Borel section.

ProoF. Choose a Borel fundamental domain .# C G as in Proposition
1.11(iii) such that e € .#. Then p|z : # — G/T is Borel and bijective. This
implies that the map o = (p|#)~! : G/T — G is Borel (see [Zi84, Theorem
A.4]) and satisfies all the required properties. O

DEFINITION 1.13. Let GG be a locally compact group and I' < G a discrete
subgroup. We say that I' < G is uniform or cocompact if G/T" is compact.

We say that I' < G is a lattice if there exists a G-invariant regular Borel
probability measure v € Prob(G/T).

Define the linear mapping 7 : C.(G) — C.(G/T) : f — f by the

formula
Vge G, flgD)=>_ flgv).
vel’

We claim that 7 : C.(G) — C.(G/T) is surjective. Indeed, let ¢ € C.(G/T)
be a function and denote by @ = supp(y¢) C G/T its compact support.
Choose a relatively compact open neighborhood V' C G of e € GG. Then there
exist g1, ..., gn € G such that @ C U, p(¢;V). Set K = p~1(Q)NU, 9:V.
Then K C G is a compact subset such that p(K) = @. By Urysohn’s lemma
(see e.g. [DE14, Lemma A.8.1(ii)]), we may choose fx € C.(G)+ such that
f‘K = lK.

Define the function f : G — C by the formula f(g) = %ﬁ((g)
if 7(frk)(gl') # 0 and f(g) = 0 otherwise. Then supp(f) C supp(fx) is
compact and f is continuous on G since 7 (fx)(gI') > 0 on a neighborhood
of Q. Thus, f € C.(G) and we have .7 (f) = .

ProprosITION 1.14. Let G be a locally compact group and I' < G a
uniform discrete subgroup. Then G is unimodular and I' < G is a lattice.
If G is moreover compactly generated, then I' < G is finitely generated.
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PrOOF. Fix a right invariant Haar measure ug on G. Consider the
positive linear functional

D :C(G/T) = C: Frs /G £(9) duc(g).

In order to check that ® is well-defined, it suffices to show that if ¢ € C.(G)
is such that @ = 0, then we have chp )dug(g) = 0. Indeed, for every
¥ € C.(@G), using Fubini’s theorem, we have

[ pmysmduat) = X [ oo duath

ver

- ) dpug(h)
WGZ; / e

- /G (B (hT) dp (h).

Since the map C.(G) — C(G/T) : f = f is surjective, there exists 1) €
C.(G) such that 1) = 1 on the compact subset supp(¢)I' € G/I'. Therefore,
we obtain

/ o(h) dug(h) = / (R (D) dug(h) = / B (h) du(h) = 0.
G G

G

By Riesz’s representation theorem, there exists a unique regular Borel mea-
sure v on G/T" such that

VS € (), /G £(h) du(h) = /G F(hT) du(hT).

Note that the above argument does not use the fact that I' < G is uniform.
However, since I' < G is uniform, G/I' is compact and we have 0 <
v(G/T') < +o0. Up to normalization, we may assume that v(G/I") = 1.
Define the left invariant Haar measure mg on G by the formula mg(B) =
pa(B™Y) for every B € %(G). Then for every B € %(G) and every g € G,
we have

(ge11c)(B) = pa(g~'B) = ma(B™'g) = Aa(g) ma(B™") = Aq(g) na(B)

and so g.ug = Ag(g) e. By uniqueness in the previous construction, we
obtain g.v = Ag(g) v for every g € G. Since v € Prob(G/I) is a probability
measure, we obtain Ag(g) =1 and g.v = v for every g € G. Thus, Ag =1
and so G is unimodular. Moreover, v € Prob(G/I') is G-invariant and so
I' < G is a lattice.

Assume moreover that G is compactly generated. Choose a compact
subset @ C G such that e € Q and G = |J,,»; Q". Since G/I" is compact,
we may choose a compact subset K C G such that p(K) = G/T" (see the
proof of surjectivity of the map 7 : C.(G) — C.(G/I')). Upon replacing
Q@ by QU K, we may further assume that ) -I' = G. Then Sy = Q NT is
finite. Moreover, since Q2 is compact, there exists a finite subset S; C T’
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such that Q? C QS;. Indeed, otherwise we could find sequences (g, ), in
Q?, (hn)n in Q and (v,), in I' such that g, = h,7, for every n € N and
(¥n)n are pairwise distinct. This would imply that v, = h;'g, € Q*NT
for every n € N. Since Q3 is compact and I' < G is discrete, @3 N T must
be finite, a contradiction. Set S = Sy US; C I'. Then @ NI" C S and for
every n > 1, we have Q"' C QS™. We claim that S is a finite generating
set for I'. Indeed, by construction, we have Q NI" C S. Next, let n > 1 and
yeQ"'NT c QS*"NTI. Then v = g7, where g € Q and ~, € S™. This
implies that y,' =g € QNI Cc S. Then v = gy, € SS" = " and
hence Q"' NT C S™*1. This implies that T = |J,~, Q"N C |J,,~; S™ and
so I' is finitely generated. - B O

ProposITION 1.15. Let G be a locally compact group that possesses a
lattice ' < G. Then G s unimodular. Moreover, there is a unique G-
invariant regular Borel probability measure v € Prob(G/T").

PROOF. Let v € Prob(G/I") be a G-invariant regular Borel probability
measure. We claim that there exists a unique left invariant Haar measure
mg on G such that

(13)  VfeCuG), /G sama(n = [ Far) angr)

Indeed, the well-defined positive linear functional

Ce(G) = C: [ f(gl") dv(gl")
G/T
is left invariant. By Riesz’s representation theorem, there exists a unique
left invariant Haar measure mg on G for which (1.3) holds.
Applying (1.1), for every f € C.(G) and every v € I', letting f, =
f(-771) € Cu(G), we have

Ac(y) /G F(h) dmg (h) = /G £ (h) dma(h)

= f(RD) dv(hT)
G/T

= f(RD) dv(hT)
G/T

— [ s dman)
G

This implies that Ag(y) = 1 for every v € I'. Consider the well-defined con-
tinuous mapping A : G/I" — R% : gI' = Ag(g). Then n = A,v € Prob(R%)
is a Borel probability measure that is invariant under multiplication by
Ag(g) for every g € G. This implies that Ag = 1 and so G is unimod-
ular.
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Observe that (1.3) together with surjectivity of .7 : C.(G) — C.(G/TI)
imply that there is a unique G-invariant regular Borel probability measure
v € Prob(G/T). O

The next proposition provides a group-theoretic characterization of uni-
form lattices in locally compact groups.

ProposITION 1.16. Let G be a locally compact group and I' < G a
lattice. The following assertions are equivalent:
(i) T < G is uniform.
(ii) There exists a compact neighborhood U C G of e € G such that for
every g € G, we have gTg~ ' NU = {e}.

PROOF. (i) = (ii) Assume that I' < G is uniform. Since I' < G is
discrete, we may choose a compact neighborhood W C G of e € (G such that
I'nW = {e}. Next, we may choose a symmetric compact neighborhood
V C W of e € G such that VVV C W. Observe that for every h € V, we
have

ACA PNV c RN A WVR)A  c (TN W)R™! = {e}.
By compactness of G/T", there exist n > 1 and ¢i,...,9, € G such that
G/T = U, gip(V). Set U = N\, 9:;Vg;'. Then for every g € G, there
exist 1 <7 <n and h € V such that gI' = g;hl' and hence

gTg ' NU = ghTh™ g ' nU C g;(hTA™ ' NV)g; = {e}.

(ii) = (i) Denote by v € Prob(G/T") the unique G-invariant regular Borel
probability measure and by m¢g the unique Haar measure on G such that
(1.3) holds. Assume that there exists such a compact neighborhood U C G
of e € G. Choose a compact neighborhood V' C G of e € G such that
V=1V c U. Choose a nonnegative function ¢ € C.(G) such that 0 < ¢ < 1
and supp(p) C V. Set € = [, ¢(h) dma(h).

For every g € G, define ¢, = ¢(-g7') € C.(G). Note that 0 < p, <1
and supp(py) C Vg. Moreover, we have supp(@,) C VgI'. Since m¢ is right
invariant, we have

e = /G o(h) dma(h)
— [ ealh) dmath)
G
_ / B=(hT) du(hT)
G/T
- / B=(hT) dv(hT)
Vgl'

— /V . > pg(hy) dv(hT).

yel’
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We claim that for every h € VgI', there is at most one v € I' such that
hvy € Vg. Indeed, if 71,7 € I' are elements such that hvy;, hys € Vg, then
gwflfyzg_l € V'V c U. Since gT'g~' NU = {e}, we have 71 = 2. Since
0 < ¢4y < 1 and supp(py) C V4, it follows that

€= /V gFZgog(h’y)dy(hF) < / 1dy(hl') = v(Vgl).

~er Vgl

We have showed that v(VgI') > € for every g € G.
Let FF C G be a finite subset for which for every g,h € F such that
g # h, we have VgI' N VAD = ). Then we have

fF-e <> v(VgD) =v(| ) VgD) <1
geFr geF

and hence #F < e~!. We may then choose a maximal finite subset F' C G
with the aforementioned property. It follows that for every g € GG, we have
VgL NVET # () and hence gI' € V-'VFIL Cc UFT. Since UFT C G/T is
compact, it follows that G/T' = UFT is compact. O

When G is a locally compact second countable group, we prove a very
useful criterion to ensure that a discrete subgroup I' < G is a lattice.

THEOREM 1.17. Let G be a locally compact second countable group and
I' < G a discrete subgroup. The following assertions are equivalent:

(i) I' < G is a lattice.

(ii) G is unimodular and there is a Borel fundamental domain F C G
for the right translation action T' ~ G such that 0 < mg(F) <
+00.

(iii) G is unimodular and there is a Borel subset & C G such that
S-T'=G and 0 < mg(6) < +o0.

PRrROOF. Recall that since G is a locally compact second countable group,
the discrete subgroup I' < GG is necessarily countable.

(i) = (ii) We already know that G is unimodular by Proposition 1.15.
Denote by v € Prob(G/I") the unique G-invariant regular Borel probability
measure. Denote by mg the unique Haar measure on G satisfying (1.3).
Since G is locally compact second countable, (1.3) holds for every nonnega-
tive Borel function f : G — R,. In particular, for f = 17, we have f = 1
and so

ma(F) = /C;f(h) dmg(h) = /G/Ffdu(hf) =1 < +o0.

Since mg(G) > 0, G = U, Fv and ma(Fv) = ma(F) for every v € T,
we also have mg(F) > 0.
(ii) = (iif) It is trivial.
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(iii) = (i) Following the proof of Proposition 1.14 and since my is right
invariant, we may consider the well-defined nonzero left invariant linear func-
tional

®:CA(G)T) = C: frs /Gf(g) dmg(g).

By Riesz’s representation theorem, there exists a unique nonzero G-invariant
regular Borel measure v on G/T" such that (1.3) holds. Since G is locally
compact second countable, (1.3) holds for every nonnegative Borel function
f: G — Ry. In particular, for f = 1g, we have f > 1 and so

v(G/T) < fdu(hr):/f(h)dmg(h)zmc(6)<+oo.
G/T G

Then ﬁV € Prob(G/T") is a G-invariant regular Borel probability mea-

sure and so I' < (G is a lattice. O

Let us point out that when I' < G is a lattice, all Borel fundamental
domains for the right translation action I' ~ G have the same finite Haar
measure. Indeed, whenever %1, %3 C G are Borel fundamental domains,
since the Haar measure m¢ on G is right invariant, we have

ma(F1) =Y ma(F10 Fay)

~yel’
= Z mg(yl’y*l N e9})

= m(;(ﬁQ).

ExaMPLES 1.18. Here are some examples of lattices in locally compact
groups.

(i) For every d > 1, the discrete subgroup Z¢ < R? is a uniform lattice.
(ii) More generally, any lattice I' < G in a locally compact second
countable abelian group G is necessarily uniform.
(iii) The discrete Heisenberg group H3(Z) < H3(R) is a uniform lattice
in the continuous Heisenberg group Hs(R):

1 =z =z

H3(Z2) = 01 y||xyz€Z
0 0 1
1 =z =z

HyR)={ (0 1 y| ey z2eRr
0 0 1

(iv) More generally, any lattice I' < G in a locally compact second
countable nilpotent group G is necessarily uniform.
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3. SL4(Z) is a lattice in SL4(R), d > 2
In this section, we prove the following theorem due to Minkowski.

THEOREM 1.19 (Minkowski). For every d > 2, the discrete subgroup
SL4(Z) < SL4(R) is a nonuniform lattice.

Before proving Theorem 1.19, we need to prove some preliminary results
that are also of independent interest.

Let d > 1. Endow R? with its canonical euclidean structure. Denote by
K = S04(R) < SLg4(R) the special orthogonal subgroup and observe that
K < SL4(R) is compact. Denote by A < SL4(R) the subgroup of diagonal
matrices with positive entries, that is,

A:{a:diag()\l,...,)\d)\/\1,...,)\d>0, )\1~--)\d=1}<SLd<R).

Denote by N = T4(R) < SL4(R) the strict upper triangular subgroup as in
Example 1.10(vi).

LEMMA 1.20 (Iwasawa decomposition). The map K x Ax N — SLg(R) :
(k,a,n) — kan is a homeomorphism. We simply write SLz(R) = K- A-N.

PROOF. Denote by (ei,...,eq) the canonical basis of R?. The map
U:KxAxN — SLg(R) : (k,a,n) — kan is clearly continuous. Con-
versely, let g € SL4(R) and write v; = ge; € R? for every 1 < i < d.
By Gram—Schmidt’s orthogonalization process, set w; = v; and w41 =

viy1 — Py (viy1) where V; = Vect(vy,...,v;) for every 1 <i < d — 1. Then
(”:ﬁ—i”, ce HZ}”—ZH) is an orthonormal basis for R? and we may find k& € Og(R)
such that ke; = ”g—’” for every 1 < i < d. Then the matrix k= 1g is
upper triangular and (k=1g); = ||w;| for every 1 < i < d. It follows
that det(k™!) = det(k~'g) = ||lwi|---|Jwg] > 0 and hence k € SO4(R).
Letting a = diag(||w1], ..., ||lwq|]) € A, we have ¢ = kan and the map

SLg(R) - K x Ax N : g — (k,a,n) is continuous. Since its inverse is
U, we have showed that ¥ : K x A x N — SLy4(R) : (k,a,n) — kan is a
homeomorphism. O

LEMMA 1.21. Endow (K,dk), (A,da), (N, dn) with their respective Haar
measure. Then the pushforward measure of

% dkdadn

1<i<j<d "

under the map K x A x N — SL4(R) : (k,a,n) — kan is a Haar measure
on SL4(R).

PRrROOF. Counsider the product map ¥ : K x AN — SLy(R) : (k,p) —
k~!p. Since SL4(R) is unimodular, the regular Borel measure (¥ 1), mgr, J(R)
on K x AN is right invariant. Then (\Il_l)*mSLd(R) is a right invariant Haar
measure on the locally compact second countable group K x AN and hence
(\Il_l)*mSLd(R) = pug @ pan where pg is a right invariant Haar measure on
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K and pap is a right invariant Haar measure on AN. Since K is compact,
px is also left invariant and hence we may assume that dux (k) = dk. It
remains to prove that ngi <j<d i—; dadn is a right invariant Haar measure
on AN.

As explained in Examples 1.10(vi), we may assume that dmpy(n) =
dn = [];<;cj<qdnij. Observe that N < AN is a normal subgroup and
define the conjugation action Ad: A ~ N by Ad(a)(n) = ana™! for a € A,
n € N. Then AN = A x N and dadn is a left invariant measure on
AN by Proposition 1.9. A simple calculation shows that Ad(a).my =
-1

i .. . . i
(Ii<icj<a )\—j) -my. Then Proposition 1.9 implies that [ [, ;<4 - dadn

is a right invariant Haar measure on AN. ([

For all t,u > 0, set
={a=diag(A1,...,N\g) € A|VI<i<d—1,\ <thiy1}
Ny ={n=(ny)ij € N |Vl <i<j<d,|n| <u}
Giu=K-A;- Ny.
The Borel subset &;, C G is called a Siegel domain. We now have all the
tools to prove Theorem 1.19.

ProoF oF THEOREM 1.19. For every t > % and every u > %, we

show that SLq(R) = &;, - SL4(Z) and that &;,, has finite Haar measure.
By Theorem 1.17, this implies that SL4(Z) < SLg4(R) is a lattice. We divide
the proof into a series of claims.

Cram 1.22. For all ¢t,u > 0, the Siegel domain &;, has finite Haar
measure.

Indeed, note that since K and N, are both compact in SLg(R), using
Lemma 1.21 it suffices to prove that

Ai
Ky = /A H X da < 4o00.
t1<i<j<d "7

Observe that the map

©: AR diag(Ay, ..., M) — <10g>\2,...,log Ad )
A1 Ad—1

is a topological group isomorphism. We may choose the Haar measure da
on A that is the pushforward of the Lebesgue measure on R4~ by ©~1. We
then have

Rt = / H eXp 31 s Sj—l))l{sl,.‘.,sd,lzflogt} dsy---dsg_
Y <i<j<d

H/ exp(—k(d — k)sy) dsg, < +00.
logt
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CLAIM 1.23. For every u > 1, we have N = N, - (N N SLy(Z)).

Indeed, it suffices to prove Claim 1.23 for u = % We proceed by induc-
tion over d > 1. For d = 1, there is nothing to prove. Assume that the
result is true for d — 1 > 1 and let us prove it for d. Let n € N = T4(R)
that we write

Ono

By induction hypothesis, there exists 79 € Tg—1(R) N SLg—1(Z) such that
ny = nofyo_l € Tg1(R)1 /5. Write

n<1 01>:<1 x> where 2 € RL
0 v 0

Choose y € Z%~! such that z —y € [~1/2,1/2]1. Then
(1 =z 1 0
"= 0 )0
(1 z—y\ (1 y 1 0
—\0 ni 0 1 0 Yo

1 z—y 1 y\/1 O

This shows the result is true for d and finishes the proof of Claim 1.23.
Cramm 1.24. For every t > %, we have SLy(R) = K - Ay - N - SL4(Z).

n= (1 *> where ng € Ty_1(R).

where

Indeed, it suffices to prove Claim 1.24 for t = % We proceed by

induction over d > 1. For d = 1, there is nothing to prove. Assume that the
result is true for d — 1 > 1 and let us prove it for d. Denote by (e, ..., eq)
the canonical basis of R%. Let g € SLy(R). Since A = gZ% is a lattice in R?,
there must exist a vector v; € A\ {0} such that

[[o1]] = min {[jo]| | v € A\ {0}}

By minimality of the norm of v; € A\ {0}, we may find v, ...,v5 € A\ {0}
such that (vy,...,vq) is a basis of A (see e.g. [CaT71, Corollary 1.3]). Upon
further replacing vy by —wv1, there exists v € SLy4(Z) such that ve; = g~ tv;
for every 1 < i < d. Note that gye; = vy.

Next, consider the Iwasawa decomposition gv = kan and write

2\d-1 * *
an = < 0 )\_190> where X € R%, go € SLg—1(R).

By induction hypothesis, there exist ky € SO4_1(R) and 79 € SLy—1(Z) such
that ko_lggfyo_l € (Ad—l)z/\/g - Ty—1(R). If we consider

1 0, 4 1 0 N1 * >
h = 1k 1] = _ 1] € AN
<0 ko 1) 9 <0 Yo 1) < 0 A lkolgon!
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we obtain that the diagonal coefficients of h satisfy h;; < %hi+17i+1 for
every 2 <7 < d— 1. It remains to prove that hy; < %hgg. Observe that
for every w € Z%\ {0}, we have

1 0 1 0
e p— = < p— .
[heall = llgy (0 70_1) eill = llgyerll = foall < llgv (0 %—1) wl| = [[hw]

Using Claim 1.23, write h = diag(hi1, ..., hqq)n1y1 where n; € Ny/y and
v1 € NN SLy(Z). Then he; = diag(hi1,...,hqq)er = hi1e1 and with w =
7;162 € Zd \ {0}, we have hw = diag(hn, ey hdd)n1€2 = h11n12€1 + h22€2.
Then we obtain
1
3, = ||her||* < ||hw||* = A3 niy + h3q < thl + h3

and so h3; < %hgg. This finishes the proof of Claim 1.24.

A combination of Claims 1.22, 1.23, 1.24 and Theorem 1.17 implies that
SL4(Z) < SLy4(R) is a lattice.

It remains to prove that SL4(Z) < SLg(R) is nonuniform. Indeed, regard
SL2(R) < SL4(R) as a subgroup in the top left corner and set

y = <(1) }) € SLy(Z) < SLy4(Z).

Then a simple calculation shows that

_ 1 n2 : nt 0
Then Proposition 1.16 implies that SL4(Z) < SL4(R) is nonuniform. O

Let 7 > 2 and Gy, ..., G, be locally compact groups. Set G = [[\_; Gi.
For every 1 < i < r, set G; = H#i G; and denote by p; : G — G the
canonical factor map.

DEFINITION 1.25. Let I' < GG be a discrete subgroup. We sayAthat r<a
is rreducible if for every 1 <i < r, the image p;(I") is dense in Gj.

ExaMPLE 1.26. Here are some examples of discrete irreducible sub-
groups I' < G in locally compact groups.

(i) Let ¢ > 2 be a square-free integer. Define the field automorphism

o:Q(/q) — QL/Q) : v+ y/q— = —y\/q. For every d > 2, the
subgroup

I'={(g,9°) | g € SL4(Z[\/@))} < SLa(R) x SL4(R)

is discrete and irreducible. Write SLq(Z[,/q]) < SLq(R) x SL4(R).
(ii) Let p € & be a prime. For every d > 2, the subgroup

= {(9.9) | 9 € SLa(Z[p~"])} < SLa(R) x SLa(Qy)
is discrete and irreducible. Write SLq(Z[p~!]) < SL4(R) x SL4(Q,).
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Borel-Harish-Chandra’s results [BHC61] provide many examples of ir-
reducible lattices in locally compact groups. We refer the reader to [Ma91,
Chapter IX] and [Be09, §2] for further details.

EXAMPLES 1.27. Let d > 2.

(i) The discrete subgroup SL4(Z) < SL4(R) is a nonuniform lattice
(see Theorem 1.19).
(ii) For every square-free integer ¢ > 2, the discrete subgroup

SLa(Z[\/q]) < SLa(R) x SLq4(R)

is a nonuniform irreducible lattice.
(iii) For every prime p € &, the discrete subgroup

SLa(Z[p~']) < SLa(R) x SLq4(Qp)

is a nonuniform irreducible lattice.
(iv) More generally, for every finite set of primes S = {p1,...,p,} C 2,
the discrete subgroup

SLa(Z[S™"]) < SLa(R) x SLa(Qp,) X -+ x SLa(Qp,)

is a nonuniform irreducible lattice.
(v) Let d > 3 and p > ¢ > 1 such that p + ¢ = d. Define

s (0
PETN0 0 —V21,
I = {9 € SLAZIV)) | 9Jp'g = Jpa )

G = {9 € SLq(R) | gJpq'g = Jp,q} :
Then I' < GG is a uniform lattice.



CHAPTER 2
Ergodic group theory

In this chapter, we give an introduction to ergodic
group theory. We prove a dynamical dichotomy re-
sult for continuous isometric actions of SLy(R), d > 2.
We also discuss unitary representation theory for lo-
cally compact groups in relation with ergodic theory.
Finally, we investigate the notion of amenability for
groups and group actions.

1. Ergodic theory

1.1. Topological dynamics. In this subsection, we give an introduc-
tion to topological dynamics and we prove a dynamical dichotomy result for
continuous isometric actions of SLg(R), d > 2.

Let G be a locally compact group, X a Hausdorff topological space and
G ~ X a continuous action in the sense that the action map G x X —
X : (g,x) — gz is continuous. For every z € X, we denote by Gx =
{9z | g € G} C X its G-orbit and by Stabg(z) = {g € G | gz = 2} < G its
stabilizer subgroup (note that Stabg(z) < G is closed subgroup). Denote
by G\X = {Gz | x € X} the quotient space endowed with the quotient
topology. Then the quotient map p : X — G\ X : x — Gz is continuous and
open. In general, G\ X behaves pathologically with respect to the quotient
topology.

Firstly, we investigate when the quotient space G\ X is Ty. A topological
space Z is said to be Ty if for all z1, 20 € Z such that z; # 2o, there exists
an open set U C Z such that z; € U and 290 ¢ U or z; ¢ U and 23 € U.
A subset Y C Z of a topological space is locally closed in Z it Y = FNU
where F' C Z is closed and U C Z is open.

ProprosITION 2.1. Let G be a locally compact group, X a Hausdorff
topological space and G ~ X a continuous action. Assume that for every
x € X, the orbit Gx is locally closed in X. Then the quotient space G\X 1is
Tp.

PROOF. Denote by p : X — G\X the quotient map that is continuous
and open. Let 1,29 € X. Assume that p(x;) and p(z3) are not separated
by an open set of G\X. Let U C X be an open set such that z; € U.
Then p(U) C G\X is an open set such that p(z1) € p(U). It follows that
p(z2) € p(U) and so z2 € p~(p(U)) = Ugeg 9U. This further implies

27
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that 21 € Gay and so Gz; C Gxg. Likewise, we have Gxo C Gz1. Then
Gz1 = Gxy. Since Gy C X is locally closed, Gzo is open in Gzo. Since
Gz is dense in Gz, it follows that Gz NGwy # () and so Gy = Gxy. This
shows that X\G is Tp. O

Secondly, we investigate when the quotient space G\X is Hausdorff.
We need to introduce some further terminology. We say that a Hausdorff
topological space Y is a J# -space if for any subset C' C Y, we have that C is
closed when C N K is closed for every compact subset K C Y. Examples of
Hausdorff 7 -spaces include locally compact spaces and metrizable spaces.
A continuous map f : X — Y is properif f~!1(K) C X is compact for every
compact subset K C Y.

