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Abstract. These are the lecture notes of a graduate course on super-
rigidity given at Université Paris-Saclay, Orsay, during 2022-2023. The
aim of the course is to prove Margulis’ superrigidity theorem for higher
rank lattices (1975). We will present a recent proof due to Bader–
Furman (2018) that relies on the concept of algebraic representations
of ergodic actions. Topics include: locally compact groups and their
lattices; ergodic group theory (metric ergodicity, amenability); intro-
duction to algebraic groups (algebraic actions on algebraic varieties);
algebraic representations of ergodic actions; Margulis’ superrigidity the-
orem; Mostow–Margulis’ rigidity theorem; Margulis’ arithmeticity theo-
rem.



Contents

Chapter 1. Locally compact groups 5
1. Generalities on locally compact groups 5
2. Lattices in locally compact groups 13
3. SLd(Z) is a lattice in SLd(R), d ≥ 2 22

Chapter 2. Ergodic group theory 27
1. Ergodic theory 27
2. Unitary representations 38
3. Amenability 44

Chapter 3. Algebraic groups 55
1. Algebraic varieties 55
2. Algebraic groups 61
3. Stabilizers and tameness of algebraic actions 68

Chapter 4. Margulis’ superrigidity theorem 79
1. Algebraic representations of ergodic actions 79
2. Algebraic representations of (S, T,Γ) 82
3. Bader–Furman’s superrigidity theorem 86

Chapter 5. Applications 91
1. Mostow–Margulis’ rigidity theorem 91
2. Margulis’ arithmeticity theorem 92

Appendix A. Appendix 95
1. Tame actions 95
2. Disintegration of measures 97

Appendix. Bibliography 99

3





CHAPTER 1

Locally compact groups

In this chapter, we give an introduction to the theory
of locally compact groups and their lattices. We show
that SLd(Z) is a lattice in SLd(R) for every d ≥ 2.

1. Generalities on locally compact groups

Definition 1.1. Let G be a group endowed with a Hausdorff topology.
We say that G is a topological group if the map G×G→ G : (g, h) 7→ gh−1 is
continuous. We then say that G is locally compact if there exists a compact
neighborhood U ⊂ G of the identity element e ∈ G.

Let G be a locally compact group. We say that G is

• first countable if there exists a countable neighborhood basis of
e ∈ G.
• second countable if there exists a countable basis for the topology

on G.
• σ-compact if there exists an increasing sequence of compact subsets
Qn ⊂ G such that G =

⋃
n∈NQn.

• compactly generated if there exists a compact subset Q ⊂ G such
that e ∈ Q and G =

⋃
n≥1Q

n.
• totally disconnected if the connected component of e ∈ G is equal

to {e}.
The identity element e ∈ G has a neighborhood basis consisting of com-

pact subsets (see [DE14, Corollary A.8.2]). Any open subgroup H < G is
also closed since G \H =

⋃
gH 6=H gH. Any compactly generated group G is

σ-compact. Any locally compact group G has a compactly generated open
subgroup H < G. Indeed, choose a compact neighborhood U ⊂ G of e ∈ G.
Then H =

⋃
n≥1(U ∪ U−1)n is a compactly generated open subgroup of G.

In particular, any connected locally compact group is compactly generated.
A locally compact group G is second countable if and and only it is first
countable and σ-compact (see [St73]). Moreover, any locally compact sec-
ond countable group G is metrizable with a proper left invariant metric (see
[St73]).

The class of locally compact groups is stable under taking closed sub-
groups, finite direct products and quotients with respect to closed normal
subgroups. More precisely, we record the following facts.

Proposition 1.2. The following assertions hold:
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6 1. LOCALLY COMPACT GROUPS

(i) If G is a locally compact group and H ≤ G is a closed subgroup,
then H endowed with the induced topology is locally compact.

(ii) If d ≥ 1 and G1, . . . , Gd are locally compact groups, then the product
group G = G1×· · ·×Gd endowed with the product topology is locally
compact.

(iii) If G is a locally compact group and N CG is a closed normal sub-
group, the quotient group G/N endowed with the quotient topology
is locally compact.

(iv) If G is a locally compact group acting continuously on a locally com-
pact group H by continuous automorphisms, then the semi-direct
product group G n H endowed with the product topology is locally
compact.

The proof of Proposition 1.2 is left to the reader as an exercise.

Examples 1.3. Here are some examples of locally compact groups. Let
d ≥ 1.

(i) Any groupG endowed with the discrete topology is locally compact.
In these notes, any countable group will always be endowed with
its discrete topology.