LEMMA 2.2. Let X be a Hausdorff topological space and Y a Hausdorff
topological # -space. Then any continuous proper map f : X — Y is closed.

ProoOF. Let f : X — Y be a continuous proper map. Let C C X be
a closed subset. Since Y is a J#-space, in order to show that f(C) C Y is
closed, it suffices to show that f(C) N K is closed for every compact subset
K CY. Let K CY be a compact subset. Since f is proper, f~1(K) is
compact and so is f~1(K) N C. Since f is continuous, f(f~1(K)NC) =
f(C)N K is compact hence closed since Y is Hausdorft. O

We say that a continuous action G ~ X is proper if the continuous map
GxX:XxX:(g9,x2) = (z,9x) is proper. The next proposition provides
a sufficient condition for the quotient space G\ X to be Hausdorff.

PROPOSITION 2.3. Let G be a locally compact group, X a Hausdorff
topological space such that X x X is H -space and G ~ X a proper continu-
ous action. Then the quotient space G\X is Hausdorff. Moreover, for every
x € X, the orbit Gx C X is closed and the stabilizer subgroup Stabg(z) < G
18 compact.

PROOF. Denote by p : X — G\X the quotient map that is continuous
and open. Write f: G x X — X x X : (g,z) — (x,gx). Since the map f is
proper, for every x € X, Stabg(z) x {z} = f~'({z,2}) € X x X is compact
and so the stabilizer subgroup Stabg(z) < G is compact. Since the map f
is closed by Lemma 2.2, for every z € X, f(G x{z}) ={z} x Gz C X x X
is closed and so Gz C X is closed.

Since the map f is closed by Lemma 2.2, f(G x X) C X x X is closed
and so its complement X x X \ f(G x X) C X x X is open. Since the map
pxp: XxX = G\X xG\X isopen, (pxp)(X xX\f(GxX)) C G\XxG\X
is open. This further implies that the diagonal

A={(z2)|2€ G\X} = G\X x G\X \ (p x p)(X x X'\ f(G x X))
is closed. Thus, the quotient space G\ X is Hausdorff. O

In order to state the main result of this subsection, we introduce the
following terminology.
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DEFINITION 2.4. Let G be a locally compact group. We say that G
satisfies the dynamical dichotomy for isometric actions if whenever G ~
(X,d) is a continuous isometric action on a separable metric space, then
either there exists x € X such that gr = x for every g € G or the action
G ~ X is proper.

The main result of this subsection shows that for every d > 2, SLy(R)
satisfies the dynamical dychotomy for isometric actions. More generally, we
have the following result.

THEOREM 2.5 (Bader—Gelander [BG14]). Any noncompact simple con-
nected real Lie group G satisfies the dynamical dichotomy for isometric ac-
tions.

We will prove Theorem 2.5 for G = SL4(R), d > 2. First, we need to
prove some preliminary results that are also of independent interest. The
next easy result is commonly known as Mautner’s phenomenon. We refer
the reader to [BG14] for some historical background.

LEMMA 2.6 (Mautner’s phenomenon). Let G be a locally compact group,
(X,d) a metric space and G ~ X a continuous isometric action. Let (gn)neN
be a sequence of elements in G and h € G such that lim,, g,hg, ' = e. Let
x € X be a point for which lim,, g,x = x. Then hx = .

Proor. We have
d(hz,z) = limd(hg, 'z, g, 'z) = limd(gnhg, ‘=, ) = d(lim g, hg, 'z, z) = 0.
Thus, hx = x. O

Letd > 2. Forall1 <a # b <dandallt € R, denote by Ey(t) € SLg(R)
the elementary matrix defined by (Eu(t))i; = 1if @ = j, (Eap(t))i; = t if
i=aand j =0, (Eu(t))i; = 0 otherwise. We leave as an exercise to check
that SL4(R) is generated by {Equ(t) | 1 < a # b < d,t € R}. For every
2 <k <d, regard SLi(R) < SLy4(R) as the following subgroup:

SLy(R) = {( A O ) | Ac SLk(R)} < SLy(R).

Ok,d—k la—k,d—k
For all 1 < ¢; < {3 < d, denote by Hy, 4, < SL4(R) the (¢1,¢2)-copy of
SL2(R) in SLg(R) that consists of all matrices g € SLy(R) such that gg, ¢, =

@, ooy = B7 9oty = 7y Gloly = 57 Gii = 1 for all % 7& 51)627 9ij = 0 for all
i # j and {i,j} # {{1,¢2} and such that

(: ?) € SLy(R).

LEMMA 2.7. Let d > 2. Let (X,dx) be a metric space and SLg(R) ~
(X,dx) a continuous isometric action. Let x € X be a Hy, 4,-fized point for
some 1 <0y < ly <d. Then x € X is a global fized point.
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PrRoOOF. Upon permuting the indices, we may assume that /1 = 1 and
¢y = 2. We proceed by induction over 2 < k < d. By assumption,
x € X is a SLa(R)-fixed point. Assume that z is a SLi(R)-fixed point
for 2 < k < d—1 and let us show that z is a SLj;(R)-fixed point. Let
1<j<kandteR. Forevery n > 1, denote by g, € SLi(R) < SLi+1(R)
any diagonal matrix such that (g,)i = % if # = 7. Then a simple com-
putation shows that gnEj(kH)(t)ggl = Ej(kﬂ)(%) — 1 asn — oo and
gglE(k+1)j(t)gn = E(k+1)j(%) — 1 as n — oo. Since g,z = z for every
n > 1, Lemma 2.6 implies that ;) (t)r = = for every ¢t € R. Likewise,
we have E(,1);(t)r = z for every t € R. Since SLiy1(R) is generated by
SLi(R) U {Ej41) (1), By () | 1 < j < k,t € R}, it follows that z is a
SLj+1(R)-fixed point. By induction over 2 < k < d, it follows that z is a
SL4(R)-fixed point. O

Let d > 2. Denote by K = SO4(R) < SL4(R) the special orthogonal
subgroup and observe that K < SL4(R) is compact. Define the subset
AT C SLy(R) of diagonal matrices by

AT = {diag(A1,..., X)) [ A1 > > Ag >0, Ao Mg = 1} C SLy(R)
and by A < SLg(R) the subgroup of diagonal matrices generated by A™.
LEMMA 2.8 (Cartan decomposition). We have SLy(R) = K - AT - K.

PrOOF. Let g € SLg(R). By polar decomposition, we may write g =
koh where kg € K and h € SLy(R) is symmetric positive definite. By
diagonalization, there exists ko € K such that kohks l'— ¢ € A*. Then
g = kiaks with k; = koky ' € K. 0

We now have all the tools to prove Theorem 2.5.

PROOF OF THEOREM 2.5. Let d > 2 and write G = SL4(R). Let
(X,dx) be a separable metric space and G ~ (X,dx) a continuous iso-
metric action. Assuming that the action G ~ X is not proper, we show
that there exists a global fixed point. Since G is second countable and X is
a separable metric space and since the map GxX — X x X : (g,z) — (z, gx)
is not proper, there exist a sequence (g, )nen in G such that g, — oo in G,
a sequence (Zn)nen in X and z,y € X such that lim, (2, gnzy,) = (z,y) in
X x X. Using Lemma 2.8, there exist sequences (k1 »)nen and (ko n)nen in K
and (an)nen in AT such that g, = k1 nanks, for every n € N. Upon taking
a subsequence, we may further assume that £y, — k1 in K and k2, — ko
in K. Set 1 = k:l_ly € X and z2 = kox € X. Choose an increasing func-
tion ¢ : N — N such that b, = ayya,' = oo in G. Since G ~ (X, d)
is continuous and isometric, we have lim, a,z2 = z1, lim, a,; lyi = x9 and
lim,, b,z1 = 21.

For every n € N, upon conjugating b, by an element in K and using again
the fact that K is compact, we may assume that b, = diag(Ain,..., Agn) €
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AT with Ay, > -+ > Agp and Aj -+ Agp = 1. Since b, — oo, it follows

that ;‘2—” — 400. A simple computation shows that for every t € R,

Ad,n
b Bra(t)bn = Fra(§™

1,n

t)y—1 as n— oo

Then Lemma 2.6 implies that Ey4(t)z; = x1 for every t € R. Likewise, we
have Eg1(t)x1 = x1 for every ¢t € R. Then Lemma 2.7 further implies that
x1 € X is a global fixed point. This finishes the proof of Theorem 2.5. [J

1.2. Measurable dynamics. In this subsection, we assume that the
group G is locally compact second countable. We endow G with its o-
algebra Z(G) of Borel subsets. We fix a left invariant Haar measure m¢g on
G. Let X be a standard Borel space and denote by Prob(X) the standard
Borel space of all Borel probability measures on X. We say that the action
G ~ X is Borel if the action map G x X — X : (g, x) — gx is Borel. We say
that the action G ~ X is tame if the quotient Borel space G\ X is countably
separated. Recall that a Borel space Z is countably separated if there exists a
countable family (U,)nen of Borel subsets of Z that separates the points in
Z in the following sense: for every z1, zo € Z such that z; # 2z, there exists
n € N such that z; € U, and 23 ¢ U, or z; ¢ U, and 29 € U,. If the Borel
action G ~ X is tame, then the quotient Borel space G\ X is standard by
Theorem A.1. We record the following consequence of Proposition 2.1.

PROPOSITION 2.9. Let G be a locally compact second countable group,
X a Polish space and G ~ X a continuous action. Assume that for every
x € X, the orbit Gz is locally closed in X. Then the Borel action G ~ X
is tame and the quotient Borel space G\X is standard.

PRrOOF. By Proposition 2.1, the quotient space G\ X is Tp. Since X is
a Polish space, there is a countable basis of open sets that generates the
topology on G\ X. Therefore, the Borel space G\ X is countably separated
and so the Borel action G ~ X is tame and the quotient Borel space G\ X
is standard by Theorem A.1. O

Let v € Prob(X) and assume that for every g € G, the measures v
and g,v are equivalent on X. In that case, we say that the action G ~
(X, v) is nonsingular. Recall that L®°(X,v) = L} (X, v)* so that L™(X,v) is
also endowed with the weak*-topology. By [Ru91, Theorem 3.10], we may
identify L'(X,v) with the space of all weak*-continuous linear functionals
on L*(X,v). Any nonsingular action G ~ (X,v) gives rise to an action
a: G~ L®(X,v) defined by the formula

Vg € G,VF € L®(X,v), alg)(F)=Fog

The action map G x L™(X,v) — L™(X,v) : (9, F) — a(g)(F) is separately
continuous when L*° (X, v) is endowed with the weak*-topology. This follows
from the fact that the action G ~ L'(X,v) is |- ||1-continuous. We will then
simply say that the action o : G ~ L (X, v) is weak*-continuous. We refer
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the reader to [Ta03, Proposition XIII.1.2] for further details. For every
Borel probability measure n € Prob(X) such that n < v, me may regard n €
L'(X,v) and we simply denote by n : L°(X,v) = C: f — [y f(z)dn(z)
the corresponding weak*-continuous positive unital linear functional. When
the context is clear, we will often simply write L>°(X) = L>=(X, v).

In these notes, we will be particularly interested in nonsingular actions
arising from homogeneous spaces.

THEOREM 2.10. Let G be a locally compact second countable group and
H < G a closed subgroup. Then the quotient space G/H = {gH | g € G} en-
dowed with the quotient topology is Hausdorff locally compact second count-
able. The left translation action G ~ G/H 1is continuous and transitive.
Moreover, G/H carries a unique G-invariant measure class.

PROOF. Simply denote by p: G — G/H : g — gH the quotient map.
Firstly, we show that the right multiplication action H ~ G is proper.
Indeed, consider the continuous map f : HxG — GxG : (h,g) — (g,gh™ ).
For every compact subset K C G x G, we may choose a compact subset
L C G such that K C L x L. Then we have

FUK)c f L xL)c L7'L'x L

and so f~!(K) C H x G is compact. Then Proposition 2.3 implies that the
quotient space G/H = {gH | g € G} is Hausdorff. Since the quotient map
p: G — G/H is continuous and open and since G is locally compact second
countable, it follows that G/H is locally compact second countable.

Next, define the action map a : G x G/H — G/H : (g,c) — gc. Recall
that the multiplication map m : G x G — G is continuous. Since the map
idgxp: GxG— G xG/H :(g,h) — (g9,hH) is continuous and open, the
commutative diagram

GxG —" @G

J/idG Xp lp

G xG/H —— G/H

shows that the action map a : G x G/H — G/H is continuous.

Finally, we show that G/H carries a unique G-invariant measure class.
Fix a Borel probability measure 1 € Prob(G) that is equivalent to the left
Haar measure m¢ and set v = p,u € Prob(G/H). For every g € G, since
st ~ p, we have g, ~ v. This implies that the measure class of v is
G-invariant. Let now n € Prob(G/H) be a Borel probability measure such
that g.n ~ n for every g € G. We prove the following claim.

Cramm 2.11. For every Borel function f : G/H — R, the following
assertions are equivalent:

(i) n(f) = 0.
(ii) For every ¢ € G/H, we have [, f(gc)dmg(g) = 0.
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PrROOF OF CrLAaM 2.11. (i) = (ii) For every g € G, since g.n ~ n and
since n(f) = 0, we have

fgan@ = [ £ L) dn(e) =0

G/H G/H dn

Applying Fubini’s theorem, we have

/G/H/fngmG ) dn(c // f(ge) dn(c) dma(g) = 0.

This implies that there exists ¢ € G/H such that [ f(gc)dma(g) = 0.
Then for every h € GG, we have

/ F(ghe) dma(g) / f(ge) dma(g

Since G ~ G/H is transitive, this shows that for every ¢ € G/H, we have

Jo f(ge) dma(g) = 0.
(ii) = (i) Applying Fubini’s theorem, we have

/ [ Tlae)an ame(y /G y / £(9¢) dma(g) d(c) =

This implies that there exists g € G such that fG/H f(ge)dn(c) = 0. Since
O 177 ~ 7, it follows that

n(h) = [ Fe)dn(e) = f@fﬁﬁ@m@:o

G/H G/H
This finishes the proof of the claim. U

Observe that item (ii) in Claim 2.11 does not depend on the choice of
the G-quasi-invariant measure 1 € Prob(G/H). Therefore, for every Borel
function f : G/H — R4, we have n(f) = 0 if and only if v(f) = 0. This
shows that 1 ~ v. Thus, there is a unique G-invariant measure class on
G/H. O

Next, exploiting the structure of homogeneous space, we record the fol-
lowing useful fact due to Effros (see e.g. [Zi84, Lemma 2.1.15]).

PROPOSITION 2.12. Let G be a locally compact second countable group,
X a Polish space and G ~ X a continuous action. For every x € X, the
following assertions are equivalent:

(i) The orbit Gz is locally closed in X .

(ii) The continuous map G/ Stabg(x) — Gz : gStabg(z) — gz is a
homeomorphism when G/ Stabg(x) is endowed with the quotient
topology and Gx C X is endowed with the relative topology.

PROOF. Set Y = Gz C X. Then Y is a Polish space, G ~ Y is
continuous and Gz is dense in Y. Since Stabg(x) < G is a closed subgroup,
Theorem 2.10 implies that the homogeneous space G/ Stabg(x) endowed
with the quotient topology is Hausdorff locally compact second countable.
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(i) = (ii) The map ¢ : G/ Stabg(x) — Gz : gStabg(z) — gz is con-
tinuous and bijective. In order to prove that ( : G/Stabg(x) — Gz is a
homeomorphism, it suffices to prove that ( : G/Stabg(x) — Gz is open.
Thus, it suffices to prove that the orbit map G — Gz : g — gz is open. Let
V' C G be an open neighborhood of e € G. Choose a symmetric compact
neighborhood U C G of e € G such that U? C V. We claim that Uz has
nonempty interior. Indeed, choose a countable dense subset {g,, | n € N} of
G and observe that | J,, .y 9.U = G. Then |J,,cy gnUx = Gz. Since Gz <Y
is open and since for every n € N, g,Uz is compact hence closed, Baire’s
property implies that there exists n € N such that g,Ux has nonempty in-
terior. Thus, Uz has nonempty interior. Choose v € U such that Uz is a
neighborhood of uxz. Then u~!Uz is a neighborhood of z € X and so Vz is
a neighborhood of x € X. This shows that the orbit map G — Gx is open
and so ¢ : G/ Stabg(z) — Gz is a homeomorphism.

(ii) = (i) Since G/ Stabg () is a Hausdorff locally compact second count-
able space and since the map G/ Stabg(x) — Gz is a homeomorphism, it
follows that Gx satisfies Baire’s property with respect to the relative topol-
ogy. Since G is o-compact, there exists a sequence of compact subsets
K, C G such that G = {J,ey Kn. Then Gz = |J, oy Knz and for every
n € N, K,z C Gz is compact hence closed. Then there exists n € N such
that K,z has a nonempty interior with respect to the relative topology. In
particular, there exists an open set V C Y such that V N Gx C K,z. Since
Gz C Y is dense and since V C Y is open, we have

V=VNGxCVNGz C Kx.
This further implies that Gx = GV and so Gx C Y is open. ([l

More generally, we state the following characterization due to Effros (see
[Zi84, Theorem 2.14] for a proof).

THEOREM 2.13. Let G be a locally compact second countable group, X
a Polish space and G ~ X a continuous action. The following assertions
are equivalent:

(i) For every x € X, the orbit Gx is locally closed in X.
(ii) For every x € X, the map G/Stabg(z) — Gz : gStabg(z) — gz
1s @ homeomorphism.
(iii) The Borel action G ~ X is tame.

Let now G ~ (X,v) be a nonsingular action. Let ¥ C X be a mea-
surable subset. We say that Y C X is G-invariant if for every g € G, we
have v(gY AY) = 0. Let f : X — C be a measurable map. We say that
f: X — Cis G-invariant if for every ¢ € G and v-almost every x € X,
we have f(gx) = f(x). The next lemma shows that a G-invariant measur-
able subset (resp. function) coincides v-almost everywhere with a strictly
G-invariant measurable subset (resp. function).
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LEMMA 2.14. Let G ~ (X,v) be a nonsingular action. The following
assertions hold:

(i) For any G-invariant measurable subset Y C X, there is a strictly
G-invariant measurable subset Z C X such that v(YAZ) = 0.
(ii) For any G-invariant measurable function f : X — C, there is a
strictly G-invariant measurable function F' : X — C such that
v({f #F}) =0.
PROOF. Since the proofs of items (i) and (ii) are analogous, we only
prove item (i). Fix a left invariant Haar measure m¢g on G. By assumption
and using Fubini’s theorem, the measurable subset

Xo={zeX|G—=[0,1]:9~ 1y (g 'z) is mg-a.e. constant }

is conull in X. For every x € X, denote by f(z) the unique essential value of
the measurable function G — [0,1] : g — 1y (g~ 'z). For every = € X \ X,
set f(x) = 0. Note that f(X) C {0,1}. Fubini’s theorem implies that
the function f : X — [0,1] is measurable and f(z) = 1y (z) for v-almost
every ¢ € X. For every x € Xy and every h € G, the measurable function
G — [0,1] : g = 1y(g~'h~'x) is mg-almost everywhere constant, hence
h~'z € Xoand f(h~'z) = f(z). This further implies that Xy C X is strictly
G-invariant and f is strictly G-invariant in the sense that f(¢~'z) = f(x)
forevery g € Gandeveryx € X. Set Z={x € X | f(x) =1}. ThenZ C X
is a strictly G-invariant measurable subset such that v(YAZ) = 0. O

PROPOSITION 2.15. Let G ~ (X, v) be a nonsingular action. The fol-
lowing assertions are equivalent:

(i) Every G-invariant measurable subset Y C X is null or conull.
(ii) Every G-invariant measurable function f : X — C is v-almost
everywhere constant.

PRrROOF. (i) = (ii) By contraposition, assume that there exists a G-
invariant measurable function f : X — C that is not v-almost everywhere
constant. Upon taking the real or imaginary part of f, we may assume
that f(X) C R. Next, upon taking f* = max(f,0) or f~ = max(—f,0),
we may further assume that f(X) C Ry. For every t > 0, define the
G-invariant measurable subset X; = {# € X | f(z) > t}. By Fubini’s
theorem, the function RY — R, : ¢ — v(X;) is measurable, nonincreasing
and satisfies [ f(z)dv(z) = 0+°° v(X;)dt. We claim that there exists
t > 0 such that 0 < v(X;) < 1. Indeed, otherwise there would exist s > 0
such that v(X;) = 0 for every t > s and v(X;) = 1 for every t < s. This
would imply that f = s v-almost everywhere, a contradiction. Therefore,
there exists t > 0 such that 0 < v(X;) < 1. This shows the existence of a
G-invariant measurable subset Y = X; C X that is neither null nor conull.

(ii) = (i) Let Y C X be a G-invariant measurable subset. Then the
measurable function f = 1y is G-invariant whence v-almost everywhere
constant. If f = 0 v-almost everywhere, then ¥ C X is null. If f =1
v-almost everywhere, then Y C X is conull. ([l
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DEFINITION 2.16. We say that the nonsingular action G ~ (X, v) is

e ergodic if G ~ (X, v) satisfies one of the equivalent conditions in
Proposition 2.15.
e doubly ergodic if the diagonal action G ~ (X x X, v ®v) is ergodic.

Let Z be a standard Borel space and G ~ Z a Borel action. Let f : X —
Z be a measurable map. We say that f is G-equivariant if for every g € G
and v-almost every z € X, we have f(gx) = gf(x). The next lemma shows
that any G-equivariant measurable map coincides v-almost everywhere with
a strictly G-equivariant measurable map.

LEMMA 2.17. For any G-equivariant measurable map f: X — Z, there
is a conull strictly G-invariant measurable subset Xog C X and a strictly
G-equivariant measurable map F : Xo — Z such that f = F v-almost
everywhere.

ProoOF. Fix a left invariant Haar measure mg on G. We may regard
Z C [0,1] as a Borel subset. By assumption and using Fubini’s theorem, the
measurable subset

Xo = {x EX|G—Z:gr g tf(gz)is mg-a.e. constant}

is conull in X. For every x € Xy, denote by F'(x) the unique essential
value of the measurable function G — Z : g > ¢~ ! f(gz). Fubini’s theorem
implies that the function F' : Xg — Z is measurable and f = F v-almost
everywhere. For every x € Xy and every h € G, the measurable function
G — Z: g (gh)~' f(ghz) is mg-almost everywhere constant, hence hx €
Xo and h™'F(hz) = F(x). This further implies that Xo C X is strictly
G-invariant and F' : Xy — Z is strictly G-equivariant in the sense that
F(gx) = gF(x) for every g € G and every x € Xj. O

The following terminology due to Bader—Furman [BF14] will be crucial
in these notes.

DEFINITION 2.18 (Metric ergodicity). We say that the nonsingular ac-
tion G ~ (X,v) is metrically ergodic if for every separable metric space
(Z,d) and every continuous isometric action G ~ (Z, d), every G-equivariant
measurable map f : X — Z is v-almost everywhere constant.

One of the main examples of metrically ergodic actions arise from ho-
mogeneous spaces associated with locally compact groups satisfying the dy-
namical dichotomy for isometric ations.

PROPOSITION 2.19. Let G be a locally compact second countable group
satisfying the dynamical dichotomy for isometric ations. Let H < G be
a noncompact closed subgroup. Then the action G ~ G/H is metrically
ergodic.

PROOF. Let G ~ (Z,d) be a continuous isometric action on a separable
metric space. Let f : G/H — Z be a G-equivariant measurable map.
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By Lemma 2.17 and since G ~ G/H is transitive, we may assume that
f: G/H — Z is strictly G-equivariant. Set z = f(H) € Z. For every
g € G, we have f(gH) = gf(H) = gz so that f(G/H) = Gz. Moreover, for
every h € H, we have hz = f(hH) = f(H) = z. Applying the dynamical
dichotomy to the continuous isometric action G ~ (Gz,d) and since H < G
is noncompact and H < Stabg(z), it follows that Stabg(z) = G. Then for
every g € G, we have f(gH) = gf(H) =gz =z andso f: G/H — Z is
constant. This shows that G ~ G/H is metrically ergodic. U

Next, we show that metrically ergodic actions are stable under taking
restrictions to lattices.

PRrROPOSITION 2.20. Let G be a locally compact second countable group
and I' < G a lattice. Then for any metrically ergodic action G ~ (X,v),
the restriction I' ~ (X, v) is metrically ergodic.

PROOF. Let (Z,dz) be a separable metric space and I' ~ (Z,dz) an
isometric action. Let f : X — Z be a I'-equivariant measurable map. We
need to show that f is v-almost everywhere constant.

In order to do so, we define the induced metric space (2 ,dy) as fol-
lows. As usual, denote by m¢ a Haar measure on G. Denote by mg/r the
unique G-invariant Borel probability measure on G/I". Upon replacing dz
by min(dz, 1), we may assume that dz is bounded on Z. Define 2 to be the
space of all mg-equivalence classes of measurable maps F': G — Z that are
right I'-equivariant in the sense that for mg-almost every g € G and every
v € T, we have F(gy~!) = vF(g). Observe that for all Fy,Fy, € 2, the
measurable function G — Ry : g — dz(Fi(g), F2(g)) is right T-invariant.
We may then endow the space 2 with the metric d¢ defined by

L2, dp(B) = [ da(R), Pol) dmeye(aT).
G/T
Then (Z,d#) is a separable metric space. Define the action G ~ Z by
gF : G — Z : h+ F(g~'h) for every g € G and every F € 2. We prove
the following claim.

CrAIM 2.21. The action G ~ (£, dy) is continuous and isometric.

PROOF OF CrLAIM 2.21. It is plain to see that G ~ (£, d) is isomet-
ric. It remains to prove that G ~ (2, d#) is continuous. It suffices to prove
that for every F € %, the map G — R : g — d#(gF, F) is continuous at
eeG.

Let FF € Z%. Fubini’s theorem implies that the map G — Ry : g —
d(gF, F)is measurable. Let ¢ > Oandset B={g € G |dy(gF,F) < £/2}.
Then B C G is a measurable subset such that B~! = B and B> = BB~ C
{9 € G| dy(gF,F) < e}. Since Z is separable, there exists a sequence
(gn)nen in G such that {g,F" | n € N} is dense in {¢gF | g € G}. This
implies that (J,cny9nB = G and so mg(B) > 0. Since G is o-compact,
upon replacing B by B N K for a suitable symmetric compact subset, we
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may further assume that B = B™!, B € K and 0 < mg(B) < +00. Then
1p € L2(G, #(G),mg) and ¢ = 1g*x1p € C.(G). Since p(e) = ma(B) > 0,
the subset U = ¢~ 1(0,4+00) is open, e € U and U C B? C {g € G |
dy(gF,F) < e}. This shows that the map G — Ry : g — dg(gF, F) is
continuous at e € G. O

We now have all the tools to show that f is v-almost everywhere con-
stant. Define the G-equivariant measurable map f : X — Z : z —
(9 f(g'x)). Since G ~ (X,v) is metrically ergodic, it follows that

]? is v-almost everywhere constant. Then there exists F' € % such that
f(x) = F for v-almost every x € X. Fubini’s theorem implies that there
exists g € G such that f(g~'x) = F(g) for v-almost every x € X. Thus,

f: X — Z is v-almost everywhere constant. (Il

The following proposition clarifies the relations between the various no-
tions of ergodicity we have introduced so far.

PROPOSITION 2.22. Any doubly ergodic action is metrically ergodic. Any
metrically ergodic action is ergodic.

PRrOOF. It is obvious that any metrically ergodic action is ergodic. Thus,
we only prove that any doubly ergodic action is metrically ergodic. Let G ~
(X,v) be a doubly ergodic action. Let G ~ (Z,d) be a continuous isometric
action on a separable metric space. Let f : X — Z be a G-equivariant
measurable map. Define the G-invariant measurable map X x X — R, :
(z,y) — d(f(z), f(y)). Since G ~ (X,v) is doubly ergodic, there exists
a > 0 such that d(f(z), f(y)) = « for v ® v-almost every (z,y) € X x X.
We claim that o = 0. Indeed, otherwise assume that a > 0. Choose an
essential value z € Z of the measurable f : X — Z. Denote by B(z,«a/2)
the open ball in Z of center z and radius /2. Define the measurable subset
U = f~Y(B(z,a/2)) € X and observe that v(U) > 0. By the triangle
inequality, for every (x,y) € U x U, we have d(f(z), f(y)) < d(f(x),z) +
d(z, f(y)) < a/2+ «/2 = a. This is a contradiction. Thus o = 0. By
Fubini’s theorem, we may choose x € X such that f(y) = f(z) for v-almost
every y € X. Thus, f is v-almost everywhere constant. This shows that
G ~ (X, v) is metrically ergodic. O

In the next section, we will provide a characterization of doubly ergodic
probability measure preserving (pmp) actions and we will prove that double
ergodicity and metric ergodicity are equivalent for pmp actions.

2. Unitary representations

2.1. Generalities. Let (7, (-,-)) be a (complex) Hilbert space. We
always assume that (-,-) is conjugate linear in the second variable. Denote
by B() the unital Banach x-algebra of all bounded linear operators T :
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H — A . Besides the norm topology on B(s#) given by the supremum
norm

VT € B(A), |Tloo =sup{lT¢ | €2, lIEll <1},

we can define two weaker locally convex Hausdorff topologies on B(77) as
follows.

e The strong operator topology on B(J) is defined as the initial topol-
ogy on B(J¢) that makes the maps B(5¢) — ¢ : T — T¢ contin-
uous for all £ € 7.

e The weak operator topology on B(.7) is defined as the initial topol-
ogy on B(¢) that makes the maps B(2#) — C : T — (T¢,n)
continuous for all £, € 2.

Observe that when 7 is separable, both strong and weak operator topolo-
gies are metrizable on the unit ball of B(J#) denoted by Ball(B(7¢)). More-
over, Ball(B(.77)) is weakly compact. We also denote by

U(H)={ueB(H)|uu=uu" =1y}

the group of unitary operators on . We simply write 1 = 1. On % (J¢),
strong and weak operator topologies coincide. Then % () is a topological
group but % () need not be locally compact. When . is separable,
U () is a Polish group.

Choose an orthonormal basis (e;); on ¢ and denote by

Tr:B(#)y - Ry : T — Z(Teiei>
el
the associated trace. Denote by
HS(2) ={T € B(42) | Tr(T*T) < +o0}

the space of Hilbert—Schmidt operators on . Then the space HS(5¢)
endowed with the inner product defined by (S, T)us = Tr(T*S) for all S, T €
HS(#) is a Hilbert space. Denote by # the conjugate Hilbert space and
consider the tensor product Hilbert space # & . Then the mapping

jf@alg%%HS(%):f@nH«ﬂﬁg

extends to a well-defined unitary operator W : J# ® J# — HS(2). More-
over, for every u € % () and every ( € # ® H, we have W (ul) =
uW (Q)u*.

DEFINITION 2.23. Let G be a locally compact group. We say that the
mapping 7 : G — % (A7) is a strongly continuous unitary representation if
the following conditions hold:

(i) m: G — % (H;) is a group homomorphism.

(ii) 7 : G — % (%) is strongly continuous, meaning that 7 is a con-
tinuous map when % () is endowed with the strong operator
topology as above.
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When 7 : G — % (#;) only satisfies condition (i), we simply say that
7 is a unitary representation. When G is discrete, condition (ii) is trivially
satisfied.

The next result shows that in order to prove that the unitary represen-
tation m : G — % () is strongly continuous, it is enough to show that the
coefficients of m are measurable functions.

LEMMA 2.24. Let G be a locally compact group, 7 a separable Hilbert
space and 7 : G — U (A7) a unitary representation. Assume that for all
§,n € g, the map pery : G — C: g (m(g)€,m) is measurable. Then m is
strongly continuous.

PROOF. Let & € J7. It suffices to show that the map G — 7 :
g — m(g)¢ is continuous at e € G. Let Q@ C G be a symmetric compact
neighborhood of e € G. Consider the compactly generated open subgroup
H =J,>; Q" < G. It further suffices to show that the map H — J7; :
g+ w(g)_g is continuous at e € H. Thus, we may as well assume that G is
o-compact.

As usual, we denote by m¢g a left invariant Haar measure on G. Let
e >0and set B ={g € G| |n(9)¢—¢&||l <e/2}. Then B C G is a
measurable subset since B = {g € G | 2R((w(9)¢,€)) > 2||€||? — £2/4}.
Moreover, we have B~! = B and B2 = BB~' Cc {g € G | |7(g)¢ — ¢| < €}.
Since w(G)E C H#; is separable, there exists a sequence (g )nen in G such
that (m(gn)¢)nen is dense in m(G)E. This implies that | J, .y 92 B = G and
so mg(B) > 0. Since G is o-compact, up to replacing B by BN K for a
suitable symmetric compact subset, we may further assume that B = B!,
B C K and 0 < mg(B) < 4+0o0. Then 15 € L*(G,%(G),mg) and ¢ =
1p * 1 € C.(G). Since ¢(e) = mg(B) > 0, the subset U = ¢~ 1(0, +00) is
open,e € Uand U C BBC {ge€ G| ||m(9)¢ —&| < e}. O

DEFINITION 2.25. Let G be a locally compact group and « : G —
U () a strongly continuous unitary representation. We say that
e 7 has invariant vectors and we write 1 C m if the subspace of
7(G)-invariant vectors
() = {€ € Hr | Vg € G.7(g)€ = €}

is nonzero. Otherwise, we say that 7 is ergodic and we write 1¢ ¢ .
o 7 is weakly mizing if there exists a net (g;); in G such that 7(g;) — 0
weakly as g; — oo.

Whenever m : G — % (/) is a strongly continuous unitary represen-
tation, we consider the strongly continuous unitary representation = ® 7 :
G — U (A ® H) defined by

Vge G\VEne A, (mnem)(g)(@n) =mr(g)f®n(g)n.

We prove the following useful characterization of weakly mixing unitary
representations.
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PROPOSITION 2.26. Let G be a locally compact group and w : G —
U () a strongly continuous unitary representation. The following asser-
tions are equivalent:

(i) 7 is weakly mizing.
(ii) m has no nonzero finite dimensional subrepresentation.

(iii) ™ ® T is ergodic.

PROOF. (i) = (ii) By contraposition, assume that there is a nonzero
finite dimensional subrepresentation p C 7. Denote by £ C S the finite
dimensional 7(G)-invariant subspace associated with p C . Let (g;); be
a net in G. Since J is finite dimensional, the unitary group % () is
compact and so there exist a subnet (h;); of (g;); and v € % () such
that p(hj) = v in % (%) as j — oco. In particular, the net (7(g;)); cannot
converge to 0 weakly. Thus, 7 is not weakly mixing.

(ii) = (iii) By contraposition, assume that there is a nonzero (71®7)(G)-
invariant vector ( € # ® . Consider the nonzero Hilbert-Schmidt oper-
ator W(¢) € HS(#) which satisfies W(() € n(G)'. Set T = W({)*W(() €
7(G) and note that T* =T, T > 0 and 0 < Tr(T) < +oo. Choose € > 0
small enough so that the spectral projection p = 1. .—1(T) € 7(G)" is
nonzero. Since ep < Tp < T, we have Tr(p) < e ! Tr(T) < +oo. Then
p(H) C A is a nonzero finite dimensional 7(G)-invariant subspace. Thus,
7 has a nonzero finite dimensional subrepresentation.

(iii) = (i) By contraposition, assume that 7 is not weakly mixing. Then
there exist € > 0 and a finite subset .# C ¢ such that

Vged, Y |(m(g)m >e.
EneF
Set ( =3 ccré ® €& € # ® . Then we have
(21)  VYge@, (w9960 = Y (r@én)>e
EmeF

Consider the closed convex subset ¢ = co{ (1(g9)®7(9))¢ | g € G} C H R
and denote by ¢ € ¥ its unique circumcenter. Since ¥ is (7 ® 7)(G)-
invariant, it follows that ¢ € ¢ is (7 ® 7)(G)-invariant. Moreover, (2.1)
implies that ¢ # 0. Thus, 7 ® 7 is not ergodic. ([

For every i € {1,2}, let m; : G — % (#,) be a strongly continuous
unitary representation. We say that m and mo are unitarily equivalent if
there exists a unitary operator U : J&, — ., such that for every g € G,
we have ma(g) = Um1(g)U*. In this situation, we will identify 7 with ma.

2.2. Examples of unitary representations. Let G be a locally com-
pact group.

The left regular representation Ag. Let mg be a left invariant
Haar measure on G and simply denote by L*(G) = L*(G, %(G), mg) the
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corresponding Hilbert space of L2-integrable functions on G. Define the left
reqular representation \g : G — % (L?(G)) by the formula

Vg € G, ¥E € LX(G),  (Aa(9)€)(h) = E(g™'h).

The left regular representation A\g : G — % (L*(G)) is a strongly continuous
unitary representation. This follows from the well known facts that the
subspace C.(G) of compactly supported continuous functions on G is || - ||2-
dense in L?(G) and the left translation action A : G ~ Co(G) is || - [|oo-
continuous (see Lemma 1.8).

PROPOSITION 2.27. Keep the same notation as above. Then 1g C Ag if
and only if G is compact.

Proor. If G is compact, then the left invariant Haar measure mg is
finite. This implies that the constant function 1g belongs to L?(G) and
is Ag(G)-invariant. Conversely, assume that there exists a nonzero A\g(G)-
invariant vector ¢ € L%(G).

CLAIM 2.28. There exists a o-compact open subgroup H < G such that
§=1u¢.

Indeed, define the measurable subsets B = {h € G | £(h) # 0} and
B, = {h € G| |¢(h)] > n~ '} for every n > 1. Then B = |J,~; B, and
mq(By) < +oo for every n > 1. By regularity, for every n > 1, there exists
an open set U, C G such that B, C U, and mg(U,) < +o0o. To prove
the claim, it suffices to show that every open set U C G with finite Haar
measure is contained in a o-compact open subgroup H < G.

Let U C G be a nonempty open set such that mg(U) < 400. Let L < G
be a o-compact open subgroup. Since mg(U) < 400, the set A = {gL €
G/L | UNgL # 0} is at most countable. Letting H < G be the subgroup
generated by L and A, we have that U C H and H < G is o-compact and
open. This finishes the proof of Claim 2.28.

Using Claim 2.28 and the assumption, for every g € G, we have

1h¢ == XAc(9)€ = Ac(9)(Lu§) = Lgn& = Lungns.
Since £ # 0, we have mg(H NgH) > 0 for every g € G. It follows that
gH = H for every ¢ € G and hence H = G. This shows that G is o-
compact.

We may now apply Fubini’s theorem. Indeed, since for every g € G and
mg-almost every h € G, we have £(g~'h) = £(h), Fubini’s theorem implies
that there exists h € G such that for mg-almost every g € G, we have
¢(g7'h) = &(h). This further implies that ¢ is essentially constant. If we
denote by ¢ > 0 the essential value of |¢|?, we obtain c-mg(G) = [|€]]? < +o0
and so mg(G) < +oo. Then G is compact by Proposition 1.6. O

The Koopman representation . Let G be a locally compact second
countable group and (X, %,v) a standard probability space. We simply
write (X, v) in what follows. We endow G with its o-algebra Z(G) of Borel
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subsets. Let G ~ (X, v) be a probability measure preserving (pmp) action
meaning that the action map G x X — X : (g, x) — gx is measurable (where
we endow G x X with the product o-algebra Z(G)® %) and that g.v = v for
every g € G. Denote by L2(X, v) the Hilbert space of L2-integrable functions
on X. Since (X, v) is a standard probability space, L?(X, ) is separable (see
e.g. [Zi84, Theorem A.11]). Define the Koopman representation k : G —
% (L?(X,v)) associated with the pmp action G ~ (X, v) by the formula

Vg € G,V e LY(X,v),  (k(g)€)(x) = &(g ).

The Koopman representation x : G — % (L?(X,v)) is a strongly continuous
unitary representation. This follows from Lemma 2.24 after noticing that
for all £,n € L?(X,v), the map

Pen: G = Crigm (k(g)E,m) = /X (g~ 2)n(z) dv(z)

is measurable thanks to Fubini’s theorem. The constant function 1x is
k(G)-invariant. For this reason, it is natural to consider the restriction of
the Koopman representation to the orthogonal complement L?(X,)? =
L?(X,v) © Clx that we denote by x° : G — % (L*(X,v)°). By Proposition
2.15, we obtain the following useful characterization of ergodicity.

PROPOSITION 2.29. Let G ~ (X,v) be a pmp action. Then G ~ (X, v)
is ergodic if and only if K° : G — % (L*(X,v)) is ergodic.

Next, we say that the pmp action G ~ (X,v) is weakly mizing if ° :
G — % (L*(X,v)) is weakly mixing. Using the Koopman representation, we
obtain the following characterization of weakly mixing pmp actions.

PROPOSITION 2.30. Let G ~ (X,v) be a pmp action. The following
assertions are equivalent:
(i) G ~ (X,v) is weakly mizing.
(ii) G ~ (X, v) is doubly ergodic.
(iii) G ~ (X, v) is metrically ergodic.

PROOF. The equivalence (i) < (ii) follows by applying Proposition 2.26
to m = k. By Proposition 2.22, we already know that (ii) = (iii).

It remains to prove that (iii) = (ii). Consider the separable metric
space (Z,d) = (L?(X,v),||- ||2) and the continuous isometric action x : G ~
(L2(X,v), || - ||l2). Let Y € X x X be a nonnull G-invariant measurable
subset. By Lemma 2.14(i), we may assume that Y is strictly G-invariant.
For every © € X, denote by Y, C X the measurable subset defined by
Y, = {y € X | (z,y) € Y} and set £, = 1y, € L?*(X,v). Then the
map f: X — L*(X,v) :  +— &, is measurable and G-equivariant. Since
G ~ (X,v) is metrically ergodic, it follows that f : X — L*(X,v) is v-
almost everywhere constant. Choose ¢ € L?(X,v) so that & = & = 1y,
for v-almost every x € X. Since (v ® v)(Y) > 0, we have £ # 0. Since
G ~ (X,v) is ergodic and since ¢ is x(G)-invariant, it follows that £ = alx
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for some o > 0. This further implies that v(Y,) = 1 for v-almost every
x € X and so (v ®@v)(Y) =1. Thus, G ~ (X, v) is doubly ergodic. O

The next proposition shows that ergodic pmp actions of locally compact
groups satisfying the dynamical dichotomy for isometric actions are weakly
mixing.

ProproSITION 2.31. Let G be a locally compact second countable group
satisfying the dynamical dichotomy for isometric actions. Let G ~ (X,v) be
an ergodic pmp action. Then for any noncompact closed subgroup H < G,
the action H ~ (X, v) is weakly mizing.

Proor. Consider the separable metric space (Z,d) = (L%(X, )% || - [|2)
and the continuous isometric action «° : G ~ (L*(X,v)% | - ||l2). Since
G ~ (X,v) is ergodic, the action G ~ Z has no global fixed point and
so G ~ Z is proper. Let H < G be a closed subgroup and assume that
H ~ (X,v) is not weakly mixing. By Proposition 2.26, there exists a
nonzero finite dimensional x°(G)-invariant subspace .# C L2(X,v)?. Then
Ball(#) C Z is a H-invariant compact subset. Since the map f: G x Z —
7 x 7 is proper, f~1(Ball(#") x Ball(.#")) is compact. Since H x Ball(.#") C
f1(Ball(#) x Ball(#")) is closed, it follows that H < G is compact. O

The quasi-regular representation g . Let G be a locally compact
second countable group and I' < G a lattice. We endow the locally compact
second countable space X = G/I" with its o-algebra & of Borel subsets (see
Proposition 1.11(iii)). We denote by v € Prob(X) the unique G-invariant
Borel probability measure (see Proposition 1.15). Then the action G ~
(X,v) is pmp. In that case, we denote by Ag/r : G — w (L2(G)T,v))
the Koopman representation and we call it the quasi-reqular representation.
Since G ~ X is transitive, Lemma 2.14 implies that G ~ (X, v) is ergodic
and Proposition 2.29 implies that )\OG/F 1 G — % (L3(G/T,v)?) is ergodic.

3. Amenability
3.1. Amenable groups.

DEFINITION 2.32. Let G be a locally compact group. We say that G
is amenable if any affine continuous action G ~ € on a nonempty convex
compact subset of a Hausdorff locally convex topological vector space has a
G-fixed point.

We give a few examples of locally compact amenable groups.
PROPOSITION 2.33. Any compact group is amenable.

PROOF. Denote by mg the (unique) Haar probability measure on G. Let
G ~ € be an affine continuous action on a nonempty convex compact subset
of a Hausdorff locally convex topological vector space. Define the convex
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weak*-compact subset Prob(%) = {u € Cr(%)* | p > 0 and u(ly) = 1}
and consider the affine weak*-continuous action G ~ Prob(%’) defined by

Vg € G,Vf € Cr(¥), Vi € Prob(%),  (gxp)(f) = pu(f 0 g).

Define the barycenter map Bar : Prob(%) — % as the unique continuous map
satisfying f(Bar(u)) = u(f) for every real-valued continuous affine function
f € oR(¥€). Since G ~ € is continuous affine, Bar : Prob(¢) — ¢ is G-
equivariant. Choose a point ¢ € ¥ and define the G-equivariant continuous
orbital map ¢ : G — € : g — gc. We may define y = tuymg € Prob(%).
Since m¢ is a left invariant Borel measure, it follows that g.u = p for every
g € G. This further implies that Bar(u) € ¢ is a G-fixed point. O

PROPOSITION 2.34. Any abelian locally compact group is amenable.

PRrROOF. Let G ~ € be an affine continuous action on a nonempty con-
vex compact subset of a Hausdorff locally convex topological vector space.
Whenever .# C G is a finite subset, denote by ¥ the convex compact
subset of .Z-fixed points in €. Since G is abelian, G leaves €7 globally
invariant. If we show that the compact subset ¥ is nonempty for every
finite subset % C G, by finite intersection property, we will have that the
compact subset of G-fixed points €¢ = ({€7 | # C G finite subset} is
nonempty. It remains to prove that €7 is nonempty for every finite sub-
set # C (G. By induction and since G is abelian, it suffices to prove that
€9 = {c € € | gc = ¢} is nonempty for every g € G. This in turn follows
from Markov—Kakutani’s fixed point theorem. Choose ¢ € ¥ and for every
n € N, set

Cn (c+gc+---+4g"c)eE.

- n+1
By compactness, denote by ¢, € ¥ an accumulation point of the sequence
(cn)nen. Since n_1~_20 + Z—i;gcn = Z—Iécn + n%ng”Hc and since g is a homeo-
morphism of €, it follows that gce = ¢ and so co, € 6. [l

We prove various permanence properties enjoyed by amenable locally
compact groups.

PROPOSITION 2.35. Let G, H be locally compact groups. Assume that G
is amenable. The following assertions hold:

(i) If p : G — H is a continuous homomorphism with dense range,
then H is amenable.
(ii) If H < G is a closed normal subgroup, then G/H is amenable.

PRrROOF. (i) Let H ~ € be an affine continuous action on a nonempty
convex compact subset of a Hausdorff locally convex topological vector
space. By composing with p : G — H, we obtain an affine continuous
G-action. Since (G is amenable, the affine continuous G-action has a G-fixed
point. This shows that the original affine continuous H-action has a p(G)-
fixed point. By continuity and density of p(G) in H, we obtain a H-fixed
point. Thus, H = p(G) is amenable.
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(ii) It suffices to apply item (i) to the continuous homomorphism G —
G/H. O

Let now G be a locally compact o-compact group. As usual, we denote
by #(G) the o-algebra of Borel subsets of G and we fix a left invariant Haar
measure mg on G. Denote by Ag : G — R% the modular function. For
every p € [1,400], we simply write LP(G) = LP(G, Z(G), mq). Since G is
o-compact, mg is o-finite and hence we have L°(G) = L(G)*. We denote
by A : G ~ LP(QG) the left translation action defined by

Vg € G,VF € LP(G), (Mg)F)(h) = F(g~'h).

The left translation action A\ : G ~ LP(Q) is isometric for every p € [1, +00]
and continuous for every p € [1,400). Since G ~ L*(G) need not be
continuous, we denote by UCy(G) C L*(G) the subspace of left uniformly
continuous functions

UCH(G) ={F e L™(G) | [M9)F = Flloc = 0 as g — e}

Observe that UCy(G) C L*™°(G) is a A(G)-invariant || - ||s-closed subspace.
Letting Cy(G) be the space of bounded continuous functions on G, we have
the following inclusions UCy(G) C Cy(G) C L*°(G). Observe that when G
is discrete, we have UCy(G) = Cy(G) = £*°(G). Whenever .# C L*(G) is a
|| - |loo-closed subspace such that Clg C .%#, we say that an element m € .Z*
is a mean if m(F) > 0 for every F € ., and m(1g) = 1. If .7 C L™(G)
is moreover A\(G)-invariant, we say that m € .#* is a left invariant mean if
m(A(g)F) = m(F) for every g € G and every F € .%.

Recall that the convolution product of two measurable functions Fy, F :
G — C, whenever it makes sense, is defined as

(Fy « Fy)(h) = /G Fi(9) Falg~"h) dma(g).

Set P(G) = {u € LY(G) | p > 0 and ||u|js = 1}. We will use the following
technical lemma whose proof is left to the reader.

LEMMA 2.36. The following assertions hold:
(i) If u € P(G) and F € L*™®(G), then px F € UCy(G).
(i) If (pi)ier is a net in L1(G) such that lim; ||p;||1 = 0, then for every
F € L*®(G), we have lim; ||p; * F||ooc = 0.
(iii) There exists a net (u;)icr in P(G) such that for every pu € LY(G),
we have limy; [|p; * p — pl|1 = limy [[p % p; — plj = 0.
(iv) If g € G, u € P(G) and F € L*°(G), then (AN(g)u)*xF = Xg)(u*F).
The main result of this section is a functional analytic characterization
of amenability for locally compact groups.
THEOREM 2.37. Let G be a locally compact o-compact group. The fol-
lowing conditions are equivalent:

(i) 1g < Ag, that is, the left regular representation A has almost
mvariant vectors.
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(ii) There exists a left invariant mean m € L (G)*.

(iii) There exists a left invariant mean m € UC,(G)*.

(iv) G is amenable, that is, any affine continuous action G ~ € on
a nonempty conver compact subset of a Hausdorff locally convex
topological vector space has a G-fized point.

Proor. (i) = (ii) There exists a net (& );e; of unit vectors in L?(Q)
such that for every compact subset () C G, we have
limsup [[Ac(g)& — &ll2 = 0.
b ogeq
Choose a nonprincipal ultrafilter & on I. Define the unital *-homomorphism
p: L®(G) — B(L?(G)) by the formula p(F)¢ = F¢ for every F € L®(G)
and every & € L2(G). Then we have A\g(g9)p(F)Ag(9)* = p(A(g)F) for every
g € G and every F' € L°(G). Define the mean m € L*°(G)* by the formula

YFEL¥(G), w(F)=lim (p(F)& &),
Then for every g € G and every F € L*°(G), we have
m(A(9)F) = lim (p(A(9) F)& &)
= }LH&O\G(Q)P(F))\G(Q)*&, &)
= lim(p(F)Ac(9)"&i, A (9)"&i)
=m(F).

Thus, m € L*°(G)* is a left invariant mean.

(ii) = (iii) This is trivial.

(iii) = (iv) As in Proposition 2.33, define the convex weak*-compact
subset Prob(%) = {u € Cr(%)* | © > 0 and u(ly) = 1} and consider the
affine weak*-continuous action G ~ Prob(%’) defined by

Vg € G,Vf € Cr(€),V € Prob(€), (g:p)(f) = pu(f o 9).