(ii) Any compact group K is locally compact. In particular, the fol-
lowing compact groups

Td =
{

(z1, . . . , zd) ∈ Cd | ∀1 ≤ i ≤ d, |zi| = 1
}

SOd(R) = {A ∈ SLd(R) | A∗A = AA∗ = 1d}
U (d) = {A ∈ GLd(C) | A∗A = AA∗ = 1d}

are locally compact.
(iii) Any (finite dimensional) real Lie group G is locally compact.

– The abelian group (Rd,+) endowed with the usual topology is
locally compact.

– The general linear group GLd(R) can be regarded as the open

(dense) subset of invertible matrices in Md(R) ∼= Rd2 . En-

dowed with the topology coming from Rd2 , the group GLd(R)
is locally compact.

– The special linear group SLd(R) = ker(det) is a closed sub-
group of GLd(R) and so SLd(R) is locally compact.

– The semi-direct product group SLd(R) nRd is locally compact.
(iv) Any (finite dimensional) p-adic Lie group G is totally disconnected

locally compact. In particular, for every prime p ∈ P, the groups
GLd(Qp) and SLd(Qp) are totally disconnected locally compact.

(v) Let T = (V,E) be a locally finite tree and denote by Aut(T) the
automorphism group of T. Endowed with the topology of point-
wise convergence, the group Aut(T) is totally disconnected locally
compact.
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Let X be a locally compact space, meaning that every x ∈ X has a
compact neighborhood. We denote by B(X) the σ-algebra of Borel subsets
of X. We say that a Borel measure ν on X, that is, a measure defined on
B(X) is regular if the following conditions are satisfied:

(i) For every Borel subset B ⊂ X, we have

ν(B) = inf {ν(V ) | V is open and B ⊂ V } .
(ii) For every open subset U ⊂ X, we have

ν(U) = sup {ν(K) | K is compact and K ⊂ U} .
(iii) For every compact subset K ⊂ X, we have ν(K) < +∞.

When ν is nonzero, define the support of ν by

supp(ν) =
⋂
{F | F ⊂ X is closed and ν(X \ F ) = 0} .

Observe that supp(ν) is closed and ν(X \ supp(ν)) = 0.
If any open subset of X is σ-compact, then any Borel measure on X that

satisfies condition (iii) is regular (see [Ru87, Theorem 2.18]). In particular,
using [DE14, Lemma A.8.1(i)], if X is a locally compact second countable
space, then any open subset of X is σ-compact and thus any Borel measure
on X that satisfies condition (iii) is regular.

Denote by Cc(X) the space of compactly supported continuous functions
on X. We say that a linear functional Φ : Cc(X)→ C is positive if Φ(f) ≥ 0
for every f ∈ Cc(X)+. By Riesz’s representation theorem (see [Ru87,
Theorem 2.14]), for every positive linear functional Φ : Cc(X) → C, there
exists a unique regular Borel measure ν on X such that

∀f ∈ Cc(X), Φ(f) =

∫
X
f(x) dν(x).

In that case, we will simply write Φ = ν. Note that for every regular Borel
measure ν on X and every p ∈ [1,+∞), the space Cc(X) is ‖ · ‖p-dense
in the Banach space Lp(X,X , ν) of all ν-equivalence classes of p-integrable
functions on X.

Theorem 1.4 (Haar). Let G be a locally compact group. Then there
exists a nonzero regular Borel measure mG on G that is unique up to mul-
tiplicative constant and that satisfies one of the following equivalent condi-
tions:

(i) For every Borel subset B ⊂ G and every g ∈ G, mG(gB) = mG(B).
(ii) For every f ∈ Cc(G) and every g ∈ G,∫

G
f(g−1h) dmG(h) =

∫
G
f(h) dmG(h)

We say that mG is a left invariant Haar measure on G.

For a proof of Theorem 1.4, we refer the reader to [HR79, Chapter 15].
The locally compact group G is σ-compact if and only if the left invariant
Haar measure mG is σ-finite.
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Theorem 1.4 also implies that there exists a nonzero regular Borel mea-
sure µG on G that is unique up to multiplicative constant and that satisfies
one of the following equivalent conditions:

(i) For every Borel subset B ⊂ G and every g ∈ G, µG(Bg) = µG(B).
(ii) For every f ∈ Cc(G) and every g ∈ G,∫

G
f(hg) dµG(h) =

∫
G
f(h) dµG(h)

We say that µG is a right invariant Haar measure on G. Indeed, any left
invariant Haar measure mG on G gives rise to a right invariant Haar measure
µG on G by the formula

∀B ∈ B(G), µG(B) = mG(B−1).

The next proposition shows that any left invariant Haar measure has
full support.