Recall that the barycenter map Bar : Prob(%) — % is the unique continuous
map satisfying f(Bar(u)) = wp(f) for every real-valued continuous affine
function f € oR(%). Since G ~ € is continuous affine, Bar : Prob(%¢) —
% is G-equivariant. Choose a point ¢ € ¥ and define the G-equivariant
continuous orbital map ¢ : G — € : g — gc. For every f € Cr(%), we have
foureUCy(G). We may define 1 € Prob(%) by the formula

VfeCr(?), n(f)=m(for)
Since m € UC,(G)* is a left invariant mean, it follows that g, = u for every
g € G. This further implies that Bar(u) € ¢ is a G-fixed point.

(iv) = (iii) Endow E = UC/(G)* with the weak*-topology and consider
the nonempty convex weak*-compact subset € C UC;(G)* of all means
on UCy(G). Since the action G ~ UCy(G) is || - ||co-continuous, the action
G ~ % is affine weak*-continuous. Thus, there exists a G-fixed point m € €
and so m € UCy(G)* is a left invariant mean.
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(iii) = (i) We proceed in several intermediate steps. Let m € UCy(G)*
be a left invariant mean.

CrLamM 2.38. For every p € P(G) and every F' € UCy(G), we have
m(p* F) =m(F).

Indeed, let p € P(G) and F € UCy(G). Observe that using Lemma
2.36(ii), we may assume that u € P(G) is compactly supported. Then
denote by K = supp(u) C G the compact support of p € P(G). The G-
equivariant mapping ¢ : G — UCy(G) : g — A(g)F is continuous and thus
L(K) C UCy(G) is a compact subset. Then the closed convex hull € of +(K)
is a convex compact subset of UC,(G) (see [Ru91, Theorem 3.20]). Set
v = 1, and regard v € Prob(%) by the formula

Vi€ Cu(%), wlf) = /G 1(9) F(M(g)F) dm(g).

We claim that p * F' = Bar(v) € €. Recall that f(Bar(v)) = v(f) for every
f € ax(€). For every h € G, regarding the evaluation map e, : UC,(G) —
C: f+ f(h) as an element of o/R(%), we have

Bar(v)(h) = en(Bar(v)) = v(en) = /Gu(g)eh(A(Q)F) dma(g) = (u* F)(h).

Thus, we have Bar(v) = p* F. Since m € UC,(G)* is a left invariant mean,
we can regard m € @ (%) and we obtain

m(px F) = m(Bar(v)) = /G 1(g)m(A(g)F) dma(g) = m(F).
This finishes the proof of Claim 2.38.

CrLAIM 2.39. There exists a mean my € L>(G)* such that for every
w € P(G) and every F' € L>(G), we have mo(u * F') = mo(F).

Indeed, choose pp € P(G). Thanks to Lemma 2.36(i), we may define
the mean mg € L°°(G)* by the formula mo(F') = m(po * F) for every F €
L*(G). Choose a net as in Lemma 2.36(iii). Using Lemma 2.36(ii), for
every pu € P(G), we have

mo(px* F) = li%nmo(u ;% F)
= lilmm(uo k kg x F)
= li{n m(u; * F) by Claim 2.38
= lilmm(uo « p; * F') by Claim 2.38
= m(po * F)
=mg(F).

This finishes the proof of Claim 2.39.
Denote by .# the nonempty convex weak*-compact subset of all means
on L*°(G). Hahn-Banach theorem implies that the map P(G) — . :
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p — my, defined by the formula m,(F) = [, u(g)F(g)dma(g) for every
F € L*°(G) has dense range. Thus, we can find a net (u;)ier in P(G)
such that m,, — mg for the weak*-topology. For every u € P(G), define
p? € P(G) by the formula u°P(g) = Ag(g9) *u(g?t). For every pu € P(G)
and every F' € L>(G), using Fubini’s theorem, we have

/ (¢ 10) (9) Fg) dma(g) = / () s(hg) F(g) dmE2 (g, h)
G GxG

- / pi(h ™ g) u(h)F(g) dm&2 (g, h)
GxG

— / 11:(9) (k) F (hg) dm& (g, )
GxG

— [ o pr ) F () dm o, 1)
GxG

B / 1i(g) (1P * F)(g) dma(g)-
GxG

Then Claim 2.39 implies that for every p € P(G), p* p; — p; — 0 weakly
in L1(G). Denote by J the directed set of all pairs (g,.#) where ¢ > 0 and
Z C P(G) is a finite subset endowed with the order (e1,.%1) < (g2, F2) if
and only if e1 < g9 and Zy C %;. Let j = (¢,.%) € J and consider the
Banach space (Ej, || - ||) = @ueg(Ll(G), | - ]1). The weak topology on E;
is simply the product of the weak topologies on L!(G). Then 0 belongs to
the weak closure in E; of the convex subset

G ={(nx¥ —)uesr | € P(G)} C Ej.

Hahn-Banach theorem implies that 0 belongs to the strong closure in FE;
of €j. Then we may find ¢; € P(G) such that for every u € %, we have
| % 1; — 1|l < e. Thus, we have found a net (¢j);cs in P(G) such that
for every p € P(G), we have lim; ||p * ¢; — ;|1 = 0.

Note that for every nonempty || - ||1-compact subset K C P(G), we have
lim; ||pe % 5 — 9j][1 = 0 uniformly on K. Indeed, let ¢ > 0 and choose
W1, .- fin € K such that for every p € K, there exists 1 <1 < n for which
|l — pill < e. Choose jo € J such that ||u; * ¥; — ;1 < e for every
1 < i < nand every j > jo. Then for every y € K and every j > jo,
choosing 1 < i < n such that ||u — u;|| < e, we have

e by — sl < |[(p = ) % 5010 =+ |lps * 05 — 5]

<= pills + Nl % b5 — ¥l
< 2¢.

This shows that lim; || % ¢ — 9|1 = 0 uniformly on K.
Fix ¢ > 0 and Q C G a compact subset. Fix p € P(G). The orbital
map G — P(G) : g — Ag)p is || - |[1-continuous and so «(Q) C P(G) is
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|| - |[1-compact. Lemma 2.36(iv) implies that

sup [|A(g) (i * ;) — px g1 = sup [[(Mg)p) * ¥ — x|l — 0.
geQ geQ

We may find j € J large enough so that with ( = u x¢; € P(G), we have

sup [ A ()¢ — ¢l < €%
geQ

Set £ = (/2 € L2(G), and observe that ||£|| = 1. Moreover, we have

sup [Ac(9)€ — €]12 = sup / €(g7 1) — £(h)]2 dma(h)
geQ J G

geQ

— sup / g™ 1) V2 — C() V2P dme(h)
geqQ

d h
SEZS/ (g™ ) — ¢(h)| dm(h)

= sup [A(9)¢ — ¢lh < &%
9geQ

This implies that 1 < Ag and finishes the proof of Theorem 2.37. O

We conclude this section by proving von Neumann’s result regarding
nonamenability of free groups.

THEOREM 2.40 (von Neumann). Denote by Fo = (a,b) the free group
on two generators. Then Fy is nonamenable.

PROOF. By contradiction, assume that Fo = (a, b) is amenable. Denote
by m € ¢*°(F2)* a left invariant mean. Define n : Z(Fa) — [0,1] : W —
m(1y ) and observe that n is a finitely additive left invariant probability mean
on Fo. Then we necessarily have n(F') = 0 for every finite subset F' C Fs.
In particular, we have n({e}) = 0.

Denote by W, C F4 the subset of reduced words whose first letter is a.
Likewise, consider the subsets W, -1, W, Wy—1 C Fa. Observe that Fo\{e} =
Wo U W1 U Wy, U Wy-1. Since a - (Wy U Wy UWy—1) C W, it follows that

n(We) +n(Wp) + n(Wpy-1)

n(Wa U Wy U Wy1)
n(a- (Wa U Wy U W, 1))
n(Wa).

IN

This implies that n(W;) = n(W,-1) = 0. Likewise, we have n(WW,) =
n(W,-1) = 0. This further implies that n(F3) = 0, a contradiction. O

One can show that amenability is inherited by closed subgroups (see e.g.
[Zi84, Proposition 4.2.20]). Thus, any locally compact group that contains
F5 as a closed subgroup is nonamenable.
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3.2. Amenable actions. For every p € [1,4+00], we simply denote by
LP(G) =1P(G,AB(G), mg) and by A : G ~ LP(G) the left translation action.
Let G ~ (X,v) be a nonsingular action and denote by ¢ : G ~ L*™(X)
the corresponding weak*-continuous action. Simply write L=(G x X) =
L>*(GxX,mg®v). Denote by A®c : G ~ L°(G x X)) the weak*-continuous
action arising from the diagonal nonsingular action G ~ (G x X, mg Q@ v).

DEFINITION 2.41. We say that a nonsingular action G ~ (X,v) is
amenable if there exists a unital positive linear contractive mapping & :
L>®(G x X) — L*(X) such that

(i) For every f € L*(X), we have ®(1¢ ® f) = f.
(ii) For every g € G and every F' € L™°(G x X), we have

(A @ 0)(9)F) = a(g)®(F).
We simply say that ¢ : L®(G x X) — L*(X) is a G-equivariant projection.

Amenable actions are very useful as they provide the existence of equi-
variant measurable maps.

THEOREM 2.42. Let G be a locally compact second countable group and
G ~ (X, v) an amenable nonsingular action. LetY be a compact metrizable
space and G ~'Y a continuous action. Then there exists a G-equivariant
measurable map 5 : X — Prob(Y).

PROOF. Denote by ® : L*(G x X) — L*°(X) the G-equivariant pro-
jection witnessing that the nonsingular action G ~ (X,r) is amenable.
Choose a point y € Y. Consider the G-equivariant unital positive linear
contractive mapping ¥ : C(Y) — L*(G) : f — (9 f(gy)). Regard
L*®(G) ¢ L*(G x X) and define the G-equivariant unital positive linear
contractive mapping © = ® o ¥ : C(Y) — L>(X).

Since Y is compact metrizable, C(Y') is || - || «-separable. We may choose
a countable || - ||co-dense subset . C C(Y)4 such that 1y € .. Denote
by 2 C C(Y) the countable || - ||co-dense Q[i]-linear subspace generated by
.. Then we may choose a conull measurable subset Xg C X such that
Oly : 7 — L*°(X) induces a unital positive Q[i]-linear contractive mapping
©0,9 : 7 = L°(Xo). By | - ||cc-density of Z in C(Y'), we may uniquely
extend Op ¢ to a unital positive linear contractive mapping g : C(Y) —
Z£°(Xp). Observe that for every f € C(Y), the class of ©¢(f) in L*=°(X) is
equal to ©(f) € L*°(X). Using Riesz’s representation theorem, we obtain a
measurable map 3° : Xy — Prob(Y) such that for every = € X, and every
f € C(Y), we have B2(f) = Oo(f)(x). We may extend 3° to a measurable
map 3 : X — Prob(Y) by letting 5, = n € Prob(Y) for every x € X \ Xp,
where 1 € Prob(Y') is some Borel probability measure on Y.

It remains to check that 5 : X — Prob(Y') is G-equivariant. Fix g € G.
Let f € C(Y). Then for every = € XoNg~ !Xy, we have B,.(f) = Oo(f)(g97)
and (g.5,)(f) = Oo(f o g)(x). Since O(f o g) = O(f) 0 g m L(X), it
follows that By, (f) = (g+8z)(f) for v-almost every z € X. Considering the
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countable || - ||co-dense subset 2 C C(Y'), there exists a conull measurable
subset X1 C X such that B.(f) = (9+58:)(f) for every z € X; and every
f € 2. By | | oo-density of 2 C C(Y), we obtain fg.(f) = (9+82)(f) for
every x € Xy and every f € C(Y). This implies that (4, = g+, for every
x € Xj. Thus, the measurable map §: X — Prob(Y) is G-equivariant. [

Recall that P(G) = {u € LYG) | & > 0 and ||ul; = 1}. For every
p € LY(G) and every F € L®(G x X), we denote by (u®idx)(F) € L®(X)
the unique element that satisfies
v e LY(X,v), Y((p®idx)(F)) = (1@ ¥)(F).

If p € P(G), then p®idx : L®(G x X) — L°°(X) is a unital positive linear
contractive mapping. If (u;)icr is a net in L*(G) such that lim; ||u;|1 = 0,
then for every F' € L>(G x X), we have (u; ® idx)(F) — 0 with respect to
the weak*-topology.

Firstly, we observe that all nonsingular actions of amenable groups are
amenable.

PROPOSITION 2.43. Let G be an amenable locally compact second count-
able group. Then any nonsingular action G ~ (X, v) is amenable.

PROOF. Since G is amenable, there exists a net of elements (u;);cs in
P(G) such that ||A\(g)pi—pil|1 — 0 uniformly on compact subsets K C G (see
the proof of Theorem 2.37(iii) = (i)). Choose a nonprincipal ultrafilter / on
I. Define the unital positive linear contractive mapping ® : L(G x X) —
L*°(X) by the formula

VE € L®(G x X), ®(F)= 1113(ui ®idx)(F).
T
The above limit is taken with respect to the weak*-topology in L™ (X).
(i) For every f € L°°(X), we have
(1 @ f) = lim (p; @ idx)(1e @ f) = lim pi(1e) f = f.
i—U i—U
(ii) For every g € G and every F' € L*°(G x X), we have
2((A@0)(9)F) = lim (4; @ idx) (A @ 0)(9)) )
= lim (\(g™")ps ® 0 (9))(F)
m

= lim (p; ® o(g))(F)

i—U
~ ota) iy s 1))
i—U
= 0(9)®(F)
where in the third line we used the fact that ||A(g=!)u; — psll1 — 0.

Thus, ® : L®(G x X) — L*°(X) is a G-equivariant projection and so the
nonsingular action G ~ (X, v) is amenable. O
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Next, we provide natural examples of amenable actions arising from
homogeneous spaces.

THEOREM 2.44. Let G be a locally compact second countable group and
H < G an amenable closed subgroup. Then the nonsingular left translation
action G ~ G/H is amenable.

PRrOOF. Firstly, we show that the nonsingular left translation action
G ~ (G, mg) is amenable. Fix p € P(G). Define the unital positive linear
contractive mapping ¥ = u®idg : L°(GxG) — L*°(G). Then the following
properties hold:

(i) For every f € L*(G), we have UV(1¢ ® f) = u(lg) f = f.
(ii) For every g € G and every F' € L™°(G x G), we have

V((ide @A) (9)F) = (1 ® A(9))(F) = A(g) ¥ (F).

Next consider the nonsingular automorphism 6 : G x G — G x G : (h, k) —
(kh, k) and define the unital positive linear contractive mapping ® : L>(G x
G) — L*°(@G) by the formula ®(F) = U(F o0 0) for every F € L™(G x G).
Then the following properties hold:

(i) For every f € L*°(G), we have

(1@ f)=¥((1leg® f)ob) =V (1g® f) = f.
(ii) For every g € G and every F' € L>(G x G), we have
((A@N)(9)F) =W(Fo(g- ®g™')ob)
(Fofo(idg®g™))
((idg @A) (g)(F 0 0))
(9)U(F 0 0)
(9)@(F).
Thus, ® : L°(G x G) — L*(G) is a G-equivariant projection and so the
nonsingular translation action G ~ (G, mg) is amenable.
Secondly, let H < G be an amenable closed subgroup. Consider the
weak*-continuous right translation action p : H ~ L°°(G). Observe that we

have the following identification of the fixed point subalgebra L°(G)PH) =
L*>(G/H). Consider the unital weak*-continuous embedding

t:L®(G) - L®(H xG) : f = ((h,g) — f(gh)).

v
v

A
A

The embedding ¢ satisfies the following invariance property:
Vhe HVf € L¥(G), (A(h) @ p(h))u(f) = u(f).

Since H is amenable, there exists a net of elements (u;)icr in P(H) such
that ||A(h)pi — pilli — O uniformly on compact subsets K C H (see the
proof of Theorem 2.37(iii) = (i)). Choose a nonprincipal ultrafilter ¢/ on I.
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Define the unital positive linear contractive mapping E : L=(G) — L*(G)
by the formula

¥ ELX(G), B = lim (s @ o) ((f).

The above limit is taken with respect to the weak*-topology in L>°(G). For
every g € G and every f € L>(G), we have E(A(g)f) = A(g) E(f). For
every f € L®(G)PH) = L>®°(G/H), we have 1(f) = 15 ® f and so E(f) = f.
Moreover, for every h € H and every f € L*°(G), we have

p(h)B(f) = <QOmMMmu»)

i (1 © (1) 1)

(A1) @ p(W)0()

n (s @ ide) (A(h) © p()i( )
(1 @ i) () = E().

where in the third line we used the fact that [[A(h™1)pu; — will1 — 0. This
implies that E : L°°(G) — L*™°(G) is a A(G)-equivariant unital positive linear
contractive mapping such that E(L®(G)) = L®(G)*H) = L>®°(G/H) and
E L@ m) = idieq/m)-

Finally, regard L®(G x G/H) = L>®(G x G)de @) « 12°(G x @)
and define © : Eo®|p~gyg/m) @ L(G x G/H) — L>*(G/H). Then ©
is a G-equivariant projection and so the nonsingular left translation action
G ~ G/H is amenable. O

—rn (
:m (

—h

Finally, we observe that amenable actions are stable under taking re-
strictions to lattices.

PROPOSITION 2.45. Let G be a locally compact second countable group
andT' < G a lattice. Then for any amenable nonsingular action G ~ (X, v),
the restriction I’ ~ (X, v) is amenable.

PROOF. Denote by ® : L(G x X) — L*(X) the G-equivariant projec-
tion witnessing amenability of the nonsingular action G ~ (X, v). Choose
a Borel fundamental domain .# C G so that G = .% -T. Then ! C G
is a Borel fundamental domain for the left translation action I' ~ G. We
may assume that mg(F 1) = 1 so that n = mg|z-1 € Prob(#~!). Then
0:(T'x F L mren) = (G,mg) : (7,y) = 7y is a measure space isomor-
phism. Moreover, for all 7, s € I and all y € .#, we have 0(vs,y) = v0(s,y).
This implies that the canonical inclusion L>°(I'x X) C L®(I'x # 1 x X) =
L>(G x X) is I'-equivariant. Thus ¥ = @[y xy : L x X) — L>(X)
is a I'-equivariant projection. This shows that the nonsingular action I' ~
(X, v) is amenable. O



CHAPTER 3
Algebraic groups

We give an introduction to algebraic groups and their
algebraic actions on algebraic varieties. We investigate
the structure of stabilizers and the notion of tameness
for algebraic actions. Standard references on linear
algebraic groups are [Bo91, Hu75].

1. Algebraic varieties

We assume that K is an algebraically closed field of characteristic zero
and that k£ C K is a subfield. For every n > 1, we denote by K[X1,..., X,]
(resp. k[ X1, ..., X,]) the ring of polynomials in n indeterminates with coef-
ficients in K (resp. k).

We say that V. C K" is an affine algebraic variety if there exists a subset
S C K[Xy,...,X,] such that

V ={(z1,...,2p) € K" |VP € S, P(x1,...,2,) =0}.
We then denote by
IV)={P e K[X1,...,Xp] | ¥(21,....20) €V, P(z1,...,20) = 0}
the vanishing ideal of V in K[X1,...,X,]. We also denote by
K[|V]=K[X1,...,X,]/I(V)

the ring of regular functions on V. Hilbert’s basis theorem shows that K[V]
is a Noetherian ring. In particular, any ideal in K[V] is finitely generated.
By Hilbert’s Nullstellensatz, there is a one-to-one correspondence between
affine algebraic varieties V.C K™ and radical ideals I C K[Xy,...,X,]. Any
intersection of affine algebraic varieties is again an algebraic variety and any
finite union of algebraic varieties is again an algebraic variety. We define
the Zariski topology on K™ by declaring that an algebraic variety V. C K"
is a Zariski closed subset of K.

Let F' be a vector space over K. A k-structure on F' is a k-submodule
Fy. C F such that the natural K-map F} ®; K — F' is an isomorphism. A
subspace F C F is said to be defined over k or is a k-subspace if B, = ENF}
is k-structure on E, that is, E = Fj ®; K. We have that k[X1,..., X,] is
a k-structure on K[Xq,...,X,]. We say that V. C K" is an affine algebraic
variety defined over k or is an affine algebraic k-variety if I,(V) = I(V) N
k[X1,...,X,)] is a k-structure on I(V). In that case, we denote by V (k) =
VNE™ the set of k-points of V and by k[V] = k[ X1, ..., X,]/Ix(V) the ring

55
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of k-regular functions on V. We regard k[V]| C K[V] via the well-defined
injective mapping k[V] — K[V]: P+1;(V) — P+I1(V). We naturally have
I(V) = I;(V) @, K and K[V] = k[V] ®; K. By definition, any algebraic
variety V is defined over K. Note that V = V(K) and Ix (V) = I(V).

We say that an affine algebraic variety V. C K" is irreducible if it can-
not be written as a union of two proper Zariski closed subsets. Then the
vanishing ideal I(V) is prime and the ring of regular functions K[V] is an
integral domain. We then denote by K (V) the field of rational functions on
V., which is the field of fractions of K[V]. More generally, any affine alge-
braic variety V.C K" can be written as a finite union of irreducible Zariski
closed subsets. This follows from the fact that the ring K[V] is Noetherian.

Let V. C K" and W C KP be affine algebraic varieties. We identify
K™ x KP with K™ and we endow K" with the Zariski topolopy. Then
the product V. x W C K™"? is an affine algebraic variety. If V and W are
irreducible, then V x W is irreducible. In particular, K™ is irreducible for
every n > 1.

Let V C K™ be an irreducible affine algebraic variety. The dimension
dim(V) is defined as the transcendence degree of the field extension K C
K (V). For every P € I(V) and every v = (v1,...,v,) € V, define the
differential d,P = >, g—;(v)Xi. The tangent space Z,(V) at the point
v € V is defined as

Ty(V) = {(z1,....20) € K" | VP € I(V), dP(x1,...,2n) = 0}.

Observe that if V is defined over k, then for every v € V(k), 7,(V) has
a natural k-structure 7,(V), C Z,(V) and we have Z,(V) = 7,(V)ir Q%
K. We always have dimg(7,(V)) > dim(V). We say that v € V is a
simple point if dimg (7,(V)) = dim(V). The set of simple points of V is a
nonempty Zariski open set. We say that V is smooth if every point v € V
is simple. In particular, K™ is a smooth variety and dim(K™) = n for every
n > 1.

Let V C K™ be an affine algebraic variety. We say that U C V is a
principal open set if there exists a polynomial P € K[X;, ..., X,] such that

U= {(z1,...,20) € V| P(x1,...,2,) #0}.

Observe that U can be identified with the affine algebraic variety W C
V x K C K™ defined by

W:{(xl,...,mn,t)EVXK|P(w1,...,xn)t:1}.

Then we have K[U] = K[V]([1/P]). Any open set of V can be written as a
union of principal open sets.

Let V. C K™ and W C KP be affine algebraic varieties. We say that
f:V — W is a regular map or a morphism if for every P € K[W], we have
Po f e K[V]. For every j € {1,...,p}, choose P; € K[Xy,...,X,] such
that f = (P + I(V),..., P, +1(V)). For every v € V, we may define the
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differential dy f + (V) — Ty (W) by the formula

Vo = (z1,...,2n) € Z(V), (duf)(z)= ( S)P;j (U):L‘Z> .
i=1 v j

In case V and W are irreducible, we say that f : V — W is dominant
if f(V) is Zariski dense in W. This amounts to saying that the map f* :
K[W] — K[V] : P — Po f is injective. We say that f : V. — W is
an isomorphism if f is a bijection and if both f and f~! are regular maps.
Assume moreover that V.C K™ and W C KP are affine algebraic k-varieties.
Then we say that f: V. — W is a k-regular map or a k-morphism if for every
P € k[W], we have P o f € k[V]. In that case, for every v € V(k), we have
f(v) € W(k) and (dyf)(Z0(V)k) C T5)(W)k. We say that f:V — W is
a k-isomorphism if f is a bijection and if both f and f~' are k-morphisms.
Consider the Galois group of the field extension k£ C K

Gal(K/k) ={o € Aut(K) |Ya € k, o(a) = a}.

Then Gal(K/k) naturally acts on the polynomial ring K[X1,...,X,] in the
following way: for every P = Y a5 Xi'--- Xi» € K[Xy,...,X,] and
every o € Gal(K/k), define P7 =Y a(aj,. i )X - Xin € K[X1,..., X,].
Let V. C K™ be an affine algebraic variety and o € Gal(K/k). We may define
the affine algebraic variety V? C K™ by the formula

V= g(V) = {z € K" | VP € I(V), P?(z) = 0}.

Then we have I(V?) = I[(V)? and K[V?] = K[X1,...,X,]/I(V)?. More-
over, for every morphism of affine algebraic varieties f : V — W and every
o € Gal(K/k), we may define the morphism f =ofo=1: Vo — W°.

It is useful to extend the notion of variety to the projective setting.
Consider the projective space P" = P"(K) = P(K"!). We say that V. C P"
is a projective algebraic variety if there exists a subset S C K[Xo,..., X,]
consisting of homogeneous polynomials such that

V ={(zo,...,x,) € P"|VP €S, P(xg,...,x,) =0}.

We say that V C P" is a projective algebraic k-variety if there exists a subset
S C k[Xo,...,X,] consisting of homogeneous polynomials such that

V ={(zo,...,x,) € P"|VP €S, P(xg,...,z,) =0}.

We then denote by V(k) = V N P(k""1) the set of k-points of V. As in
the affine case, we can define the Zariski topology on P™. A quasiprojective
algebraic k-variety is a Zariski open set defined over k in a projective alge-
braic k-variety. Observe that any affine algebraic k-variety can be regarded
as a quasiprojective algebraic k-variety. More generally, one can define the
notion of abstract algebraic k-variety that generalizes the notion of quasipro-
jective algebraic k-variety. All examples of algebraic k-varieties we consider
in these notes are quasiprojective algebraic k-varieties.