Proposition 1.5. Let G be a locally compact group and mG a left in-
variant Haar measure on G. Then supp(mG) = G. Moreover, for every
f ∈ Cc(G)+ such that f 6= 0, we have

∫
G f(h) dmG(h) > 0.

Proof. Since mG 6= 0, Conditions (ii) and (iii) in the definition of
regularity imply that there exists a compact subset K ⊂ G such that 0 <
mG(K) < +∞. Let U ⊂ G be a nonempty open subset. There exist
g1, . . . , gn ∈ G such that K ⊂

⋃n
i=1 giU . This implies that

0 < mG(K) ≤ mG(

n⋃
i=1

giU) ≤
n∑
i=1

mG(giU) = n ·mG(U)

and so mG(U) > 0. Thus, supp(mG) = G.
Moreover, let f ∈ Cc(G)+ such that f 6= 0. Then there exist ε > 0 and

an open subset U ⊂ G such that f(h) ≥ ε for every h ∈ U . This implies
that ∫

G
f(h) dmG(h) ≥

∫
U
ε dmG(h) = ε ·mG(U) > 0.

This finishes the proof. �

The next proposition gives a characterization of compact groups in terms
of the Haar measure.

Proposition 1.6. Let G be a locally compact group and mG a left in-
variant Haar measure on G.

Then G is compact if and only if mG(G) < +∞.

Proof. Firstly, assume that G is compact. Then by regularity we have
mG(G) < +∞.

Secondly, assume that G is not compact. Take a compact neighborhood
K ⊂ G of e ∈ G and set g0 = e. We have mG(K) > 0 by Proposition 1.5.
Since KK−1 is compact, there exists g1 ∈ G such that g1 ∈ G \ KK−1.
This implies that g1K ∩ K = ∅. By induction, define gn ∈ G so that
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gn ∈ G \ (K ∪ g1K ∪ · · · ∪ gn−1K)K−1. It follows that (gnK)n are pairwise
disjoint. This implies that

mG(G) ≥ mG(
⋃
n∈N

gnK) =
∑
n∈N

mG(gnK) = +∞ ·mG(K) = +∞.

This finishes the proof. �

Let G be a locally compact group and mG a left invariant Haar measure
on G. The measure mG need not be right invariant. For every g ∈ G,
define the nonzero regular Borel measure mg

G on G by the formula mg
G(B) =

mG(Bg) for every B ∈ B(G). Since mg
G is a left invariant Haar measure,

there exists an element ∆G(g) ∈ R∗+ such that mg
G = ∆G(g)mG. Then

∆G : G → R∗+ : g 7→ ∆G(g) is a group homomorphism and is called the
modular function on G. The modular function ∆G does not depend on the
choice of the left invariant Haar measure mG on G. Moreover, we have

(1.1) ∀f ∈ Cc(G), ∀g ∈ G,
∫
G
f(hg−1) dmG(h) = ∆G(g)

∫
G
f(h) dmG(h).

The left invariant Haar measure mG is right invariant if and only if ∆G ≡ 1.
In that case, we say that G is unimodular. We then simply refer to mG as
a Haar measure on G.

Proposition 1.7. Let G be a locally compact group and mG a left in-
variant Haar measure on G. Then the modular function ∆G : G → R∗+ is
continuous. Moreover, we have

∀f ∈ Cc(G),

∫
G
f(h−1) dmG(h) =

∫
G

∆G(h−1)f(h) dmG(h).

Proof. Choose ϕ ∈ Cc(G) such that κ =
∫
G ϕ(h) dmG(h) 6= 0. Set

Q = supp(ϕ). Then we have

∀g ∈ G, ∆G(g) =

∫
G ϕ(hg−1) dmG(h)∫
G ϕ(h) dmG(h)

.

Choose a compact neighborhood K ⊂ G of e ∈ G. Let ε > 0. Since ϕ is
uniformly continuous by Lemma 1.8, there exists a neighborhood U of e ∈ G
such that U ⊂ K, U−1 = U and

∀u ∈ U, sup
{
|ϕ(hu−1)− ϕ(h)| | h ∈ G

}
≤ εκ

mG(QK)
.

Then for every u ∈ U , we have

|∆G(u)− 1| ≤ 1

κ

∫
G
|ϕ(hu−1)− ϕ(h)|dmG(h)

≤ 1

κ
mG(QK)

εκ

mG(QK)
= ε.

This implies that ∆G : G→ R∗+ is continuous at the identity element e ∈ G
and so ∆G is continuous.
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Next, observe that both of the positive linear functionals

Cc(G)→ C : f 7→
∫
G
f(h−1) dmG(h)

Cc(G)→ C : f 7→
∫
G

∆(h−1)f(h) dmG(h)

define a nonzero right invariant regular Borel measure on G. Thus, there
exists c > 0 such that

∀f ∈ Cc(G),

∫
G
f(h−1) dmG(h) = c

∫
G

∆G(h−1)f(h) dmG(h)

Define ϕ̂ ∈ Cc(G) by the formula ϕ̂(h) = ϕ(h−1) for every h ∈ G. Then we
have

0 6=
∫
G
ϕ(h) dmG(h) =

∫
G
ϕ̂(h−1) dmG(h)

= c

∫
G

∆G(h−1)ϕ̂(h) dmG(h)

= c

∫
G

∆G(h−1)ϕ(h−1) dmG(h)

= c2

∫
G

∆G(h−1)∆G(h)ϕ(h) dmG(h)

= c2

∫
G
ϕ(h) dmG(h).

This implies that c = 1. �

In the proof of Proposition 1.7, we used the following technical result.
Denote by (Cb(G), ‖ · ‖∞) the Banach space of all bounded continuous func-
tions on G endowed with the supremum norm. Denote by λ : G y Cb(G)
(resp. ρ : G y Cb(G)) the left (resp. right) translation action defined by
(λ(g)f)(h) = f(g−1h) (resp. (ρ(g)f)(h) = f(hg)) for all g, h ∈ G and all
f ∈ Cb(G).

Lemma 1.8. Let G be a locally compact group and f ∈ Cc(G) a com-
pactly supported continuous function. Then for every ε > 0, there exists a
symmetric neighborhood U ⊂ G of e ∈ G such that

sup {‖λ(u)f − f‖∞, ‖ρ(u)f − f‖∞ | u ∈ U} < ε.

Then we say that f ∈ Cc(G) is uniformly continuous.

Proof. Let f ∈ Cc(G) and set Q = supp(f). Let ε > 0 and fix a
symmetric compact neighborhood V ⊂ G of e ∈ G. For every g ∈ G,
there exists an open neighborhood Wg ⊂ G of g ∈ G such that for all
w1, w2 ∈ Wg, we have |f(w1) − f(w2)| < ε. For every g ∈ G, choose an
open symmetric neighborhood Ug ⊂ G of e ∈ G such that gUgUg ∪UgUgg ⊂
Wg. Then for every g ∈ G, gUg ∩ Ugg is an open neighborhood of g ∈ G.
Since V QV is compact, there exist n ≥ 1 and g1, . . . , gn ∈ G such that



1. GENERALITIES ON LOCALLY COMPACT GROUPS 11

V QV ⊂
⋃
i=1 giUgi ∩ Ugigi. Define U = V ∩

⋂n
i=1 Ugi which is a symmetric

neighborhood of the identity e ∈ G. Then for every u ∈ U and every g ∈ G,
we consider the following situations:

• If g ∈ V QV , then there exists 1 ≤ i ≤ n such that g ∈ giUgi ∩
Ugigi. Since u ∈ U ⊂ Ugi , we have gu ∈ giUgiUgi ⊂ Wgi and
ug ∈ UgiUgigi ⊂ Wgi . It follows that |f(gu) − f(g)| < ε and
|f(gu)− f(g)| < ε.
• If g /∈ V QV , then gu /∈ Q and ug /∈ Q. It follows that f(g) =
f(ug) = f(gu) = 0.

We have showed that for every u ∈ U and every g ∈ G, we have |f(gu) −
f(g)| < ε and |f(gu)− f(g)| < ε. �

Let (G,mG,∆G) and (H,mH ,∆H) be locally compact groups with their
respective left invariant Haar measure and modular function. Let σ : Gy H
be a continuous action by continuous group automorphisms and write GnH
for the locally compact semi-direct product group. Recall that the group
law on GnH is given by

∀g1, g2 ∈ G,∀h1, h2 ∈ H, (g1, h1) · (g2, h2) = (g1g2, σ
−1
g2 (h1)h2).

The next proposition provides an explicit calculation of the Haar measure
and the modular function on GnH.

Proposition 1.9. The regular Borel measure mGnH defined on GnH
by the formulae

∀f ∈ Cc(GnH),

∫
GnH

f(g, h) dmGnH(h)(1.2)

=

∫
H

(∫
G
f(g, h) dmG(g)

)
dmH(h)

=

∫
G

(∫
H
f(g, h) dmH(h)

)
dmG(g)

is a left invariant Haar measure on GnH. Moreover, the modular function
∆GnH : GnH → R∗+ satisfies

∀(g, h) ∈ GnH, ∆GnH(g, h) = ρ(g) ∆G(g) ∆H(h)

where ρ : G→ R∗+ is the continuous function defined by the formula

∀f ∈ Cc(H),∀g ∈ G,
∫
H
f(σg(h)) dmH(h) = ρ(g)

∫
H
f(h) dmH(h).