58 3. ALGEBRAIC GROUPS

The following result provides a criterion for an algebraic variety to be
defined over k and for a morphism between algebraic varieties to be defined
over k. For further details, we refer the reader to [Bo91, AG 14].

PROPOSITION 3.1. The following assertions hold:

(i) Let V be an algebraic variety. Then V is defined over k if and only
if V2 =V for every o € Gal(K/k).

(ii) Let V and W be algebraic k-varieties and f : V. — W a morphism.
Then f is defined over k if and only if f7 = f for every o €
Gal(K/k).

PRrROOF. (i) We may and will assume that V C K™ is an affine algebraic
variety. If V is defined over k, then I(V) = I}(V) ®; K. Then for every
o € Gal(K/k), we have I(V)? = I(V) and so V7 = V. Conversely, assume
that V7 = V for every o € Gal(K/k). It suffices to show that I(V) is
generated by I;(V). Denote by J C I(V) the ideal generated by I;(V).
Then F = K[X;,...,X,]/J has a k-structure Fj, = k[X1,..., X,]/Ix(V)
so that F' = Fj ®; K. By contradiction, assume that J # I(V). Set
E=1(V)/JC K[X1,...,X,]/J and note that Ey, = ENF}, = {0}. Choose
a basis (e;); of Fj, and choose w € E\{0} such that w can be expressed with a
minimal number of elements of (e;);. Upon multiplying w by a scalar in K*,
we may assume that w = e;; +ages, +- -+ ope;, withr > 2, as,...,ar € K
and g ¢ k. Then there exists o € Gal(K/k) such that o(as) # as. Then
w—o(w) = (ag —o(az))e, + -+ + (ap — o(ay))e;, and w — o(w) € E
because I(V)? = I(V). Since w — o(w) # 0, we obtain a contradiction on
the minimal number of elements of (e;);. Therefore (V) = J is generated
by I;(V) and so V is defined over k.

(ii) We may and will assume that V. C K" and W C KP? are affine
algebraic k-varieties. We have K[V] = k[V]|®; K and K[W]| = k[W] &y K.
Denote by f* : K[W] — K[V] : P — P o f the associated K-algebra
homomorphism. If f is defined over k, then f*(k[W]) C k[V]. Tt follows
that f7 = f for every o € Gal(K/k). Conversely, assume that f7 = f for
every o € Gal(K/k). Let P € k[W]. For every o € Gal(K/k), we have
(F*(P))7 = (Pof)” = P70 7 = Pof = f*(P) and so [*(P) € k[V].
Therefore we have f*(k[W]) C k[V] and so f is defined over k. O

The following useful result provides another sufficient condition for an
algebraic variety to be defined over k and for a morphism between algebraic
varieties to be defined over k.

PropoSITION 3.2. The following assertions hold:

(i) Let 'V be an algebraic k-variety and B C V (k) a nonempty subset.
Denote by W the Zariski closure of B in V. Then W is defined
over k.

(ii) Let V and W be algebraic k-varieties and f : V. — W a morphism.
Let B C V (k) be a Zariski dense subset such that f(B) C W (k).
Then f is defined over k.
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PROOF. (i) We may and will assume that V. C K™ is an affine algebraic
k-variety. Then V (k) C k™. Denote by I(W) C K[X1,...,X,] the vanish-
ing ideal of W. For every d > 1, set I(W)y = {P € I(W) | deg(P) < d}.
We then have I(W) = [J;2; I(W)4. Denote by r the number of n-tuples
(i1,...,in) € N" such that 3% ,i; < d. Any polynomial P € I(W)y
has at most r coefficients in K and so we may identify P with a r-tuple
(a1,...,0p0) € K". Since B C V(k) is Zariski dense in W, we have
P € I(W), if and only if P(g) = 0 for every g € B. We can regard
the system of equations P(g) = 0 for g € B as a system of linear equations
with coefficients in k and variables aq,...,a,. Then there are at most r
linear equations such that the solutions of the original system of equations
are exactly the same as the solutions of these r linear equations. In other
words, there is a linear transformation 7' : K" — K" for which P € I(W)y if
and only if (a1,...,a;) € ker(T'). Since the matrix representation of 7" with
respect to the canonical basis of K" lies in M,.(k), it follows that ker(T") has
a basis that we can choose in k”. This implies that I(W)y is generated by
I(W)gNk[X1,...,X,]. Since this is true for every d > 1, this implies that
I(W) is generated by I(W) N k[X1,...,X,] and so W is defined over k.

(ii) We may and will assume that V.C K™ and W C KP? are algebraic
affine k-varieties. Moreover using coordinate functions, we may further as-
sume that W = K. Then we have f € K[V] = K[Xy,...,X,]/I(V).
Regarding f : V — K, we have f(B) C k. Choose P € K[Xy,...,X,]
such that P+ I1(V) = f. Write P = Py+ >, a;P; where Py, P1,..., P, €
k[ X1,...,X,), a1,...,a0 € K and 1,0aq,...,q, are linearly independent
over k. Since f(B) C k, we have P(B) C k and the linear independence
of 1,a1,...,a, over k implies that P(v) = Py(v) for every v € B. Since
B C V(k) is Zariski dense, it follows that P = Py € k[X1,...,X,]. This
implies that f = Py + I(V) = Py + I(V) is defined over k. O

We will need the following classical result regarding morphisms between
algebraic varieties.

THEOREM 3.3 (Chevalley). Let V and W be algebraic varieties and

f: V. — W a morphism. Then f(V) contains a Zariski open dense subset
U such that U C f(V).

PrROOF. We may and will assume that V and W are affine algebraic
varieties. We may further assume that V and W are irreducible. Indeed,
denote by V1,..., Vi the irreducible components of V so that V.= VU- - -U
V. Forevery i € {1,...,k}, set W; = f(V;). Since W U---UW} is closed
and contains f(V), it follows that Wy U --- U W}, = f(V). Moreover, for
every i € {1,...,k}, W, is irreducible. Therefore, without loss of generality,
we may and will assume that V and W are irreducible affine algebraic
varieties.

Set A= K[W]and B = K[V]. Then themap f*: A— B: P+ Pofis
injective. We prove the following technical result from commutative algebra.
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CLAIM 3.4. For every b € B\ {0}, there exists a € A such that for every
K-algebra homomorphism ¢ : A — K such that ¢(a) # 0, there exists a
K-algebra homomorphism @ : B — K such that ¢ = @ o f* and $(b) # 0.

PrROOF OF CLAIM 3.4. We may identify A = f*(A) and regard A C
B. Since B is finitely generated over A, by induction over the number of
generators, we may assume that there exists z € B such that B = A[x]. Let
T be an indeterminate variable. Then B is a quotient of A[T|. Denote by L
the fraction field of A. We regard A C L and A[T] C L[T]. Let b € B\ {0}.
There are two cases to consider.

Firstly, assume that B = A[T]. Since b = Q € A[T] \ {0}, there exists
¢ € A such that a = Q(c) # 0. For every K-algebra homomorphism ¢ :
A — K, consider the canonical extension @ : A[T] — K : P — ¢(P(c)).
Then 3(b) = 2(Q) = ¢(Q(c)) = ¢(a) and we are done.

Secondly, assume that B is a proper quotient of A[T]. Then we may
choose a nonzero polynomial P = Z?:o p;T" € A[T] of minimal degree such
that P(z) = 0. Then the principal ideal I(z) = {R € L[T] | R(z) = 0}
is generated by P. We may regard B C L[T]/I(z) so that we may write
b = Qo(z) for some Qo € L[T] such that deg(Qy) < d—1. Upon multiplying
Qo by an element of A, we obtain a polynomial Q = 3 ¢;T% € A[T] such
that deg(Q) < d — 1 and such that b divides Q(z).

Since B = Alz] is an integral domain, it follows that the polynomial
P € A[T] is irreducible in L[T]. Since the characteristic of L is zero, it
follows that P has exactly d distinct roots and so the gcd of P and P’ is equal
to 1. This further implies that there exists r € A\ {0} and Ry, Ry € A[T]
such that r = R{P+ Ry P’. Set a = rpyq where g € A is a nonzero coefficient
of Q € A[T.

Let now ¢ : A — K be a K-algebra homomorphism such that ¢(a) # 0.
Consider the canonical extension ® : A[T] — K[T] : Y. a;T* = > ¢(a;)T".
Since ¢(pg) # 0, the polynomial ®(P) has degree d. Since ®(R;)®(P) +
O(R2)®(P) = ¢(r) # 0, the polynomial ®(P) has exactly d roots in K.
Since ¢(q) # 0, the polynomial ®(Q) is nonzero and has degree less than
or equal to d — 1. We may choose a root A € K of ®(P) that is not a
root of ®(Q). This implies that > ¢(gi)\* # 0. Consider the K-algebra
homomorphism % : A[T] — K : Y a;T" — > ¢(a;)\. Denote by & =
ker(A[T] — B). We claim that $(.#) = 0. Indeed, let R € .#. Then
R € I(x) and so there exists Ry € L[T] such that R = RyP € A[T]. If
R =0, it is clear that B(R) = 0. If R # 0, set n — 1 = deg(Rp) with n > 1.
Then it is easy to see that p; Ry € A[T]. It follows that pJR = (p}jRo)P and
so P(piR) = (pjjRo)@(P) = 0. Since ¢(pjj) # 0, it follows that B(R) = 0.
Therefore, 3 : B — K : Y a;x* — . ¢(a;)\" is a well-defined K-algebra
homomorphism such that $|4 = ¢ and such that $(b) # 0 since B(b) divides
> (i) A" # 0. This finishes the proof of the claim. O

We may apply Claim 3.4 to b = 1 to obtain a regular function a €
A = K[W] satisfying the conclusion of the claim. Consider the principal
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open set U, = {w € W | a(w) # 0}. For every w € U,, consider the
K-algebra homomorphism ¢,, : K[W] — K : P — P(w). Since ¢y(a) =
a(w) # 0, there exists a K-algebra homomorphism ,, : B — K such that
wuw = @, o f*. Note that there exists a unique point v € V such that @, =
¢y : K[V] = K : P+ P(v). Then we have @, = @, 0 f* = 0y 0 f* = @5
and so w = f(v) € f(V). This shows that U, C f(V) and finishes the proof
of the theorem. ]

It is possible to further refine Chevalley’s Theorem to obtain the follow-
ing precise statement.

COROLLARY 3.5. Let V and W be irreducible algebraic varieties and
f: V> W a dominant morphism. The following assertions hold:

(i) There exists a Zariski dense open set U C 'V such that for every
u € U, the differential dy.f : Tu(V) — Tp)(W) is surjective.

(ii) Assume that V and W are defined over k and that f : V. — W
a biyjective k-morphism. Then there exists a Zariski dense open
set Wy C W such that Wy is defined over k and such that f :
f~YWo) — Wy is a k-isomorphism.

We refer the reader to [Hu75, Section 1.4] for further details.

2. Algebraic groups

2.1. Generalities. For every n > 1, we identify the space M,, =
M,,(K) with K™ in the usual way. Recall that det € K[X;; | 1<, <n].
Then the linear group GL,, = GL,(K) = det ' (K \ {0}) is a principal open
set of K™*. Tt can also be regarded as the affine algebraic variety

GL, = {(A,1) € Mp(K) x K | det(A)t =1} ¢ K™ +1.
DEFINITION 3.6. A linear algebraic group G is a Zariski closed subgroup
G < GL,. We say that G is a linear algebraic k-group if the affine algebraic
variety G C GL,, is defined over k. Then we define the group of its k-points
by G(k) = G N GL, (k).
By definition, GL, is a linear algebraic group and we have
K[GLy] = K[X5,Z |1 < 4,5 < n]/(det((Xy)i5)Z = 1)
= K[Xij,det((Xij)ij)_l ’ 1 S ’i,j S n]
All the algebraic groups we consider in these notes are assumed to be linear.
ExXAMPLES 3.7. Here are some classical examples of (linear) algebraic
groups. All the following algebraic groups are defined over Q.
(1) The additive group G, = (K, +) can be regarded as

1 =z
N T

Then we have K[G,] = K[T].
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(2) The multiplicative group G, = (K*, X) can be regarded as

Gm={<gg>y@tekyn:1}<(m,

Then we have K[G,,] = K[Z,T]/(ZT =1) = K[T,T1].
(3) The special linear group SL,, is defined as

SL, = {g € GL,, | det(g) = 1} < GL,, .

(4) The projective linear group PGL,, can be regarded as a linear alge-
braic group as follows. Consider the algebra M,, = M,,(K) and its
automorphism group Aut(M,). The map ¢ : PGL,, — Aut(M,,) :
g — (X = gXg!) is a well-defined injective group homomor-
phism. By Skolem—Noether theorem, ¢ : PGL,, — Aut(M,,) is onto
and so we may identify PGL,, with Aut(M,,). Using the usual iden-
tification of M, with K™, we may then regard Aut(M,) < GL,2
as a Zariski closed subgroup.

We record the following useful fact.

LEMMA 3.8. Let H < GL,, be a subgroup and denote by H=H C GL,
its Zariski closure. Then H < GL,, is an algebraic group.

Proor. It suffices to prove that H < GL,, is a subgroup. Firstly, the
inversion map m : GL,, — GL,, : z — 2~! is an isomorphism of algebraic
varieties. Since H~! = H, it follows that

H'!'-H '=H1=H=H

and so H is stable under inversion. Secondly, for every g € GL,, the left
multiplication Ly : GL,, — GL, : x = gz is an isomorphism of algebraic
varieties. If g € H, then gH = H and so we have

gH=gH =gH = H = H.

Likewise, for every h € GL,, the right multiplication R, : GL, — GL,, :
x — xh is an isomorphism of algebraic varieties. If h € H, then the above
equality implies that Hh C H and so we have

Hh=Hh=HhCH=H.
Thus, H is stable under multiplication and so H < GL,, is a subgroup. [
Next, we turn to general structural properties of algebraic groups.

PROPOSITION 3.9. Let G be an algebraic group. The following assertions
hold:

(i) The Zariski connected components of G coincide with the Zariski
wrreducible components of G.
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(ii) Denote by G° the Zariski connected component of the identity ele-
ment e € G. Then GO G is a normal Zariski closed subgroup and
has finite index. Moreover, any Zariski connected closed subgroup
of G is contained in G°. If G is defined over k, then so is G.

(iii) Any finite index Zariski closed subgroup of G contains GO,

We say that an algebraic group G is (Zariski) connected if G = GO,

PROOF. (i) Denote by Zq,...,Z, the irreducible components of G that
contain the identity element e € G. Denote by Z = Z;---Z,, C G the
range of the morphism Zj x -+ X Zy, = G : (21,...,2,) = 21 -+ 2. Since
Z1 X -+ X 74, is irreducible, Z is irreducible and contains e € G. Then
there exists i € {1,...,n} such that Z C Z;. Since Z; C Z for every
j € {1,...,n}, we infer that there exists a unique irreducible component
that contains e € G. We denote this unique irreducible component by GP°.
Then GY C G is Zariski closed and the previous reasoning shows that G°
is stable under multiplication.

For every g € G, g7!G? is the range of the morphism G° — G : h
g 'h and so g~ 'GY is irreducible. Since e € ¢g7'G?, we have ¢7'G® c GY.
This further implies that GY is stable under inverse and so G° < G is an
algebraic subgroup. For every g € G, gG%g~! is the range of the morphism
G 5 G : h ghg~! and so gGY~! is irreducible. Since e € ¢gG% 1,
we have ¢gGY¢~! ¢ GY. Likewise, we have ¢ 'G"g ¢ GY. This shows that
G < G is a normal subgroup.

For every g € G?, the subset ¢GP is an irreducible component of G hence
connected. Since K[G] is Noetherian, G has only finitely many irreducible
components and so G < G has finite index. This further implies that gG°
is Zariski open and closed for every g € G. Therefore, (9G") e are the
Zariski connected components of G.

(ii) We already proved that G° <t G is a normal Zariski closed subgroup
and has finite index. Let H < G be a Zariski connected closed subgroup.
Since e € H and since GV is the Zariski connected component of e € G, it
follows that H < G°. Assume further that G is defined over k. For every
o € Gal(K/k), (G%)° is the Zariski connected component in G” = G of the
identity element e € G and so (G")? = G°. Thus, GY < G is a k-subgroup.

(iii) Let H < G be a finite index Zariski closed subgroup. Then H < G
is also Zariski open and so H is a union of Zariski connected components of
G. Since e € H, we have G? < H. O

All the examples considered in Examples 3.7 are connected algebraic
groups.

A k-homomorphism ¢ : G — H of algebraic k-groups is a k-morphism of
algebraic k-varieties that is also a group homomorphism. Note that ker(yp) <
G is a normal algebraic subgroup. Moreover, using Proposition 3.1, for every
o € Gal(K/k) and every h € ker(y), we have ¢(o(h)) = o(¢(h)) = 0 and so
ker(¢)? = ker(p). Thus, ker(¢) < G is a k-subgroup.
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A k-representation of an algebraic k-group G in a finite dimensional
k-vector space V is a k-homomorphism 7 : G — GL(V).

DEFINITION 3.10. Let G be a connected algebraic k-group. We say that
G is

e semisimple if the only abelian normal connected algebraic subgroup
of G is {e}.

e simple if G is not abelian and if the only proper normal algebraic
subgroup of G is {e}.

e almost simple if G is not abelian and if the only proper normal
algebraic subgroups of G are finite.

ExAMPLES 3.11. For every n > 2, we have that

e SL,, is an almost simple connected algebraic group.
e PGL,, is a simple connected algebraic group.

2.2. The Lie algebra of an algebraic group. Since GL,, is a Zariski
open set of M,,, its tangent space Z,(GL,) at e € GL,, is the k-vector space
M, = End(K™). More generally, let G < GL, be an algebraic k-group.
Then its tangent space J.(G) at e € G is naturally a k-subspace of M,
that we denote by Lie(G). It is the Lie algebra of G. By definition, we have
Lie(GL,) = M,.

For every g € G, consider the inner automorphism inn(g) : G — G :
x +— grg~!. We denote by Ad(g) = d.(inn(g)) : Lie(G) — Lie(G) : X +
gXg~! its differential at e € G. Then the map Ad : G — GL(Lie(G)) : g
Ad(g) is a k-representation called the adjoint representation of G.

The differential ad = d¢(Ad) : Lie(G) — End(Lie(G)) : X — (Y —
XY —-YX) at e € G is called the adjoint representation of Lie(G). We then
simply denote by [, -] : Lie(G) x Lie(G) — Lie(G) : (X,Y) — ad(X)(Y) =
XY — Y X the Lie bracket on Lie(G). If H < G is a k-subgroup, then
Lie(H) C Lie(G) is a Lie k-subalgebra.

2.3. Algebraic actions of algebraic groups.

DEFINITION 3.12. Let G be an algebraic k-group and V an algebraic
k-variety. An algebraic k-action G ~ V is an action for which the map
G xV — V: (g,v) — gv is a k-morphism. We simply say that V is an
algebraic k-G-variety.

We say that V is a homogeneous algebraic k-G-variety if the action
G ~ 'V is transitive. The next result shows that orbits of algebraic actions
of algebraic groups are well-behaved.

PropPoOSITION 3.13. Let G be an algebraic k-group and V an algebraic
k-G-variety. Then for every v € V, the orbit Gu is locally closed in V for
the Zariski topology. If v € V(k), then the orbit Guv is a smooth k-G-variety
and the orbit map o : G — Guv is a k-morphism.
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PROOF. Let v € V be a point and set W = Guv. Consider the G-
equivariant morphism f : G — W : g — gv. By Theorem 3.3, there
exists a nonempty Zariski open set U of W such that U C Gv. Then
Gv = UgeG gU is open in W. Therefore, the orbit Guv is locally closed
in V. Assume moreover that v € V(k). Using Proposition 3.1, for every
o € Gal(K/k), we have (Gv)? = G%0(v) = Guv and so Gv is a smooth
k-G-variety. Moreover, the orbit map « : G — Gw is a k-morphism. O

COROLLARY 3.14. Let G and H be algebraic k-groups and ¢ : G — H
a k-homomorphism. Then ¢o(G) < H is a k-subgroup.

PrOOF. By Proposition 3.13, ¢(G) is open in ¢(G). Since any open
subgroup is also closed, it follows that ¢(G) is closed in ¢(G) and so (G) =
©(G). Therefore, ¢(G) < H is an algebraic subgroup. Moreover, the proof

of Proposition 3.13 shows that ¢(G) < H is a k-subgroup. O

Let us point out that in Corollary 3.14, we always have p(G(k)) C
©(G)(k) but in general p(G(k)) # ¢(G)(k). Indeed, consider ¢ : C* — C* :
z+> 2%, Then p(R*) = RY # R*.

ProrosiTiON 3.15. Let G be an algebraic k-group and H < G a k-
subgroup. The following assertions hold:

(i) The centralizer Zg(H) < G is a k-subgroup. In particular, the
center Z(G) < G is a k-subgroup.
(ii) The normalizer N¥g(H) < G is a k-subgroup.

Proor. Consider the k-G-variety V = G with the conjugation action
G ~ G. For every x € G, consider the orbit map o, : G = G : g — grg™!,
which is a morphism of varieties.

(i) By definition, we have

Za(H)={g € G|VheH, an(g) = h} = () o ({h}).
heH

It follows that Zc(H) < G is Zariski closed. Using Proposition 3.1 and
since H is defined over k, for every o € Gal(K/k), every g € Zc(H) and
every h € H, we have o(g9)h = o(go~1(h)) = o(c7(h)g) = ho(g) and so
o(g) € Zg(H). This implies that Zg(H) is a k-subgroup.

(ii) Using the descending chain condition, we have

Na(H) ={g e G|VheH, as(g) € H} = ) o, (H).
heH

It follows that Ag(H) < G is Zariski closed. Using Proposition 3.1 and
since H is defined over k, for every o € Gal(K/k), every g € Aa(H) and
every h € H, we have o(g)ho(g~!) = o(go~'(h)g~!) € H. This implies
that 4c(H) is a k-subgroup. O
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Note that if G is a connected algebraic group, then any finite (algebraic)
normal subgroup is necessarily central. Indeed, let H << G be a finite (al-
gebraic) normal subgroup. Then Zg(H) < G is a finite index algebraic
subgroup by Proposition 3.15. Since G is connected, we have G = Zg(H)
by Proposition 3.9 and so H < Z(G).

The next result enables us to define the notion of homogeneous space in
the setting of algebraic k-groups.

THEOREM 3.16 (Chevalley). Let G be an algebraic k-group and H < G
a k-subgroup. Then there exists a k-representation m : G — GL(V) and a
point x € P(V(k)) such that H = Stabg(z).

In particular, the homogeneous space G/H has a natural structure of
smooth quasiprojective algebraic k-G-variety. Moreover, the canonical pro-
jection m: G — G/H is a G-equivariant k-morphism such that H = 7(e) €

(G/H)(F).

PRrROOF. For every m > 1, set K™[G] = {P € K[G] | deg(P) < m}.
Then K™[G] is a finite dimensional k-subspace of K[G]. Since K[G] is
Noetherian, the vanishing ideal I(H) is finitely generated. Then there exists
m > 1 such that I"(H) = K™[G]NI(H) generates I(H). Consider the well-
defined k-representation p : G — GL(K™[G]) given by (p(g)P)(h) = P(hg)
for all g,h € G and all P € K™ [G].

We claim that ¢ € H if and only if p(g)(I™(H)) = I"™(H). Indeed,
it is clear that if ¢ € H, then p(g)(/™(H)) = I™(H). Conversely, assume
that p(g)(I™(H)) = I"™(H). In particular, for every P € I"(H), we have
P(g) = p(g9)(P)(e) = 0. This implies that g € H.

Denote by p = dimg (/"™ (H)). Consider the pth exterior algebra V =
A’ (K™[G]), which is a finite dimensional k-vector space. Then W =
A’(I"™(H)) is a one dimensional k-subspace of V and the natural map
7= /Ap: G — GL(V) is a k-representation. Moreover, we have

H={g€G|n(9)(W)=W}.

Then we can take z = W(k) € P(V(k)) and we have H = Stabg ().
_ Wemay identify G /H with Gz. Since the orbit Gz is open in its closure
Gz, it follows that G/H has a natural structure of smooth quasiprojective

algebraic k-G-variety. Moreover, the canonical projection 7 : G — G/H is
a G-equivariant k-morphism such that H = 7(e) € (G/H)(k). O

Whenever H is an algebraic k-group, we denote by Xj(H) the abelian
group of all k-regular characters x : H — G,;,. In Theorem 3.16, in case
Xi(H) = {1}, we can choose a point v € V(k) such that H = {h € G |
m(g)v = v}.

Next, we record the following useful universal property of the homoge-
neous space G/H.

ProproSITION 3.17. Let G be an algebraic k-group and V an algebraic
k-G-variety. For every v € V(k), the orbit Gv is a smooth k-G-variety,
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the stabilizer H = Stabg (v) < G is a k-subgroup and there exists a unique
G-equivariant k-isomorphism B : G/H — Gu such that o = B o 7, where
m: G = G/H is the canonical projection and o : G — Gu is the orbit map.

Proor. Using Proposition 3.1, for every o € Gal(K/k) and every h €
H, we have o(h)v = o(hv) = o(v) = v and so H> = H. Thus, H < G is
a k-subgroup. Consider the product k-G-variety W = G/H x Guv. Then
the orbit map ® = 7 xa : G - W : g — (gH,gv) is a k-morphism
and the orbit O(G) = G - (H,v) is a smooth k-G-variety. Denote by p; :
W — G/H (resp. p : W — Gu) the projection on the first (resp. second)
coordinate. Since p; o © = 7 and since 7 is surjective, p; : W — G/H is
surjective. Moreover, for all g, h € G, if p1(©(g)) = p1(©(h)), then 7(g) =
7(h) which implies that ¢g7'h € H and so O(g) = O(h). It follows that
p1 : ©(G) — G/H is a bijective k-morphism. By homogeneity, Corollary 3.5
implies that p; : ©(G) — G/H is a k-isomorphism. Then 3 = ps o (p1) ! :
G/H — Gu is a k-morphism such that @« = o m. Observe that since
m: G — G/H is surjective, the G-equivariant k-morphism 5 : G/H — Guv
is necessarily unique. By injectivity and homogeneity, Corollary 3.5 implies
that §: G/H — Go is a k-isomorphism. O

In the case when the k-subgroup H <1 G is normal, we show that the
k-G-variety G/H is a linear algebraic k-group.

THEOREM 3.18. Let G be an algebraic k-group and H < G a normal
k-subgroup. Then the k-G-variety G/H is a linear algebraic k-group.

PRrOOF. Since H<G is normal, we may consider the action G ~ X (H)
defined by (gx)(h) = x(g~'hg) for every g € G, every h € H and every
X € Xi(H). Keep the same notation as in the proof of Theorem 3.16. We
have a k-representation 7 : G — GL(V) and a one-dimensional k-subspace
W C V such that H= {g € G | 7(¢9)(W) = W}. Choose a nonzero vector
w € W(k) and denote by xw € X;(H) the unique k-character such that
m(h)w = xw(h)w for every h € H. Denote by Y = G - xw C X,(H) the
G-orbit of xyw in Xi(W).

For every x € Y, set V, = {v € V |Vg € H, 7(g)v = x(g)v}. The sum
ery V, is direct and globally invariant under 7(G). Upon replacing V by

ey Vyx; we may assume that V.=, oy V. Observe that W C V.

Consider the adjoint k-representation Ad : GL(V) — GL(End(V)) :
g+ (u > gug™t). Define the k-subspace A = @D, cy End(Vy) C End(V) of
all endomorphisms preserving the direct sum P, .y V. Then A C End(V)
is globally invariant under (Ad o7)(G) and we denote by ¥ = Ador : G —
GL(A) the corresponding k-representation. We claim that H = ker(¥).
Indeed, let h € H. Since mw(h) acts by scalar multiplication on each k-
subspace V, for x € Y, it follows that W(h) = 1. Conversely, let g € G
be such ¥(g) = 1. Then 7(g) is central in A and so m(g) acts by scalar
multiplication on each k-subspace V, for x € Y. In particular, we have
m(g)(W) =W and so g € H.
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Then ¥(G) < GL(A) is a k-subgroup. By Proposition 3.17, there exists
a unique G-equivariant k-isomorphism 5 : G/H — ¥(G) such that ¥ =
B om. Moreover, 5 : G/H — ¥(G) is a group homomorphism. This shows
that G/H is a linear algebraic k-group. O

3. Stabilizers and tameness of algebraic actions

In this section, we assume that k is a local (i.e. nondiscrete locally
compact) field of characteristic zero. It is known that & is either R, C or a
finite extension of Q, for some prime p € Z.

For any algebraic k-variety V, the set V (k) of its k-points is endowed
with a natural topology induced from the topology of the local field k. Then
V (k) is a Hausdorff locally compact second countable topological space. If
the algebraic k-variety V is moreover smooth, then V(k) has a natural
structure of smooth k-analytic manifold. In that case, for every v € V(k),
the space 7,(V)y can be identified with the tangent space 7,(V (k)) of the
smooth k-analytic manifold V (k) at the point v € V (k).

For any algebraic k-group G, the group G(k) of its k-points has a natural
structure of k-analytic Lie group. In particular, if & = R, then G(R) is a
real Lie group. Moreover, the space Lie(G)y can be identified with the Lie
algebra Lie(G(k)) of the k-analytic Lie group G(k).

ProrosiTION 3.19. Let G be a Zariski connected algebraic k-group.
Then G(k) is Zariski dense in G.

PROOF. Denote by H the Zariski closure of G(k) in G. Then H < G
is a k-subgroup by Proposition 3.2. Moreover, we have Lie(H) = Lie(G).
Since G is Zariski connected, it follows that H = G (see [Bo91, 7.1]). O

Let us point that even though G is Zariski connected, the k-analytic
Lie group G(k) need not be connected. More precisely, if & = C, then
G (k) is connected for the analytic topology. If k = R, then the connected
component G(R)? of the identity element has finite index in G(R).

3.1. Stabilizers and tameness of G ~ V. In this subsection, we use
the following notation. Let G be a connected algebraic k-group and V an
algebraic k-G-variety. Set G = G(k) and V = V/(k). For every v € V,
the G-orbit Guv is a smooth k-G-variety, the stabilizer H = Stabg (v) < G
is a k-subgroup and there exists a unique G-equivariant k-isomorphism S :
G/H — Guo such that a = f o7, where a : G — Gw is the orbit map and
7w : G — G/H is the canonical G-equivariant k-regular projection.

THEOREM 3.20. Keep the same notation as above. For every v € V,
the G-orbit Guv is locally closed in V' for the analytic topology. Moreover,
letting H = H(k) = Stabg(v), the restriction Blg/g : G/H — Gv is a
homeomorphism, when G/ H is endowed with the quotient topology and Gv C
V is endowed with the relative topology.
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In particular, Theorem 3.20 implies that the Borel action G ~ V' is tame
and the quotient Borel space G\V is standard.

PrROOF OF THEOREM 3.20. Since the orbit map a : G — Gu is sur-
jective, Corollary 3.5 implies that the differential dja is surjective on a
nonempty Zariski open set U C G. By homogeneity, the differential dgo is
surjective everywhere on G. In particular, using the identification Z,.(G) =
Lie(G), we have that dea : Lie(G) — 7,(Gw) is surjective. Then

dimg (Lie(G)) = dimg (7, (Go)) + dimg (ker(dew)).
This further implies that
dimy (Lie(G)) = dimg (7, ((Gv)(k))) + dimg (ker(dear) (k)

and so the k-linear map dealpe(q) @ Lie(G) — Z4((Gw)(k)) is surjective.
By the submersion theorem (see [Se65, Chapter III, Theorem, pp. 85]),
alg : G — (Gv)(k) is open on a neighborhood of the identity element. This
further implies that all the G-orbits are open in (Gv)(k). Therefore, all the
G-orbits are both open and closed in (Gv)(k). In particular, the orbit Gv
is both open and closed in (Gv)(k).

By Theorem 3.3, Guv is Zariski locally closed in V. In particular, it
follows that (Gv)(k) is locally closed in V' = V (k) for the analytic topology.
Therefore, we infer that Guv is locally closed in V. The conclusion of the
theorem follows from Proposition 2.12. O

For any algebraic k-group G and any k-subgroup H < G, we consider
the algebraic k-G-variety V. = G/H and the canonical G-equivariant k-
regular projection 7 : G — G/H so that H = 7n(e) € (G/H)(k). The
proof of Theorem 3.20 shows that the G(k)-orbit G(k)w(e) is open and
closed in (G/H)(k). Since H(k) = Stabg(m(e)), we may identify the
G (k)-orbit G(k)m(e) with G(k)/H(k) and we have a natural continuous
injective mapping ¢ : G(k)/H(k) — (G/H)(k). Let us point out that in
general, we have +(G(k)/H(k)) # (G/H)(k). In what follows, we regard
G(k)/H(k) C (G/H)(k) as an open and closed subset.

Let (X, v) be a standard probability space. We denote by ¥ = LY(X, V)
the space of all v-equivalence classes of measurable maps ¥ : X — V.
Endowed with the topology of convergence in measure, ¥ is a Polish space.
Consider the continuous action G ~ ¥ defined by (g¢)(x) = gi(x) for
every g € G and every i € ¥. We obtain the following generalization of
Theorem 3.20.

THEOREM 3.21. Keep the same notation as above. For every € ¥,
the orbit G is locally closed in ¥ and there exists a k-subgroup Hy < G
such that Stabg () = Hy (k).

ProoOF. Let ¢p € ¥. In order to show that the orbit G is locally
closed in ¥/, using Proposition 2.12, it suffices to show that the map Gy —
G/ Stabg(v) : g — gStabg(v) is continuous. Using the fact that con-
vergence in measure for a sequence implies convergence almost everywhere



70 3. ALGEBRAIC GROUPS

for a subsequence, it suffices to prove that for any sequence (g,), in G
such that g,¥ — 1 v-almost everywhere, g, Stabg(1)) — Stabg(y) in
G/ Stabg(¢). Let X7 € X be a conull measurable subset and (g,), a
sequence in G such that g, (z) — ¥ (z) for every z € X;. Fix a count-
able dense subgroup A < Stabg(v). It is clear that g € Stabg(v) if and
only if g € Stabg(¢(x)) for v-almost every z € X. Since A < Stabg (1))
is countable, there exists a conull measurable subset Xg C X; C X such
that A C (,cx, Stabg(¥(z)). Since the latter group is closed, it fol-
lows that Stabg(¢) C (,cx, Stabg(i(x)). Thus, we have Stabg (1)) =
Neex, Stabg(¥(z)). For every x € X, set Hy(,) = Stabg(i(x)) which
is a k-subgroup by Proposition 3.17. By the descending chain condition,
there exist x1,...,2, € X such that (,cx, Hy@) = MNi=; Hy@,)- Set
Hy =N, H,(z,), which is a k-subgroup of G. Then we have

P P
Stab (1)) = Hy(k) = (| Hy(s,) (k) = ) Stabe (v(x:)).
i=1 i=1
Set Y =[]V, G/ Stabg(¢(x;)) and y = (Stabg((x;))); € Y. Observe that
Stabg(y) = N}_; Stabg (¢ (xi)) = Stabg (). Moreover, Y is homeomorphic
to [T7_; Gt (i), which is locally closed in []?_; (G (x;))(k). By applying
Theorem 3.20 to the algebraic k-G-variety []5_; Gv(z;), we obtain that the
continuous action G ~ Y has locally closed orbits and so the map Gy —
G/ Stabg(y) : gy — gStabg(y) is continuous by Proposition 2.12. Since
gn¥(x;) — P(x;) for every i € {1,...,p}, Proposition 2.12 and Theorem
3.20 imply that g, Stabg (¢ (z;)) — Stabg(v(z;)) for every ¢ € {1,...,p}.
This further implies that g,y — vy and so g, Stabg(v)) = g, Stabg(y) —
Stabg(y) = Stabg (). O

3.2. Stabilizers and tameness of G ~ Prob(V'). For a locally com-
pact second countable group L, a standard Borel space Z and a Borel
action L ~ Z, we denote by Prob(Z)"* the standard Borel space of all
L-invariant Borel probability measures on Z. As usual, we simply write
Prob(Z) = Prob(Z){¢},

DEFINITION 3.22. Let G be an algebraic k-group and set G = G(k).
A closed subgroup L < G is said to be almost algebraic if there exists a
k-subgroup H < G such that H = H(k) sits as a cocompact closed normal
subgroup in L.

The first main result of this subsection is due to Bader—Duchesne—
Lécureux (see [BDL14, Proposition 1.9]). It is a generalization of Shalom’s
result [Sh97, Theorem 1.1].

THEOREM 3.23. Let G be an algebraic k-group and set G = G(k). Let
L < G be a closed subgroup that is Zariski dense in G.

Then there exists a normal k-subgroup N <1G such that the image of L in
(G/N)(k) is precompact. Moreover, for every algebraic k-G-variety V. and
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every Borel probability measure i € Prob(V(k))¥, we have p = PNV (k)

that is, p is supported on the subset VN NV (k) of N-fized points.

ProoF. Consider the set o7 consisting of all algebraic subgroups H < G
for which there exists ¢ € G such that gHg™! < G is a k-subgroup and
such that Prob((G/gHg 1)(k))L # 0. Note that G € &/ and so & # 0.
Since the ring K[G] is Noetherian, &7 contains a minimal element H;, <
G. Choose h € G such that Hy = hHpinh™! < G is a k-subgroup and
Prob((G/Hy)(k))" # 0. Set Vo = G/Hy and choose g € Prob(Vo(k))*.
Firstly, we prove the following claim.

CrAaM 3.24. Hj is a normal k-subgroup of G.

PROOF OF CLAIM 3.24. Denote by N = A (Hy) the normalizer of Hy
in G. Then N < G is a k-subgroup by Proposition 3.15. By contradiction,
assume that N # G. Consider

U = {(zHo,yHo) € Vo x Vo |y 'z ¢ N}.

Observe that U C V x Vg is a nonempty Zariski open set that is invariant
under the diagonal action G ~ V x V. Indeed, its complement (Vj X
Vi) \ U is the inverse image of the diagonal {(¢IN,gIN) | gN € G/N} under
the canonical k-morphism G/Hy x G/Hy — G/N x G/N. Moreover, U is
defined over k.

Denote by B C (Vo x Vy)(k) the topological support of py ® pg €
Prob((Vo x Vi) (k))?*L and by W the Zariski closure of B in Vi x V.
Since B is (L x L)-invariant and since L x L is Zariski dense in G x G, it
follows that W C Vg x Vg is G x G-invariant and so W = Vg x V5. Since
U C V x Vy is Zariski open, we have that (uo ® po)(U(k)) > 0. Indeed,
otherwise we would have B C V (k) \ U(k) and so W C V\ U # Vj x Vy,
a contradiction. We regard (1o ® po)|u(x) as a nonzero L-invariant measure
for the diagonal action and we set

1
po @ o) (U(k))

By Theorem 3.20, the Borel action G ~ U(k) is tame and Corollary A.6
implies that there exists u € U(k) such that Prob(Gu)” # (. By Theorem
3.20, denote by H = Stabg (u) the stabilizer k-subgroup and by g : G/H —
Gu the k-isomorphism. Letting H = H(k), we have that 3|q/g : G/H —
Gu is a homeomorphism. Regarding G/H — (G/H)(k), it follows that
Prob((G/H)(k))* # 0. Write u = (zHy, yHo) € Vo(k) x Vo(k). Since H =
Stabg (u), we have H < xHoz ! and so h™ 2 ' Hzh < Hpy,. By minimality
of Hynin, we obtain A2~ "Hzh = Hyi, and so 27 'Hz = Hy. Likewise, we
have y"'Hy = Hy. This implies that y~'2 € N, a contradiction. Thus
Hy < G is a normal k-subgroup. In particular, we have Hy = Hjp. O

n=1 (ko ® o) [u(k) € Prob(U(k))".

Since Hy <t G is a normal k-subgroup by Claim 3.24, we simply write
Hy = N. We fix uy € Prob((G/N)(k))~.
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Secondly, we show that the image of L in (G/N)(k) is precompact.
Indeed, set S = (G/N)(k) and denote by T the closure of the image of L in
S. By Theorem 2.10 and considering the left translation action T~ S, the
quotient space T\S is a Hausdorff locally compact second countable space
and so T'\ S is a standard Borel space. By continuity and density and since
pn € Prob(S)%, we have uy € Prob(S)”. Then Corollary A.6 implies that
there exists s € S and n € Prob(Ts)”. Denote by y = Rsyn € Prob(T)7
the pushforward measure of n by the right translation by s~'. Then T is a
locally compact group that carries a Haar probability measure and so 7' is
compact by Proposition 1.6. This shows that the image of L in (G/IN)(k)
is precompact.

Thirdly, let V be a k-G-variety and p € Prob(V(k))* an L-invariant
Borel probability measure on V (k). We need to show that = ply~ay k-
By contradiction, assume that p # ,u\VNﬁV(k). Denote by W the Zariski

closure of VN NV (k) in V. Then W is defined over k by Proposition 3.2
and since N <1 G, W is G-invariant. By definition, N acts trivially on W
and so W(k) = VNN V(k). Consider the k-G-variety U = V\W. By
assumption, we have u(U(k)) > 0. Upon replacing V by U and considering
mmu(m on U(k), we may assume that V = U, that is, VNNV (k) = (.
Consider the k-G-variety G/N xV and observe that uy®u € Prob((G/N x
V)(k))¥. By Theorem 3.20, the Borel action G ~ (G/N x V)(k) is tame
and Corollary A.6 implies that there exists w € (G/N x V)(k) such that
Prob(Gw)* # 0. By Theorem 3.20, denote by H = Stabg(w) the stabilizer
k-subgroup and by 5 : G/H — Guw the k-isomorphism. Letting H = H(k),
we have that 8|q /g : G/H — Gw is a homeomorphism. Regarding G/H
(G/H)(k), it follows that Prob((G/H)(k))* # 0. Write w = (zN,v) €
(G/N xV)(k) = (G/N)(k) x V(k). Since H = Stabg (w) and since N< G,
we have H < zNz~! = N. By minimality of N, we obtain H = N. This
further implies that v € VNNV (k), a contradiction. This finishes the proof
of the theorem. (]

Theorem 3.23 has several striking consequences. The first corollary deals
with the structure of stabilizers of probability measures on algebraic varieties
(see also [Zi84, Theorem 3.2.4)).

COROLLARY 3.25. Let G be an algebraic k-group and 'V an algebraic
k-G-variety. For every u € Prob(V(k)), the stabilizer Stabg (1) < G(k)
18 almost algebraic.

PrOOF. Upon considering the Zariski closure of L = Stabg (1) in G,
which is a k-subgroup of G by Proposition 3.2, we may assume that L is
Zariski dense in G. Set G = G(k) and V = V (k). By Theorem 3.23, there
exists a normal k-subgroup N < G such that the image of L in (G/N)(k) is
precompact and such that y is supported on VNNV, Since N acts trivially
on VN N = N(k) acts trivially on VN NV and we have that N < L is a
closed normal subgroup. It follows that the image of L in G/N is closed.



3. STABILIZERS AND TAMENESS OF ALGEBRAIC ACTIONS 73

Therefore, the image of L in (G/N)(k) is closed whence compact and so L
is almost algebraic in G. O

The second corollary is Borel’s density theorem.

COROLLARY 3.26. Let G be a connected algebraic k-group. Assume that
for every proper normal k-subgroup N < G, the group G(k)/N(k) in non-
compact.

Then for any lattice I' < G(k), we have that I is Zariski dense in G.

PrROOF. Set G = G(k). Denote by v € Prob(G/I') the unique G-
invariant Borel probability measure on G/I". Denote by H the Zariski
closure of I' in G and set H = H(k). Then H < G is a k-subgroup by
Proposition 3.2 and so G/H is an algebraic k-G-variety. Since I' < H(k),
we may consider the G-equivariant factor map ¢ : G/I' — G/H. Regard-
ing G/H — (G/H)(k), we may view p = ¢.v € Prob((G/H)(k))“ as a
G-invariant Borel probability measure on (G/H)(k). Using the assumption,
the k-normal subgroup N <1 G appearing in Theorem 3.23 is equal to G and
we obtain that p is supported on (G/H)% N (G/H)(k). In particular, we
have (G/H)% # ) and so H = G. O

In particular, for any (almost) simple algebraic k-group G such that
G(k) is noncompact, for any lattice I' < G(k), we have that I' is Zariski
dense in G.

The second main result of this subsection is Zimmer’s tameness theorem
(see [Zi84, Theorem 3.2.6)).

THEOREM 3.27 (Zimmer [Zi84]). Let G < GL,, be an algebraic k-group.

Regard the projective space P! as an algebraic k-G-variety.
Then the action G(k) ~ Prob(P"1(k)) is tame.

Firstly, we show that the proof reduces to the case when G = GL,,.

CLAIM 3.28. Assume that the action GL,, ~ Prob(P"~1(k)) has locally
closed orbits. Then for any algebraic k-subgroup G < GL,, the action
G (k) ~ Prob(P" 1(k)) is tame.

PROOF. Let 1 € Prob(P" 1(k)) be a Borel probability measure. Since
the orbit GL, (k)u is locally closed in Prob(P"!(k)), Proposition 2.12 im-
plies that the map GLy(k)/ Stabgr,, k) (1) — GLn(k)p : g Stabar,, (k) (1) =
g is a homeomorphism. Since G(k)u C GL,(k)u, in order to show that
G (k)p is locally closed in Prob(P"1(k)), it suffices to show that G(k)u is
locally closed in GL,, (k). Thus, using Theorem 2.13, it suffices to show that
the action G(k) ~ GL,(k)/ Stabgr,, (1) (1) is tame. Moreover, using Propo-
sition A.4, it suffices to show that action Stabgr,, ) (1) ~ GLy,(k)/G(k) is
tame.

Set Z = GLy(k)/G(k). By Corollary 3.25, there exists a k-subgroup
H < G such that H = H(k) sits as a cocompact closed normal subgroup in
L = Stabgr,, (x)(1t). By Theorem 3.21, the action H ~ Z is tame. Since L/H
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is a compact group and since H\ Z is a standard Borel space, Proposition A.3
implies that the action L/H ~ H\Z is tame. It follows that the quotient
Borel space L\Z = (L/H)\(H\Z) is countably separated. Therefore, the
action L ~ Z is tame. This finishes the proof of the claim. O

Secondly, we consider the case when G = GL,,. We introduce some
notation. The projective space X = P"~1(k) is a compact metrizable space.
Then Prob(X) endowed with the weak*-topology is a compact metrizable
space. Denote by % the space of all closed subsets of X. Then % endowed
with the Hausdorfl metric is a compact metric space. For every A € €, we
denote by Prob(A) the space of all Borel probability measures on X that are
supported on A. Then Prob(A) C Prob(X) is a closed subset. Whenever
&/ C % is a nonempty subset, we set Prob(&/) = (J 4., Prob(A). We record
the following easy lemma.

LEMMA 3.29. Let (Aj); be a sequence in ¢ and A € €. For every j € N,
let p; € Prob(A;) and p € Prob(X). Assume that A; — A in € and that
pj — p in Prob(X). Then p € Prob(A).

In particular, if o/ C € is closed, then Prob(«/) C Prob(X) is closed.

PROOF. Let f € C(X) be a continuous function such that supp(f)NA =
(0. Since Aj — A in ‘5 with respect to the Hausdorff metric, there exists
Jo € N such that supp(f) N A; = 0 for every j > jo. Then we have

/ fd,u_hm/ Fduj =0.

This shows that € Prob(A).

Next, assume that &/ C % is closed. Let (u;)jen be a sequence in
Prob(«/) and p € Prob(X) such that p; — p in Prob(X). For every j € N,
choose Aj € o/ such that ;1; € Prob(A;). Since € is a compact metric space
and since &/ C € is closed, upon taking a subsequence, we may assume
that there exists A € & such that A; — A in &/. The previous result
implies that p = lim; 1; € Prob(A) and so pu € Prob(<7). This shows that
Prob(«7) C Prob(X) is closed. O

Consider the natural map ¢ : k" \ {0} — P"71(k). For any nonzero
subspace V' C k", we denote by [V] = q(V) c P !(k) the corresponding
projective subspace. We record the following variation of a well-known result
due to Furstenberg (see [Fu62, Lemma 1.5]).

Let V' C k™ be a nonzero subspace and set r = dim(V'). Denote by
I, (k) C My, (k) the open subset of all injective linear maps g : V' — k.
Consider the quotient space I, ,(k)/k* and denote by I, (k) — 1, (k) /k* :
g +— [g] the quotient map.

LEMMA 3.30. Let V C k™ be a nonzero subspace, j1 € Prob([V]) a Borel
probability measure and (g;)jen @ sequence in I, (k). Assume that [g;V] —
(W] in € and that g; pu — v in Prob(P"~1(k)).
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Then either the sequence ([gj])jen is precompact in 1, .(k)/k* or there
exist nonzero subspaces Y, Z C W such that v is supported on [Y]U [Z] with
dim(Y) + dim(Z) = dim(W).

PRrROOF. Assume that ([g;])jen is not precompact in I,,(k)/k*. For

every j € N, set h; = Hngijill : V. — k™. Upon taking a subsequence, we may
J
assume that there exists a linear map h : V' — k" such that lim; [|h—h;|| =0

and ker(h) # {0}. Set {0} # N =ker(h) C V and {0} # Z = range(h) C W
so that we have dim(N) + dim(Z) = dim(V) = dim(W). Upon taking a
subsequence, we may assume that [g;N] — [Y] where Y C W. We have
dim(Y') + dim(Z) = dim(W). We claim that v = lim; g;_u is supported on
[Y]U[Z]. Write pp = py + po where p1 = pfny and pz = pfpyy\ v Upon
taking a subsequence, we may assume that for every i € {1,2}, the limit
v; = lim; g;, p; exists so that we have v = vy + vo. It is clear that v is
supported on [Y]. It remains to show that vy is supported on [Z]. Let
f € C(P""Y(k)) be a continuous function such that supp(f) N[Z] = §. For
every j € N, we may extend g; : k" — k" to a linear map and we have

[, fam=tim [ fagm
Pt(k) JJPrTl(k)

= lim flgjz) dpa(z)
i i)

= lim f(gjz) dpa(z).
ALY

For every x € [V]\[N], we have lim; f(g;xz) = 0. Then Lebesgue’s dominated
convergence theorem implies that fpnq(k) fdve = 0. Thus, 15 is supported

on [Z] and so v = v; + v is supported on [Y] U [Z]. O

Denote by &/ C % the closed subset consisting of all elements of the form
A= Ule[%] where V; C k" is a nonzero subspace such that V; ¢ V; for all
1<i#j<land Y'_, dim(V;) < n. Set £(A) = £and d(A) = S°°_, dim(V;)
and observe that 1 < /(A),d(A) < n.

We are now ready to prove Theorem 3.27.

PROOF OF THEOREM 3.27. As we already explained, by Claim 3.28,
we may assume that G = GL,. By Proposition 2.12, It suffices to show

that the action GL,(k) ~ Prob(P" !(k)) has locally closed orbits. Let
1 € Prob(P"1(k)) be a Borel probability measure. Set

d(p) =min{d(A) | A € & and p € Prob(A)}

l(p) =max {l(A) | A€ o/, € Prob(A) and d(A) =d(p)} -
Choose an element A € &/ such that p € Prob(A) and d(A) = d(u) and
0(A) = 6(p). Write A = (J[Vi] so that S0 dim(V;) = d(u). Since
JIRS Prob([Zf(:“l) Vi]) and by choice of A € o7, it follows that dim(Zf(:“l) Vi) =
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Zf(:“l) dim(V;) = d(p). In particular, the subspaces Vi,. .., Vy(,) are linearly
independent.