Proof. Fubini’s theorem implies that for every f ∈ Cc(GnH), we have∫
H

(∫
G
f(g, h) dmG(g)

)
dmH(h) =

∫
G

(∫
H
f(g, h) dmH(h)

)
dmG(g).
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Denote by mGnH the unique regular Borel measure on G n H defined by
(1.2). For every f ∈ Cc(GnH) and every (g1, h1) ∈ GnH, we have∫

GnH
f((g1, h1) · (g2, h2)) dmGnH(g2, h2)

=

∫
GnH

f(g1g2, σ
−1
g2 (h1)h2) dmGnH(g2, h2)

=

∫
G

(∫
H
f(g1g2, h2) dmH(h2)

)
dmG(g2)

=

∫
H

(∫
G
f(g2, h2) dmG(g2)

)
dmH(h2)

=

∫
GnH

f(g2, h2) dmGnH(g2, h2).

This shows that mGnH is a left invariant Haar measure on GnH.
Consider the function ρ : G → R∗+ as defined above. For every f ∈

Cc(GnH) and every (g2, h2) ∈ GnH, we have∫
GnH

f((g1, h1) · (g2, h2)−1) dmGnH(g1, h1)

=

∫
GnH

f(g1g
−1
2 , σg2(h1h

−1
2 )) dmGnH(g1, h1)

= ∆H(h2)

∫
G

(∫
H
f(g1g

−1
2 , σg2(h1)) dmH(h1)

)
dmG(g1)

= ρ(g2) ∆H(h2)

∫
G

(∫
H
f(g1g

−1
2 , h1) dmH(h1)

)
dmG(g1)

= ρ(g2) ∆G(g2) ∆H(h2)

∫
H

(∫
G
f(g1, h1) dmG(g1)

)
dmH(h1)

= ρ(g2) ∆G(g2) ∆H(h2)

∫
GnH

f(g1, h1) dmGnH(g1, h1)

and hence ∆GnH(g2, h2) = ρ(g2) ∆G(g2) ∆H(h2). �

Examples 1.10. Here are some examples of unimodular locally compact
groups. Let d ≥ 1.

(i) Any group G endowed with the discrete topology is unimodular.
Indeed, in that case the counting measure mG is a nonzero regular
Borel measure on G that is clearly both left and right invariant.

(ii) Any compact group G is unimodular. Indeed, fix a left invariant
Haar measure mG on G. Then ∆G(G) < R∗+ is a compact sub-
group and so ∆G(G) = {1}. This shows that ∆G ≡ 1 and so G is
unimodular.

(iii) Any abelian locally compact group G is unimodular. The Lebesgue
measure dx1 · · · dxd on Rd is a Haar measure.
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(iv) Recall that the general linear group GLd(R) can be regarded as the
open (dense) subset of invertible matrices in Md(R) ∼= Rd×· · ·×Rd.
For every g ∈ GLd(R), the Jacobian of the diffeomorphism

Lg : Md(R)→ Md(R) : (x1, . . . , xd) 7→ (gx1, . . . , gxd)

is equal to |det(g)|d. It follows that a left invariant Haar measure
mG on G = GLd(R) is given by

dmG(g) =
1

|det(g)|d
∏

1≤i,j≤d
dgij , g = (gij)ij .

For every g ∈ GLd(R), since the Jacobian of the diffeomorphism

Rg : Md(R)→ Md(R) : x 7→ xg

is also equal to |det(g)|d, it follows that mG is right invariant and
so G = GLd(R) is unimodular.

(v) Recall that the special linear group SLd(R) < GLd(R) is defined
by SLd(R) = ker(det). It is known that the only normal sub-
groups of SLd(R) are {1}, {±1} and SLd(R). This implies that
ker(∆SLd(R)) = SLd(R) and so SLd(R) is unimodular.

(vi) For every d ≥ 2, the strict upper triangular subgroup G = Td(R)
defined as the group of all matrices g = (gij)ij such that gij = 0
for all 1 ≤ j < i ≤ d and gii = 1 for all 1 ≤ i ≤ d is homeomorphic

with R
d(d−1)

2 . Under this identification, the Lebesgue measure on

R
d(d−1)

2 gives rise to a left and right invariant Haar measure mG on
G defined as

dmG(n) =
∏

1≤i<j≤d
dnij , n = (nij)ij .

Indeed, for all i < j and all g, n ∈ Td(R), we have (gn)ij = gij +
nij +

∑
i<k<j giknkj . Endow the set {(i, j) | 1 ≤ i < j ≤ d} with

the lexicographical order. Then for every g ∈ Td(R), the Jacobian
matrix of the diffeomorphism Td(R) → Td(R) : n 7→ gn is lower
triangular with diagonal entries all equal to 1. This implies that
the Jacobian of the diffeomorphism Td(R) → Td(R) : n 7→ gn is
equal to 1. The same argument shows that for every g ∈ Td(R),
the Jacobian of the diffeomorphism Td(R) → Td(R) : n 7→ ng is
equal to 1. Thus, G = Td(R) is unimodular.

2. Lattices in locally compact groups

Let G be a locally compact group and Γ < G a discrete subgroup. We
say that a Borel subset F ⊂ G is a Borel fundamental domain (for the right
translation action Γ y G) if

∀γ1, γ2 ∈ Γ, γ1 6= γ2 ⇒ Fγ1 ∩Fγ2 = ∅ and
⋃
γ∈Γ

Fγ = G.
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Denote by G/Γ = {gΓ | g ∈ G} the quotient space and by p : G → G/Γ :
g 7→ gΓ the quotient map. Endow G/Γ with the quotient topology.

Proposition 1.11. Keep the same notation as above. The following
assertions hold:

(i) The quotient map p : G → G/Γ is continuous and open and G/Γ
is Hausdorff and locally compact. Moreover, the action map G ×
G/Γ→ G/Γ : (g, x) 7→ gx is continuous.

(ii) If G/Γ is compact, then there exists a Borel fundamental domain
F ⊂ G that is relatively compact in G.

(iii) If G is second countable, then G/Γ is second countable. Moreover,
there exists a Borel fundamental domain F ⊂ G such that for every
compact subset Y ⊂ G/Γ, the subset p−1(Y ) ∩F ⊂ G is relatively
compact in G.

Proof. (i) Endow the quotient space G/Γ = {gΓ | g ∈ G} with the
quotient topology. By definition, a subset V ⊂ G/Γ is open if and only if
p−1(V ) ⊂ G is open. Then the quotient topology is the finest topology on
G/Γ that makes the quotient map p : G→ G/Γ continuous. Let now U ⊂ G
be an open set. Then p−1(p(U)) = p−1({hΓ | h ∈ U}) =

⋃
γ∈Γ Uγ is open

and so is p(U) ⊂ G/Γ is open. This shows that p : G→ G/Γ is open.
Let x1, x2 ∈ G/Γ with x1 6= x2. Write x1 = g1Γ and x2 = g2Γ. Note

that g2 /∈ g1Γ. Choose a compact neighborhood U1 ⊂ G (resp. U2 ⊂ G2) of
g1 ∈ G (resp. g2 ∈ G). Since U−1

2 U1 ⊂ G is compact and since Γ < G is
discrete, the set Λ = {γ ∈ Γ | U1 ∩U2γ 6= ∅} is finite. For every γ ∈ Λ, since
g1 6= g2γ, there exist neighborhoods Uγ of g1 ∈ G and Vγ of g2γ ∈ G such
that Uγ ∩ Vγ = ∅. Set

W1 = U1 ∩
⋂
γ∈Λ

Uγ and W2 = U2 ∩
⋂
γ∈Λ

Vγγ
−1.

Then for every γ ∈ Γ, we have W1 ∩ W2γ = ∅. Indeed, if γ ∈ Γ \ Λ,
then U1 ∩ U2γ = ∅. If γ ∈ Λ, then Uγ ∩ (Vγγ

−1)γ = ∅. Thus, we have
p(W1) ∩ p(W2) = ∅. This shows that G/Γ is Hausdorff.

Let x = gΓ ∈ G/Γ. Choose a compact neighborhood K ⊂ G of e ∈ G.
Then gK is a compact neighborhood of g ∈ G and so p(gK) is a compact
neighborhood of x ∈ G/Γ. This shows that G/Γ is locally compact.

Define the action map a : G × G/Γ → G/Γ : (g, x) 7→ gx. Recall
that the multiplication map m : G × G → G is continuous. Since the map
idG×p : G × G → G × G/Γ : (g, h) 7→ (g, hΓ) is continuous and open, the
commutative diagram

G×G G

G×G/Γ G/Γ

m

id×p p

a

shows that the action map a : G×G/Γ→ G/Γ is continuous.
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(ii) Since Γ < G is discrete, there exists an open neighborhood V ⊂ G
of e ∈ G such that V ∩ Γ = {e}. Since the map G×G→ G : (g, h) 7→ g−1h
is continuous, there exists an open neighborhood U ⊂ G of e ∈ G such that
U−1U ⊂ V . Replacing U with U ∩K where K is a relatively compact open
neighborhood of e ∈ G, we may assume that U ⊂ G is relatively compact.
Since G/Γ is compact and since (p(gU)g∈G) is an open covering of G/Γ,
there exist g1, . . . , gn ∈ G such that G/Γ =

⋃n
i=1 p(giU). Define the Borel

subset

F =
n⋃
i=1

giU \⋃
j<i

gjUΓ

 .