Denote by 7 (u) C &/ the subset of all elements of the form B =
UiY Wi] € o where ¢(B) = £(11)+1 and d(B) = d(u), or d(B) < d(u1)—1 or
dim(Zf(j) W;) < d(p)—1. Tt is easy to see that .# (1) C P" (k) is a closed
subset. Set % (1) = Prob(X)\ Prob(.# (u)), which is an open set by Lemma
3.29 and observe that u € % (u). Moreover, % (u) is invariant under the
natural action of GL,, (k). To show that the orbit GL,,(k)u C Prob(P" 1(k))
is locally closed, it suffices to show that GLy,(k)u = GL,(k)u N % (1). We
clearly have GL,,(k)u C GLy,(k)u N % (). Tt remains to prove the inclusion
GL,(k)p N % (1) € GLy, (k) .

Choose a sequence (g;);en in GL, (k) such that g;_p — v for some Borel
probability measure v € % (11). We show that v € GL,(k)u. Upon taking
a subsequence, we may further assume that [g;V;] — [W;] in € for every
1 < i < #(u). Note that dim(W;) = dim(V;) for every 1 < i < £(u).
Moreover, since v € Prob([Uf(_“l) W;]) and since v € % (p), it follows that

£(p) £(p)

) < dim( ZW <Zd1m Zdlm ().

This further implies that the subspaces W1,..., Wy, are linearly indepen-
dent. For every 1 < i < £(u), set p; = plpy;), vi = v|w,) and define the
sequence (hz : Vi = k")jen by the formula hg = gjlv;. Then for every
1 <4 < 4(p), we have lim; hg*,ui =v;.

CrAM 3.31. For every 1 < i < {(u), the sequence ([hg])jeN is precom-
pact in In dim(V; ( )/k*

PROOF. By contradiction, assume that the sequence ([h!]);en is not
precompact in I, gim(v;)(k)/k*. Then Lemma 3.30 implies that there exist
nonzero subspaces Yl, ; C W; such that v; is supported on [Y;] U [Z;] and
dim(Y;) +dim(Z;) = dim(Wi) = dim(V;). There are two cases to consider:

o If Y; N Z; = {0}, then letting B = [W1]U--- U [W;_1] U[Y;]U[Z;] U
(Wig1] U--- U [Wy] € o, we have v € Prob(B), ((B) = £(u) + 1
and d(B) = d(u). This contradicts the fact that v € % (u).

e IfY,NZ; # {O}, then letting B = [Wl] Uu---u [Wz;l] U [Y; + Zi] U
(Wi1]U- - -U[Wy,,)] € &, we have v € Prob(B) and dim(W1)+- - -+
dim (W) +dim(Y;+Z;) +dim(Wig 1) +- - -+dim(Wy ) < d(p)—
This contradicts again the fact that v € % (p).

This finishes the proof of the claim. O

By Claim 3.31, upon taking a subsequence, for every 1 <i < £(u), we
may assume that there exists a sequence (A])jen in k* such that XJh] — h;
as j — oo, where h; : V; — W; is an isomorphism such that h;.u; = v;.
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Choose any element h € GL,, (k) such that hly, = h; for every 1 <i < {(u).
Then v = hyp € GL,(k)u. This finishes the proof of the theorem. O






CHAPTER 4
Margulis’ superrigidity theorem

We prove Margulis’superrigidity theorem following the
approach by Bader-Furman [BF18a, BF18b].

This chapter is devoted to proving the following superrigidity theorem
for group homomorphisms due to Margulis (1975) (see [Ma91, Chapter 7]).

MARGCULIS’ SUPERRIGIDITY THEOREM. Let H be a connected semisimple
algebraic R-group with rkg (H) > 2. Assume that H = H(R) has no compact
factor. Let I' < H be an irreducible lattice.

Let k be a local field of characteristic zero, G a connected simple algebraic
k-group and set G = G(k). Let p: I' — G be a homomorphism such that
p(I') < G is Zariski dense and unbounded.

Then there exists a unique continuous homomorphism p : H — G such
that plr = p.

We will prove Margulis’superrigidity theorem in the case when H is also
assumed to simple. More precisely, we will state and prove a superrigidity
theorem due to Bader-Furman [BF18a, BF18b]. We will then derive Mar-
gulis’ superrigidity theorem from Bader—Furman’s superrigidity theorem.

We present Bader—Furman’s approach to superrigidity that relies on the
concept of algebraic representation of ergodic actions. For Margulis’ proof
of his superrigidity theorem, we refer the reader to [Ma91, Chapter 7] (see
also [Zi84, Chapter 5] and [Be08, Chapter 10]).

1. Algebraic representations of ergodic actions

In this section, we follow the exposition given in [BF18a, Section 4] and
[BF18b, Section 3]. Let T" be a locally compact second countable group,
(X, v) a standard probability space and T ~ (X, v) an ergodic action. Let
k be a local field of characteristic zero and G an algebraic k-group. Let
7 : T — G(k) be a continuous homomorphism. The following notion is
central in Bader—Furman’s approach (see [BF18a, Definition 4.1)).

DEFINITION 4.1. An algebraic representation of T ~ X is the data of
an algebraic k-G-variety V and a T-equivariant measurable map ¢v : X —
V (k).

The equivariance condition means that for every t € T and v-almost
every = € X, we have ¢y (tx) = 7(t)pv ().

79
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We will simply refer to ¢v : X — V(k) as the algebraic representation
(of T ~ X). A morphism between ¢y and ¢y is the data of a G-equivariant
k-morphism 7 : U — V such that ¢v = 7 o ¢y v-almost everywhere. We
say that ¢v is a coset algebraic representation of 7' ~ X if V.= G/H where
H < G is a k-subgroup. The class of algebraic representations of T~ X
and their morphisms forms a category. Firstly, we prove the existence of
coset algebraic representations of '~ X (see [BF18a, Proposition 4.2]).

PROPOSITION 4.2. Let ¢v be an algebraic representation. Then there
exist a k-subgroup H < G, a coset algebraic representation ¢pg/m and a G-
equivariant k-morphism B : G/H — 'V such that ¢v = o bG/u v-almost
everywhere.

PROOF. Set G = G(k) and V = V (k). We denote by p: V — G\V the
quotient map. By Theorem 3.20, the Borel action G ~ V is tame and the
quotient Borel space G\V is standard. Since the map po ¢y : X — G\V
is measurable and T-invariant and since the action " ~ (X, v) is ergodic,
p o ¢v is v-almost everywhere constant. Let v € V be a point such that
po ¢v = Gu v-almost everywhere. Thus, ¢y (X) is essentially contained in
Go.

By Theorem 3.20, denote by H = Stabg(v) < G the stabilizer k-
subgroup and set H = H(k). Regard G/H — (G/H)(k). We obtain a
G-equivariant k-morphism 3 : G/H — V such that Blg/y : G/H — Gv
is a homeomorphism. Then the desired coset algebraic representation is
b/ = (Bloyn) ' o dv : X — G/H — (G/H)(k). O

Secondly, we prove that the category of algebraic representations of T' ~
X has an initial object (see [BF18a, Theorem 4.3)).

THEOREM 4.3. The category of algebraic representations of T~ X has
an initial object that is a coset algebraic representation.

PRrROOF. Consider the set & consisting of all algebraic subgroups H < G
for which there exists ¢ € G such that gHg™! < G is a k-subgroup and
such that there exists a coset algebraic representation ¢g/gpg-1 @ X —
(G/gHg 1) (k) of T ~ X. Note that G € & and so &/ # (). Since the
ring K[G] is Noetherian, o/ contains a minimal element Hy,i, < G. Choose
h € G such that Hy = hHyi,h~! < G is a k-subgroup and such that there
exists a coset algebraic representation ¢g : X — (G/Hp)(k) of T ~ X. We
show that the coset algebraic representation ¢g : X — (G/Hjp)(k) is the
required initial object.

Let ¢v : X — V (k) be an algebraic representation of 7' ~ X. We need
to show that there exists a unique G-equivariant k-morphism 5 : G/Hy —
V such that ¢y = [ o ¢g v-almost everywhere. By transitivity of G ~
G /H)y, if such a G-equivariant k-morphism [ : G/Hy — V exists, it is nec-
essarily unique. It remains to prove that such a G-equivariant k-morphism
B:G/Hy — V exists. To do this, we consider the product algebraic repre-
sentation W = V x G/Hy with ¢w = ¢v X ¢¢ v-almost everywhere. By
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Proposition 4.2, there exists a k-subgroup H < G, a coset algebraic represen-
tation ¢g/p : X — (G/H)(k) of T~ X and a G-equivariant k-morphism
0 : G/H — W such that ¢w = 0 0 ¢g/u v-almost everywhere. Consider
the G-equivariant k-morphism py 06 : G/H — G/Hy. Let g € G be such
that gHy = (p206)(H) € (G/Hyg)(k). Then H < gHog™! = ghHin(gh) ™ .
By minimality of Hypy, it follows that H = ghHpyn(gh)~! = gHog™! and
S0 pp 0 0 is a k-isomorphism. Then 8 = (p1of)o (p206)~!: G/Hy — V is
the required G-equivariant k-morphism that satisfies ¢v = 8 o ¢g v-almost
everywhere. O

Following [BF18a], by a slight abuse of terminology, we call (a choice
of) a coset algebraic representation that is an initial object in the category
of algebraic representations of 7' ~ X the algebraic gate of T ~ X (even
though the choice is not canonical in general).

Thirdly, we prove that the algebraic gate is nontrivial when the action
T ~ X is amenable and metrically ergodic (see [BF18a, Theorem 4.5] and
[BDL14, Corollary 1.17]).

THEOREM 4.4. Assume that G is a simple connected algebraic k-group,
T ~ X is amenable and metrically ergodic, and 7(T) < G(k) is unbounded.
Then there exists a coset algebraic representation ¢pg/g of T ~ X that is
nontrivial in the sense that H # G.

Proor. Choose a faithful irreducible k-representation p : G — GL,.
Note that since G is connected and simple, the adjoint k-representation
Ad : G — GL(Lie(G)) is faithful and irreducible. Then we may regard
G < GL,, as a k-subgroup. Composing with the k-morphism GL,, = PGL,,
we may further regard G < PGL,, as a k-subgroup and V. = P" ! as a k-
G-variety. Note that (P"~1)G = (.

Set G = G(k). Since V' = P"1(k) is compact and since T~ (X,v) is
amenable, Theorem 2.42 implies that there exists a T-equivariant measur-
able map 8 : X — Prob(V). By Theorem 3.27, the action G ~ Prob(V)
is tame and the quotient Borel space G\ Prob(V) is standard. Denote by
p : Prob(V) — G\ Prob(V) the quotient Borel map. Then the measur-
able map po 8 : X — G\Prob(V) is T-invariant. Since T ~ (X,v) is
ergodic, po 5 : X — G\ Prob(V) is v-almost everywhere constant and so
there exists u € Prob(V') such that §(X) is essentially contained in Gu. Set
L = Stabg(pn) < G. By Proposition 2.12, the orbit map G/L — Gpu is a
homeomorphism and so we may regard 5 : X — G/L as a T-equivariant
measurable map.

Denote by H the Zariski closure of L in G. Proposition 3.2 implies that
H is defined over k and we set H = H(k). By Theorem 3.23, there exists a
k-subgroup Hg < H < G such that Hy <t H, the image of L is precompact
in (H/Ho)(k) and p is supported on (P"~1)Ho 0V, Since (P"1)& = ), we
have Hy # G. We prove the following claim.

CraM 4.5. We have that Hy # {e}.
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PROOF OF CLAIM 4.5. By contradiction, assume that Hy = {e}. Then
L < H is a compact subgroup. Choose a compatible proper left invariant
metric dg on G (see [St73]). Denote by my, € Prob(L) the Haar probability
measure on L. Upon replacing dg by the compatible right L-invariant metric

GxG—Ry:(g1,g2) = / de (g1, go) dmy (0),
L

we may assume that d¢ is also right L-invariant. Set Y = G/L and define

dy Y xY — R+ : (glL,ggL) — min d(;<91€1,92€2>.
(£1,82)€ELXL
Then dy is a compatible G-invariant metric on Y and (Y, dy) is a separable
metric space. Since T ~ (X, v) is metrically ergodic, it follows that 3 is
v-almost everywhere constant and so there exists ¢ € G such that § =
gL v-almost everywhere. Since 7(T) < Stabg(gL) = gLg™!, this further
implies that 7(T') < G is bounded, a contradiction. Therefore, we have

HO 7§ {6} (I

Since Hy # G and Hy # {e} by Claim 4.5, since Hy <H and since G is
simple, we have H # G. Since L < H, we may consider the G-equivariant
factor map ¢ : G/L — G/H. Regarding G/H — (G/H)(k), the map
¢gmu = qo B : X — (G/H)(k) is the desired nontrivial coset algebraic
representation. Ol

Fourthly, we observe that in the case when the action T ~ (X, v) is pmp
and weakly mixing, the category of algebraic representations of T' ~ (X, v)
is essentially trivial (see [BF18b, Proposition 3.3]).

PROPOSITION 4.6. Assume that the action T ~ (X, v) is pmp and weakly
mixing. Then any algebraic representation ¢v of T ~ X is v-almost every-
where constant. Moreover, letting H the Zariski closure of 7(T') in G, the
essential image of ¢v is H-invariant.

PROOF. Denote by L the closure of 7(7) in G and by H the Zariski
closure of L in G. Set yu = ¢v,v € Prob(V(k))*. By Theorem 3.23, there
exists a normal k-subgroup N <t H such that the image of L in (H/IN)(k)
is compact and such that p is supported on VN N V (k). Denote by K the
closure of the image of L in (H/N)(k). Then K is a compact group and
the action K ~ (VN NV (k),u) is well-defined, pmp and weakly mixing.
Then a combination of Peter—-Weyl theorem and Proposition 2.26 implies
that u = 6, for some point v € VN NV (k). By equivariance, it follows that
v € VNNV (k) is H-invariant. a

2. Algebraic representations of (S,7,T")

In this section, we follow the exposition given in [BF18b, Section 4]. In
order to prove Bader—Furman’s superrigidity theorem, we need to introduce
a more sophisticated category of algebraic representations. Let S be a locally
compact second countable group, I' < § a lattice and 7' < S a closed
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subgroup. We endow S with its Haar measure mg. Let k be a local field
of characteristic zero and G an algebraic k-group. Set G = G(k) and fix
a group homomorphism p : I' = G. The following notion is an extension
of the notion of algebraic representation from Definition 4.1 (see [BF18b,
Definition 4.1}).

DEFINITION 4.7. An algebraic representation of (S,T,T") consists of the
following data:

e An algebraic k-group L;

o A k-(G x L)-algebraic variety V where the L-action is faithful. We
regard V as a left-G-right-L-space.

e A continuous group homomorphism 7 : T — L(k) with Zariski
dense image.

e An algebraic representation ¢y : S — V(k) of ' x T'~ S (in the
sense of Definition 4.1) where we regard S as a left-I'-right-T-space.
For every v € I, every t € T and mg-almost every s € S, we have

dv(yst) = p(v)ov(s)T().

We simply refer to ¢v as the algebraic representation of (S, T, T") denot-
ing the extra data by Ly and v : T' — Ly (k). A morphism between ¢y
and ¢v is the data of a (G x Ly v)-equivariant k-morphism 7 : U — V
such that ¢y = 7o ¢y v-almost everywhere, where Ly v < Ly x Ly is the
Zariski closure of the image of 7y x 7v : T' — Ly(k) x Lv (k). Note that
Ly, v naturally acts on U (resp. V) via its projection to Ly (resp. Lv).

Let H < G be a k-subgroup and denote by N = A4g(H) < G the
normalizer of H in G, which is a k-subgroup by Proposition 3.15. Denote
by Autg(G/H) the group of all G-equivariant automorphisms of G/H. It
is easy to see that the homomorphism

N — Autg(G/H) :n — (gH — gn™'H)

is surjective and its kernel is equal to H. Under the identification N/H =
Autg(G/H), the group of k-points (N/H)(k) is identified with the group
of k-G-automorphisms of G/H.

We say that ¢y is a coset algebraic representation of (S,7T,T") if V =
G/H where H < G is a k-subgroup and L < Ag(H)/H is a k-subgroup
which acts on G/H as described above. Firstly, we prove the existence of
coset algebraic representations of (S, 7, T"). The next proposition should be
compared with Proposition 4.2 (see [BF18b, Lemma 4.4]).

PROPOSITION 4.8. Assume that the pmp action T ~ S/T' is weakly
mixing. Let ¢y be an algebraic representation of (S,T,I"). Then there exists
a k-subgroup H < G, a coset algebraic representation ¢gu of (S,T,I') and
an equivariant k-morphism B : G/H — V such that ¢v = o bg/m almost
everywhere.

PROOF. Since T'~ S/T" is weakly mixing hence ergodic, it follows that
I'xT ~ S is ergodic. By Proposition 4.2, there exists a k-subgroup M <
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G xL, a coset algebraic representation ¢(gxr)/m of 'xT ~ S and a (G xL)-
equivariant k-morphism 7 : (G x L)/M — V such that ¢v = 70 d(gxL)/Mm
almost everywhere. Thus, we may assume that V = (G x L)/M.

Denote by pa : G x L — L the projection map. Then pa(M) < L is a k-
subgroup. By composing the G-invariant-L-equivariant k-morphism V —
L/p2(M) with the algebraic representation ¢v : S — V(k), we obtain a
well-defined algebraic representation ¢ : S/T" — (L/p2(M))(k) of T~ S/T.
Since T'~ S/T" is pmp and weakly mixing and since 7y (7') is Zariski dense
in L, Proposition 4.6 implies that pa(M) = L.

Set H=p;(MNG X {e}). Then H < G is a k-subgroup and the map

B:G/H—V:gH— (g,e)M

is a G-equivariant k-isomorphism of k-G-varieties. We may endow G/H
with a faithful L-action by pulling back the faithful L-action on V using
g : G/H — V. Then bg/H = B~ o ¢y is the desired coset algebraic
representation of (S,7,T). O

Secondly, we prove that the category of algebraic representations of
(S,T,T) has an initial object. The next theorem should be compared with
Theorem 4.3 (see [BF18b, Theorem 4.3]).

THEOREM 4.9. Assume that the pmp action T ~ S/T" is weakly mizing.
Then the category of algebraic representations of (S,T,T") has an initial 0b-
ject that is a coset algebraic representation.

PRroOOF. Consider the set & consisting of all algebraic subgroups H < G
for which there exists ¢ € G such that gHg™' < G is a k-subgroup and
such that there exists a coset algebraic representation ¢g/pg-1 @ S —
(G/gHg 1) (k) of (S,T,T). Note that G € & and so & # (). Since the
ring K[G] is Noetherian, 2/ contains a minimal element Hy,i, < G. Choose
h € G such that Hy = hRHpinh ™' < G is a k-subgroup and such that there
exists a coset algebraic representation ¢¢ : S — (G/Hp)(k) of (S,T,T).
Denote by Ly < A4a(Hp)/Hy the corresponding algebraic k-subgroup and
by 70 : T" — Lg(k) the corresponding homomorphism. We show that the
coset algebraic representation ¢g : S — (G/Hp)(k) is the required initial
object.

Let ¢y : S — V (k) be an algebraic representation of (S, 7,T"). We need
to show that there exists a unique equivariant k-morphism 8 : G/Hy — V
such that ¢y = [ o ¢y almost everywhere. By transitivity of G ~ G/H)y,
if such an equivariant k-morphism 8 : G/Hy — V exists, it is neces-
sarily unique. It remains to prove that such an equivariant k-morphism
B : G/Hy — V exists. To do this, we consider the product algebraic
representation W = V x G/Hj with ¢w = ¢v X ¢o almost everywhere,
™w = 7v X 79 and Lw the Zariski closure of 7w (7T') in Ly x Lg. By
Proposition 4.8, there exists a k-subgroup H < G, a coset algebraic repre-
sentation ¢g /g : S — (G/H)(k) of (5, T,T') and an equivariant k-morphism
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0 : G/H — W such that ¢w = 0o ¢g su almost everywhere. Arguing as in
the proof of Theorem 4.3, the G-equivariant k-morphism py 06 : G/H —
G/Hj is a k-isomorphism. Then 8 = (p1of)o (p2o6)™' : G/Hy - V
is the required equivariant k-morphism that satisfies ¢y = [ o ¢¢ almost
everywhere. ([l

Thirdly, we prove that an initial object in the category of algebraic
representations of (S,7T,T") naturally extends to an algebraic representation
of (S,N,I') where N = A5(T) is the normalizer of 7" in S (see [BF18b,
Theorem 4.6]).

THEOREM 4.10. Assume that the pmp action T ~ S/T is weakly mizing.
Let ¢ = ¢g/m be an initial object in the category of algebraic representations
of (S,T,T) with k-subgroup L < Ac(H)/H and continuous homomorphism
7:T — L(k). Set N = A5(T).

Then there exist a continuous homomorphism 7T : N — (Ag(H)/H)(k)
satisfying T|r = T for which, letting L be the Zariski closure of T(N) in
Aa(H)/H, the data

¢am: S — (G/H)(k), T:N— L(k) < (Ac(H)/H)(k)
forms an algebraic representation of (S, N,T).

PROOF. Let n € N. Consider 7, : T — L(k) : t = ntn~! and ¢, : S —
(G/H)(k) : s = ¢(sn~t). For every v € T, every t € T and almost every
s € 5, we have

Pn(vst) = ¢(ystn™') = p(y)d(sn™ )T (ntn™") = p(7)dn(8)Tn(t).

It follows that ¢, : S — (G/H)(k) with 7, : T — L(k) is an algebraic
representation of (S,7,I"). Since ¢ is an initial object in the category of
algebraic representations of (S,7,I"), there exists a unique equivariant k-
morphism 7(n) : G/H — G/H such that 7(n) o ¢ = ¢,. We may regard
7(n) € (Mg (H)/H)(k) and we have ¢(sn~1) = ¢(s)7(n)~! for almost every
s € S. If n =t €T, then we necessarily have 7(¢t) = 7(¢). By uniqueness, we
obtain a group homomorphism 7 : N — (Ag(H)/H)(k) such that 7|p = 7.

Cram 4.11. 7: N — (Aa(H)/H)(k) is continuous.

PRrROOF OF CrLAaM 4.11. We follow the proof of [BF18a, Theorem 4.7].
For simplicity, set L = (Ag(H)/H)(k), V = (G/H)(k) and ¥ = L°(S, V).
Endowed with the topology of convergence in measure, ¥ is a Polish space.
Firstly, consider the action L ~ ¥ defined by (go))(s) = 1(s)g~! for every
g € L and every ¢ € ¥. Then the action L ~ ¥ is free and continuous. By
Theorem 3.21, the action L ~ ¥ has locally closed orbits. Then for every
Y €Y, the map L — Ly : g — g o) is a homeomorphism. In particular,
the map a: L$p — L : g — g is continuous. Secondly, consider the action
N ~ ¥ defined by (ny)(s) = ¥(sn) for every n € N and every ¢ € ¥.
Then the action N ~ ¥ is continuous. Indeed, this follows from the fact
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that for every measurable subset Y C S, the map N — Ry : n+— v(YnAY)

is continuous. In particular, the map 8 : N — ¥ : n +— ¢, is continuous.
By definition of 7 : N — L, for every n € N, we have 7(n) o ¢ = ¢,, and

so 7(n) = (ao B)(n). Thus, 7: N — L is continuous. O

Denote by L the Zariski closure in 4G (H)/H of 7(N). Observe that for
every v € I', every n € N and almost every s € S, we have

P(ysn) = ¢p-1(vs) = ¢(ys)7(n) = p(7)p(s)7(n).
Therefore, a combination of the above equation together with Claim 4.11
shows that ¢ : § — (G/H)(k) with 7 : N — L(k) is an algebraic represen-
tation of (S, N,I). O

We infer the following useful consequence (see [BF18b, Corollary 4.7]).

COROLLARY 4.12. For every i € {1,2}, let T; < S be a closed subgroup
such that the pmp action T; ~ S/T' is weakly mizing and denote by

¢i S — (G/Hy)(k), 7:T; — Li(k) < (Ac(H)/H;)(k)

the initial object in the category of algebraic representations of (S, T;,T).
If Ty normalizes Ty, then there exists g € G such that g~ 'Hyg < G is
defined over k and Hy < g~ 'Hyg.

PROOF. Assume that Ty normalizes 77, that is, T < A5(T1). By The-
orem 4.10, we may regard ¢1 : S — (G1/Hj)(k) as an algebraic representa-
tion of (S, T»,T'). Since ¢ : S — (Gg/Hz)(k) is an initial object in the cate-
gory of algebraic representations of (S, T3, I'), there exists a G-equivariant k-
morphism 7 : G/Hs — G/H; such that ¢1 = mo¢, almost everywhere. This
implies that there exists ¢ € G such that ¢7'H; = 7(Hy) € (G/Hy)(k).
This implies that ¢ 7'Hg < G is defined over k and Hy < g~ 'Hyg. O

3. Bader—Furman’s superrigidity theorem

In order to state Bader—Furman’s superrigidity theorem, we introduce
the following adhoc terminology (see [BF18b]).

DEFINITION 4.13. We say that a locally compact second countable group
S satisfies the higher rank condition if there exist finitely many closed non-
compact subgroups Ty, ..., T, < S such that S is topologically generated by
{Tp, ..., T}, Ty is amenable, and in a cyclic order, for every i € {0,...,n},
T;+1 normalizes T; inside S.