By construction, F ⊂ G is relatively compact. Then we have
⋃
γ∈Γ Fγ =⋃n

i=1 giUΓ = p−1(
⋃n
i=1 p(giU)) = p−1(G/Γ) = G. Let γ1, γ2 ∈ Γ be elements

such that Fγ1∩Fγ2 6= ∅. Upon exchanging γ1 and γ2, we may assume that
there exist i ≥ j and u1, u2 ∈ U such that giu1γ1 = gju2γ2. By construction

and since giu1 = gju2γ2γ
−1
1 ∈ giU ∩ gjUΓ, we necessarily have i = j. Then

u1γ1 = u2γ2 and so u−1
2 u1 = γ2γ

−1
1 ∈ U−1U ∩ Γ ⊂ V ∩ Γ = {e}. This shows

that γ1 = γ2 and thus F ⊂ G is a Borel fundamental domain.
(iii) Choose a countable basis (Un)n for the topology on G. Let V ⊂

G/Γ be an open set. Then p−1(V ) =
⋃
γ∈Γ V γ ⊂ G is open and so there

exists a subfamily (Unk
)k such that p−1(V ) =

⋃
k Unk

. Then we have
V = p(p−1(V )) =

⋃
k p(Unk

). This shows that (p(Un))n is a countable basis
for the quotient topology on G/Γ and so G/Γ is second countable. For every
n ∈ N, choose gn ∈ Un.

As before, there exist open neighborhoods U, V ⊂ G of e ∈ G such that
U ⊂ G is relatively compact, U−1U ⊂ V and V ∩ Γ = {e}. We claim that
G =

⋃
n∈N gnU . Indeed, for every g ∈ G, gU−1 ⊂ G is an open set and

hence there exists n ∈ N such that Un ⊂ gU−1. This implies that there
exists u ∈ U such that gn = gu−1 or equivalently g = gnu and thus g ∈ gnU .
Define the Borel subset

F =
⋃
n∈N

(
gnU \

⋃
k<n

gkUΓ

)
.

Then we have
⋃
γ∈Γ Fγ =

⋃
n∈N gnUΓ = G. Let γ1, γ2 ∈ Γ be elements such

that Fγ1∩Fγ2 6= ∅. Upon exchanging γ1 and γ2, we may assume that there
exist m ≥ n and u1, u2 ∈ U such that gmu1γ1 = gnu2γ2. By construction
and since gmu1 = gnu2γ2γ

−1
1 ∈ gmU ∩ gnUΓ, we necessarily have m = n.

Then u1γ1 = u2γ2 and so u−1
2 u1 = γ2γ

−1
1 ∈ U−1U ∩ Γ ⊂ V ∩ Γ = {e}.

This shows that γ1 = γ2 and thus F ⊂ G is a Borel fundamental domain.
Let Y ⊂ G/Γ be a compact subset. Since (p(gnU))n is an open covering of

Y , there exist n1 ≤ · · · ≤ nk such that Y ⊂
⋃k
i=1 p(gniU). Then we have

p−1(Y ) ∩F ⊂
⋃nk
j=0(gjU \

⋃
i<j giUΓ) and so p−1(Y ) ∩F ⊂ G is relatively

compact. �



16 1. LOCALLY COMPACT GROUPS

Observe that when G is a locally compact σ-compact group, any discrete
subgroup Γ < G is necessarily countable. Indeed, since G is σ-compact,
the left invariant Haar measure mG is σ-finite. We may then choose a
Borel probability measure µ ∈ Prob(G) such that µ ∼ mG. We may also
choose open neighborhoods U, V ⊂ G of e ∈ G such that UU−1 ⊂ V and
V ∩ Γ = {e}. Then (γU)γ∈Γ is a family of pairwise disjoint open subsets.
Moreover, since mG(γU) = mG(U) > 0 for every γ ∈ Γ, it follows that
µ(γU) > 0 for every γ ∈ Γ. This implies that Γ is necessarily countable.