EXAMPLE 4.14. Any connected simple real Lie group H with finite center
and rkr(H) > 2 satisfies the higher rank condition. For instance, when
H = SL3(R), we can use the following family of subgroups

1 % 0 1 0 = 100
o010, o1o], o1 %],
00 1 00 1 00 1
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100 100 1 00
x 1 0], 01 0], 010
0 01 * 0 1 0 *« 1
The main result of this section is Bader—Furman’s superrigidity theorem

(see [BF18b, Theorem 1.3]).

THEOREM 4.15 (Bader-Furman [BF18b)). Let S be a locally compact
second countable group that satisfies the dynamical dichotomy for isometric
actions and the higher rank condition. Let I' < S be a lattice.

Let k be a local field of characteristic zero, G a connected simple algebraic
k-group and set G = G(k). Let p: I' — G be a homomorphism such that
p(I') < G is Zariski dense and unbounded.

Then there exists a unique continuous homomorphism p : S — G such
that plr = p.

In particular, for every n > 3, S = SL,(R) satisfies the dynamical di-
chotomy for isometric actions by Theorem 2.5 and the higher rank condition
by Example 4.14. Note that in case H is a simple algebraic R-group with
rkr(H) > 2, Theorem 4.15 applied to S = H(R) implies Margulis’ super-
rigidity therorem.

The uniqueness part in Theorem 4.15 is a consequence of the following
general result (see [BF18a, Lemma 6.1)).

LEMMA 4.16. Let S be a locally compact second countable group and
I' < S a lattice. Let k be a local field of characteristic zero and G a con-
nected simple algebraic k-group. Let p1,p2 : S — G(k) be continuous ho-
momorphisms. Assume that p1(S) < G(k) is Zariski dense and unbounded
and that pi|r = p2|r. Then p1 = pa.

ProOOF. We start by proving the following claim.
CLAIM 4.17. We have that p;(I") = pa(T") is Zariski dense in G.

Indeed, denote by L; < G(k) the closure of p;(S) in G(k). By assump-
tion, Lq is Zariski dense in G. By Theorem 3.23, there exists a normal
k-subgroup N1 < G such that the image of Ly in (G/Ny)(k) is precompact
and such that for every algebraic k-G-variety V, we have Prob(V (k))" =
Prob(VNt NV (k)). Since G is simple, either N; = {e} or N; = G. Since
L; < G(k) is unbounded, we necessarily have N1 = G. Denote by H; < G
the Zariski closure of p1(I') in G. Then H; < G is a k-subgroup by Propo-
sition 3.2 and V; = G/H; is a k-G-variety. The continuous homomorphism
p1: S — G(k) gives rise to an S-equivariant measurable map S/T" — V1 (k).
Pushing forward the S-invariant Borel probability measure on S/T", we ob-
tain an Lj-invariant Borel probability measure on Vi (k) which is necessarily
supported on V& NV (k). Then V& # () and so H; = G. This shows that
p1(T) = p2(T) is Zariski dense in G.

Assume by contradiction that p; # pa. Choose sy € S such that p;(sg) #
p2(s0). Consider the diagonal homomorphism p = p; x py : S — G(k) X
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G(k). Denote by L the closure of p(S) in G(k) x G(k) and by L the
Zariski closure of L in G x G. Since p1|r = po|r, Claim 4.17 implies that
the Zariski closure of p(I') in G x G is equal to the diagonal subgroup
Ag < G x G. In particular, we have Ag < L. We show that L = G x G.
Indeed, we have (pi(so), p2(so)) € L(k) and (p2(so0), p2(so)) € L(k) and
thus (e, e) # (p1(s0)p2(s0)~1,e) € LN (G x {e}). Then LN (G x {e}) is a
nontrivial normal k-subgroup of G x {e}. Since G is simple, we conclude
that G x {e} < L. Likewise, we have {¢} x G < L andso L =G x G.
Finally, we apply again Theorem 3.23 to the algebraic k-group G x G
and the Zariski dense closed subgroup L < G(k) x G(k). Then there exists a
normal k-subgroup N <G x G such that the image of L in ((G x G)/N)(k) is
precompact and such that for every algebraic k-(G x G)-variety V, we have
Prob(V (k)X = Prob(VN NV (k)). Consider the k-(G x G)-variety V =
(GxG)/Ag. The continuous homomorphism p : S — G(k)xG(k) gives rise
to an S-equivariant measurable map S/I" — V(k). Pushing forward the S-
invariant Borel probability measure on S/I", we obtain an L-invariant Borel
probability measure on V (k) which is necessarily supported on VN NV (k).
Note that the nontrivial normal k-subgroups G x G, G x {e}, {e} x G have
no fixed points on V. Thus, we have N = {e} and so L < G(k) x G(k)
is compact, which contradicts that p;(S) is unbounded in G(k). Therefore,
we have p; = po. O

Before proving Theorem 4.15, we need the following technical result that
allows us to assemble continuous homomorphisms 7; : T; — G to obtain a
continuous homomorphism 7 : S — G (see [BF18b, Lemma 5.1]).

LEMMA 4.18. Let S, G be locally compact second countable groups, (X, v)
a standard probability space and S ~ (X,v) a nonsingular action. Let
(T3)ien be a countable family of closed subgroups of S that topologically gen-
erate S.

Let ¢ : X — G be a measurable map. For everyi € N, let 7; : T; — G
be a continuous homomorphism. Assume that for every i € N, every t € T;
and v-almost every x € X, we have o(tx) = p(x)7(t) L.

Then there exists a continuous homomorphism 7 : S — G such that for
every i € N, we have 7|y, = 7; and for every s € S and v-almost every

r € X, we have p(sx) = o(z)7(s)7L.

Proor. Consider the group ¥ = LY(X, G) endowed with the topology
of convergence in measure. Then ¥ is a Polish group.

Firstly, consider the action G ~ ¢ defined by (gv)(z) = ¥ (x)g~" for
every g € G and every 1 € 4. Then the action G ~ ¥ is free and continuous.
Moreover, for every ¢ € ¢, the G-orbit Gy C ¥ is closed and the map
G — G : g — gt is a homeomorphism. Indeed, let (g, ), be a sequence in
G, ¥, ¢ € 4 such that g,90 — ¢ in 4. Up to extracting a subsequence, we
may assume that ¢ (z)g, ' — ¢(x) for v-almost every € X. This implies
that g = lim,, g,, exists in G and ¢ = gu.
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Secondly, consider the action S ~ ¢ defined by (s¢)(x) = (s~ 'z) for
every s € S and every ¥ € 4. Then the action S ~ ¢ is continuous. Indeed,
this follows from the fact that for every measurable subset Y C S, the map
S — Ry :s— v(sYAY) is continuous.

By assumption, the Tj-orbit of ¢ € ¥ is contained in the G-orbit of
@ € ¥. Since the G-orbit Gy C ¥ is closed and since S is topologically
generated by the family (7;)cn, it follows that the S-orbit of ¢ € ¥ is
contained in the G-orbit of ¢ € &. Thus, for every s € S, there exists a
unique 7(s) € G such that p(sz) = p(x)7(s)~! for v-almost every = € X.
Then the map 7 : S — G is a continuous group homomorphism such that
T|r, = 7; for every i € N. O

We are now ready to prove Theorem 4.15.

PROOF OF THEOREM 4.15. The uniqueness part follows from Lemma
4.16. It remains to prove the existence part. We identify {0,...,n} =
Z/(n+1)Z.

Let i € Z/(n+1)Z. Since S satisfies the dynamical dichotomy for isomet-
ric actions and since T; < S is a noncompact closed subgroup, Proposition
2.31 implies that the pmp action T; ~ S/T" is weakly mixing. By Theo-
rem 4.9, the category of algebraic representations of (S, 7;,T") has an initial
object that is a coset algebraic representation and that we denote by

¢i S = (G/Hl)(k), Ti - Ti — Lz(k‘) < (JVc;(Hl)/HZ)(k‘)

Since S satisfies the dynamical dichotomy for isometric actions and since
Ty < S is an amenable noncompact closed subgroup, a combination of
Proposition 2.19 and Theorem 2.44 shows that the action S ~ S/Tj is
amenable and metrically ergodic. Since I' < S is a lattice, a combination
of Propositions 2.20 and 2.45 shows that the action I" ~ S/Tj is amenable
and metrically ergodic. By Theorems 4.3 and 4.4, the category of algebraic
representations of I' ~ S/Ty has a nontrivial initial object that is a coset
algebraic representation and that we denote by ¢ : S/Ty — (G/H)(k) where
H < G is a proper k-subgroup. Letting L = {e} < A4 (H)/H be the trivial
subgroup and 7 : Ty — L(k) be the trivial homomorphism, we may regard
¢ : S — (G/H)(k) as a coset algebraic representation of (S,7p,T"). Since
H < G is a proper k-subgroup and since ¢g : S — (G/Hp)(k) is an initial
object in the category of algebraic representations of (S,7p,T"), it follows
that Hy < G is a proper k-subgroup.

Applying Corollary 4.12, for every i € Z/(n+1)Z, there exists g; € G for
which the map 7; : G/H;11 — G/H; : gH; 11 — gg;lHi is a G-equivariant
k-morphism such that 7; o ¢; 11 = ¢; almost everywhere. In particular, for
every i € Z/(n+1)Z, we have that g{lHigi < G is a k-subgroup and H; 11 <
g; 'H,g;. This implies that (g1 - gn+1)Ho(g1 - - gnt1) ! < Ho and by the
descending chain condition, we obtain (g1 --- gnr1)Ho(g1 - gns1)”t = Ho.
This further implies that for every i € Z/(n+1)Z, we have H;y1 = g, 'H,g;
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and m; : G/H;y1 — G/H; : gH;y1 — gg; 'H; is a G-equivariant k-
isomorphism. Therefore, for every ¢ € {0,...,n — 1}, up to replacing ¢;1
by m; o ¢i11 = ¢;, we may assume that all the k-subgroups H; are equal to
Hj and that all the equivariant measurable maps ¢; : S — (G/H;)(k) are
equal to ¢g : S — (G/Hp)(k) almost everywhere.

For notational convenience, we simply write H = Hy and ¢ = ¢g :
S — (G/H)(k). Denote by N = A4g(H) < G the normalizer of H in
G, which is a k-subgroup by Proposition 3.15. Denote by L < N/H the
algebraic subgroup generated by Lg,...,L,. Then Proposition 3.1 implies
that L < N/H is a k-subgroup. Denote by 7 : N — N/H the quotient
k-morphism and by L= 71(L) < N, which is a k-subgroup. Then we have
H < L < N. The quotient k-morphism ¢ : G/H — G/f, is L;-invariant
for every i € {0,...,n}. This further implies that the measurable map
go¢: S — (G/L)(k) is Ti-invariant for every i € {1,...,n}. Since S is
topologically generated by T, ..., T, it follows that go¢ : S — (G/I:)(k:) is
S-invariant hence constant almost everywhere. The unique essential value
of g o ¢ is then p(I')-invariant. Since p(T") is Zariski dense in G, it follows
that the unique essential value of g o ¢ is G-invariant. This implies that
L =G. Since L < N < G = L, it follows that N = G. Then H < G is
a normal k-subgroup. Since G is simple and since H # G, it follows that
H = {e}.

We have a measurable map ¢ : S — G(k) and continuous homomor-
phisms 7; : T; — G(k) for every i € {0,...,n} that satisfy

(4.1) ¢(yst) = p(v)o(s)7i(t)

for every v € I', every t € T; and almost every s € S. Considering v = 1 and
applying Lemma 4.18, there exists a continuous homomorphism 7 : .S —
G(k) such that 7|7, = 7; for every i € {0,...,n} and ¢(st) = ¢(s)7(t) for
every t € S and almost every s € S. Since S is topologically generated by
To, ..., Ty, Equation (4.1) can be upgraded to

(4.2) ¢(yst) = p(v)@(s)7(t)

for every v € T, every t € S and almost every s € S. Since S ~ § is
transitive, Lemma 2.17 implies that up to modifying ¢ : S — G(k) on a
null set, we may assume that Equation (4.2) holds for every v € T, every
t € S and every s € S. Set g = ¢(e) = ¢(s)7(s 1) for every s € S. Then for
every s € S, we have ¢(s) = g7(s). Applying Equation (4.2) to v € " and
s =1t =e, we have

g7(7) = ¢(7) = p(v)d(e) = p(7)g-
Define the continuous homomorphism p : S — G(k) by the formula p(s) =

g7(s)g~! for every s € S. Then plr = p. This finishes the proof of the
theorem. 0



CHAPTER 5

Applications

We apply the superrigidity theorem to prove Mostow—
Margulis’ rigidity theorem. We also state Margulis’
arithmeticity theorem.

1. Mostow—Margulis’ rigidity theorem

In this section, we use Margulis’superrigidity theorem to prove Mostow—
Margulis’ rigidity theorem for lattices in higher rank simple Lie groups

MOSTOW—MARGULIS’ RIGIDITY THEOREM. For every i € {1,2}, let G;
be a connected simple real Lie group with trivial center and rkr(G;) > 2,
and I'; < G; a lattice. Then any isomorphism p : 'y — I's extends to a Lie
group isomorphism p : G1 — Ga.

Before proving the above theorem, we need the following well-known
result showing that connected semisimple Lie groups with trivial center are
quasi-algebraic (see e.g. [Zi84, Proposition 3]).

PROPOSITION 5.1. Let G be a connected semisimple (resp. simple) Lie
group with trivial center. Then there exist n > 1 and a connected semisimple
(resp. simple) R-subgroup G < GL,, with trivial center such that G and
G(R)® are isomorphic as Lie groups.

PROOF. Denote by g = Lie(G)c the complexified Lie algebra of G and
consider the complexified adjoint representation Adc : G — GL(g). Then
G = Aut(g)? is a Zariski connected algebraic group defined over R and
with trivial center. Moreover, we have Adc(G) < Aut(g)? = G. If G is a
semisimple (resp. simple) Lie group, then g is a semisimple (resp. simple)
complex Lie algebra and so G is a semisimple (resp. simple) algebraic group.
Moreover, by Lie theory, we have Adc(G) = G(R)". Therefore, G and
G(R)" are isomorphic as Lie groups. O

We are now ready to prove Mostow—Margulis’ rigidity theorem.

PROOF. Let p : I'y — T’y be an isomorphism. For every i € {1,2}, us-
ing Proposition 5.1, we may choose a connected simple algebraic R-group
G; such that G; = G;(R)? as Lie groups. Since G satisfies the dynam-
ical dichotomy for isometric actions by Theorem 2.5 and the higher rank
condition and since p(I'y) = 'y < G2(R) is Zariski dense by Corollary
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3.26, Theorem 4.15 implies that there exists a unique continuous homo-
morphism 7 : G; — G2(R) such that p|lr, = p. Since G, is connected,
we necessarily have p(G1) < G2(R)? = Gz. Set § = p~! : I'y — T}.
The same reasoning as above implies that there exists a unique continuous
homomorphism 6 : Gy — G; such that §|p2 =0 = p_l. Observe that
¢ =00p:G — Gy < G1(R) is a continuous group homomorphism such
that p(I'1) = T'1 < G1(R) is Zariski dense. Then Lemma 4.16 implies that
fop = ¢ = idg,. Likewise, we have po 6 = idg,. This implies that
p: G — G4 is a topological group isomorphism and so p: G; — G» is a
Lie group isomorphism. O

2. Margulis’ arithmeticity theorem

The following fundamental theorem is a particular case of a general result
due to Borel-Harish-Chandra.

THEOREM 5.2 (Borel-Harish-Chandra [BHCG61)). Let G be a connected
semisimple algebraic Q-group. Then G(Z) < G(R) is a nonuniform lattice.

One can then view Theorem 5.2 as a generalization of Theorem 1.19. We
also mention that any noncompact connected semisimple Lie group contains
both uniform and nonuniform lattices (see e.g. [Ra72, Chapter XIV]).

Let G be a locally compact second countable group and Hi, Hy < G
closed subgroups. We say that H; and Hs are commensurable if H N Ho
has finite index in both Hy; and Hs. If I'1,I's < G are commensurable
discrete subgroups, then I'y < G is a lattice if and only if I's < G is a
lattice.

LEMMA 5.3. Let G be a locally compact second countable group, I' < G
a lattice and ¢ : G — H a surjective continuous group homomophism with
compact kernel. Then o(T') < H is a lattice.

PROOF. Firstly, we show that (") < H is discrete. Set N = ker(¢) <G
and denote by ¥ : G/N — H : gN — ¢(g) the corresponding continuous
group isomorphism. Let (,), be a sequence in I' such that ¢(vy,) — e in
H. Then v, N — N in G/N and so there exists a sequence (hy), in N such
that v,h, — e in G. Upon extracting a subsequence, we may assume that
hp — hin N. Then 7, — h~ ! in G. Since I' < G is discrete, it follows that
Yn = h™1 € I'N N eventually. This shows that ¢(7,) = e eventually. Thus,
o(T") < H is discrete.

Secondly, consider the surjective continuous map ® : G/I' - H/p(T") =
gI' — ¢(¢gI"). Denote by v € Prob(G/I') the unique G-invariant Borel
probablility measure. Then ®,v € Prob(H/¢(I')) is a H-invariant Borel
probability measure. Therefore, o(I') < H is a lattice. O

We introduce the following important terminology.

DEFINITION 5.4. Let H be a connected semisimple Lie group with trivial
center and no compact factor and I' < H a lattice. We say that I' < H is
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arithmetic if there exists a Zariski connected semisimple algebraic Q-group
G and a surjective continuous group homomorphism ¢ : G(R)? — H with
compact kernel such that ¢(G(Z) N G(R)?) and I' are commensurable.

Finally, we state Margulis’ celebrated arithmeticity theorem.

MARGCULIS’ ARITHMETICITY THEOREM. Let G be a connected semisimple
Lie group with trivial center, no compact factor and such that rkg(G) > 2.
Let T' < G be an irreducible lattice. Then T’ < G is arithmetic.

The proof relies on Margulis’superrigidity theorem. We refer the reader
to [Ma91, Chapter 8], [Zi84, Chapter 6] or [Be08, Chapter 11] for further
details.






APPENDIX A
Appendix

1. Tame actions

A Borel space Z is a space endowed with a g-algebra Z of Borel subsets.
A topological space X is naturally a Borel space endowed with the o-algebra
2 generated by open sets. A Borel space Z is countably separated if there
exists a countable family (U, ),en of Borel subsets of Z that separates the
points in Z in the following sense: for all z1, 20 € Z such that z; # 2o, there
exists n € N such that z; € U,, and 23 ¢ U, or 21 ¢ U, and z € U,,. In that
case, for every z € Z, the singleton {z} C Z is a Borel subset. A Borel space
7 is standard if Z is Borel isomorphic to a Borel subset of a Polish space. A
standard Borel space is either finite, countable or Borel isomorphic to the
segment [0, 1].

Let G be a locally compact second countable group, Z a standard Borel
space and G ~ Z a Borel action in the sense that the action map GXxZ — 7 :
(g,2) — gz is Borel. We denote by G\ Z the quotient Borel space endowed
with the quotient Borel structure and by p : Z — G\Z the quotient Borel
map. By Varadarajan’s theorem (see e.g. [Zi84, Theorem 2.19]), there
exist a compact metrizable space X, a continuous action G ~ X and a
G-equivariant injective Borel map ¢ : Z — X. This implies that for every
z € Z, the orbit Gz C Z is a Borel subset and the stabilizer Stabg(z) < G
is a closed subgroup.

We say that the Borel action G ~ Z is tame if the quotient Borel space
G\Z is countably separated. Firstly, we recall the following useful result
due to Kallman (see e.g. [Zi84, Theorem A.7]).

THEOREM A.1. Let G be a locally compact second countable group, Z a
standard Borel space and G ~ Z a tame Borel action. Then the quotient
G\Z is a standard Borel space and there exists a Borel section v : G\Z — Z
for the Borel projection p: Z — G\Z.

We derive the following useful consequence.

COROLLARY A.2. Let G be a locally compact second countable group and
H < G a closed subgroup. Then there exists a Borel section v : G/H — G
for the factor map p: G — G/H.

We record some useful properties of tame actions. Firstly, we observe
that Borel actions of compact second countable groups are always tame.
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PROPOSITION A.3. Let K be a compact second countable group. Then
any Borel action K ~ Z on a standard Borel space is tame.

PRrROOF. Let Z be a standard Borel space and K ~ Z a Borel action. By
Varadarajan’s theorem (see e.g. [Zi84, Theorem 2.19]), there exist a com-
pact metrizable space X, a continuous action K ~ X and a K-equivariant
injective Borel map ¢ : Z — X. By compactness and continuity, all K-orbits
in X are compact hence locally closed. Proposition 2.1 implies that the ac-
tion K ~ X is tame, that is, K\ X is countably separated. Considering
the injective Borel map 7 : K\Z — K\X and pulling back the countable
separating family of Borel subsets in K\ X, it follows that K\ Z is countably
separated, that is, K ~ Z is tame. O

Secondly, we investigate tameness for induced actions. Let G be a lo-
cally compact second countable group and H < G a closed subgroup. By
Corollary A.2, we may choose a Borel section ¢ : G/H — G for the factor
map p : G — G/H such that «(H) = e. Let Z be a standard Borel space
and H ~ Z a Borel action. Define the Borel map 7 : G x G/H — H :
(g,¢) — t(g9c) " tgi(c) which satisfies the 1-cocycle relation:

V91,92 € G,Ve € G/H, T(g9192,¢) = 7(g1, 92¢)7(g2; ©).
Set Ind%(Z) = G/H x Z and define the induced Borel action G ~ Ind%(Z2)
by the formula

Vg € G,¥(c,2) € nd§(Z), g-(c,z) = (g¢,7(g,0)2).

Assume that the Borel action H ~ Z is the restriction of a Borel action
G ~ Z. Consider the Borel space G/H x Z endowed with the diagonal
Borel action G ~ G/H x Z. Define the Borel isomorphism

0:G/H x Z - Ind%(2) : (¢,2) — (c,u(c)"L2).

Then it is easy to check that © : G/H x Z — Ind%(Z) is G-equivariant. In
this case, we may and will identify the diagonal action G ~ G/H x Z with
the induced action G’ ~ Ind%(Z).

PROPOSITION A.4. Let G be a locally compact second countable group
and H < G a closed subgroup. Let Z be a standard Borel space and H ~ Z
a Borel action. Then H ~ Z is tame if and only if G ~ Ind$(Z) is tame.

In particular, let Hy, Hy < G be closed subgroups. Then Hy ~ G/Hz is
tame if and only if Hy ~ G/H; is tame.

Proor. We prove the first assertion. Define the Borel map ¢ : Z —
Ind%(Z) : z — (H, z). Since for every h € H and every z € Z, we have
h - QO(Z) =h- (H7 Z) = (hHu C(h,H)Z) = (H7 hZ) = SO(hZ),
it follows that @ : H\Z — G\Ind%(Z) : Hz — G - ¢(2) is a well-defined

Borel map. Next, define the Borel map ¥ : Ind%(Z) — Z :(c,z) — z. Since
for every g € G, every ¢ € G/H and every z € Z, we have

V(g - (¢,2)) =(ge,7(g,¢)z) = 7(g,¢)z = 7(g,)Y(c, 2),
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it follows that ¢ : G\Ind%(Z) — H\Z : G - (¢,z) — Hip(c,z) is a well-
defined Borel map. It is straightforward to see that @ and i are inverse
of one another. This further implies that H ~ Z is tame if and only if
G ~ Ind%(Z) is tame.

Next, we prove the second assertion. Using the first assertion and since
G/H, is a G-space, we have that Hy ~ G/Hj is tame if and only if G ~
Indgl(G/Hg) is tame if and only if G ~ G/H; x G/Hj is tame. Likewise,
we have that Hy ~ G/H; is tame if and only if G ~ G/Hy x G/H; is tame.
Therefore, H; ~ G/Hs is tame if and only if Hy ~ G/H; is tame O

2. Disintegration of measures

Recall that for any standard Borel space X, the space Prob(X) of Borel
probability measures on X is again a standard Borel space.

THEOREM A.5 (Rohlin’s disintegration theorem). Let X,Y be standard
Borel spaces and p : X — Y a Borel map. Let v € Prob(X) be a Borel
probability measure and set v = p,v € Prob(Y). Then there ezists a U-
essentially unique Borel map Y — Prob(X) : y — v, that satisfies the
following two properties:

(i) For v-almost every y € Y, we have vy (p~*({y})) = 1.
(ii) For every Borel subset U C X, we have

o0) = [ w0 dniy).

The 7-essential uniqueness in Theorem A.5 means that for any Borel
map Y — Prob(X) : y — 1, that satisfies items (i) and (ii), we have
vy = ny for T-almost every y € Y. For item (ii), we usually simply write
V= fy vy do(y).

COROLLARY A.6. Let G be a locally compact second countable group,
X a standard Borel space and G ~ X a tame Borel action. Let H < G
be a closed subgroup and v € Prob(X) an H-invariant Borel probability
measure. Then there exists x € X and an H-invariant Borel probability
measure n € Prob(Gz).

PROOF. Since G ~ X is tame, the quotient space Y = G\ X is a stan-
dard Borel space. Consider the Borel projection map p : X — Y and set
U = pyv. By Theorem A.5, there exists a v-essentially unique Borel map
Y — Prob(X) : y — v, that satisfies items (i) and (ii) in Theorem A.5.

Let h € G and consider h,v € Prob(X). The Borel map Y — Prob(X) :
y — hayy satisfies (havy)(p~ 1 ({y})) = 1 for -almost every y € Y and h,v =
[y haevyy dD(y). By essential uniqueness, it follows that (h.v), = hyvy, for -
almost every y € Y. This implies that for every h € H and v-almost every
y € Y, we have h,vy = (h«v), = v,. Since Y and Prob(X) are standard
Borel spaces, Lemma 2.17 implies that there exists a v-conull strictly G-
invariant measurable subset Yy C Y and a strictly G-equivariant measurable
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map Yy — Prob(X) : y — n, such that 7, = v, for 7-almost every y € Yj.
Then we may choose y = Gz € Yy such that n = n, = v, € Prob(X) is
H-invariant and satisfies n(Gz) = 1. O
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