Corollary 1.12. Let G be a locally compact second countable group
and Γ < G a discrete subgroup. Then there exists a Borel map σ : G/Γ→ G
such that

• σ(G/Γ) = F is a Borel fundamental domain,
• σ(Γ) = e,
• x = σ(x)Γ for every x ∈ G/Γ,
• σ(Y ) ⊂ G is relatively compact for every compact subset Y ⊂ G/Γ.

We then simply say that σ : G/Γ→ G is a Borel section.

Proof. Choose a Borel fundamental domain F ⊂ G as in Proposition
1.11(iii) such that e ∈ F . Then p|F : F → G/Γ is Borel and bijective. This
implies that the map σ = (p|F )−1 : G/Γ→ G is Borel (see [Zi84, Theorem
A.4]) and satisfies all the required properties. �

Definition 1.13. LetG be a locally compact group and Γ < G a discrete
subgroup. We say that Γ < G is uniform or cocompact if G/Γ is compact.

We say that Γ < G is a lattice if there exists a G-invariant regular Borel
probability measure ν ∈ Prob(G/Γ).

Define the linear mapping T : Cc(G) → Cc(G/Γ) : f 7→ f by the
formula

∀g ∈ G, f(gΓ) =
∑
γ∈Γ

f(gγ).

We claim that T : Cc(G)→ Cc(G/Γ) is surjective. Indeed, let ϕ ∈ Cc(G/Γ)
be a function and denote by Q = supp(ϕ) ⊂ G/Γ its compact support.
Choose a relatively compact open neighborhood V ⊂ G of e ∈ G. Then there
exist g1, . . . , gn ∈ G such that Q ⊂

⋃n
i=1 p(giV ). Set K = p−1(Q)∩

⋃n
i=1 giV .

Then K ⊂ G is a compact subset such that p(K) = Q. By Urysohn’s lemma
(see e.g. [DE14, Lemma A.8.1(ii)]), we may choose fK ∈ Cc(G)+ such that
f |K ≡ 1K .

Define the function f : G → C by the formula f(g) = ϕ(gΓ)
T (fK)(gΓ)fK(g)

if T (fK)(gΓ) 6= 0 and f(g) = 0 otherwise. Then supp(f) ⊂ supp(fK) is
compact and f is continuous on G since T (fK)(gΓ) > 0 on a neighborhood
of Q. Thus, f ∈ Cc(G) and we have T (f) = ϕ.

Proposition 1.14. Let G be a locally compact group and Γ < G a
uniform discrete subgroup. Then G is unimodular and Γ < G is a lattice.

If G is moreover compactly generated, then Γ < G is finitely generated.
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Proof. Fix a right invariant Haar measure µG on G. Consider the
positive linear functional

Φ : Cc(G/Γ)→ C : f 7→
∫
G
f(g) dµG(g).

In order to check that Φ is well-defined, it suffices to show that if ϕ ∈ Cc(G)
is such that ϕ = 0, then we have

∫
G ϕ(g) dµG(g) = 0. Indeed, for every

ψ ∈ Cc(G), using Fubini’s theorem, we have∫
G
ϕ(hΓ)ψ(h) dµG(h) =

∑
γ∈Γ

∫
G
ϕ(hγ)ψ(h) dµG(h)

=
∑
γ∈Γ

∫
G
ϕ(h)ψ(hγ−1) dµG(h)

=

∫
G
ϕ(h)ψ(hΓ) dµG(h).

Since the map Cc(G) → Cc(G/Γ) : f 7→ f is surjective, there exists ψ ∈
Cc(G) such that ψ ≡ 1 on the compact subset supp(ϕ)Γ ⊂ G/Γ. Therefore,
we obtain∫

G
ϕ(h) dµG(h) =

∫
G
ϕ(h)ψ(hΓ) dµG(h) =

∫
G
ϕ(hΓ)ψ(h) dµG(h) = 0.

By Riesz’s representation theorem, there exists a unique regular Borel mea-
sure ν on G/Γ such that

∀f ∈ Cc(G),

∫
G
f(h) dµG(h) =

∫
G
f(hΓ) dν(hΓ).

Note that the above argument does not use the fact that Γ < G is uniform.
However, since Γ < G is uniform, G/Γ is compact and we have 0 <

ν(G/Γ) < +∞. Up to normalization, we may assume that ν(G/Γ) = 1.
Define the left invariant Haar measuremG onG by the formulamG(B) =

µG(B−1) for every B ∈ B(G). Then for every B ∈ B(G) and every g ∈ G,
we have

(g∗µG)(B) = µG(g−1B) = mG(B−1g) = ∆G(g)mG(B−1) = ∆G(g)µG(B)

and so g∗µG = ∆G(g)µG. By uniqueness in the previous construction, we
obtain g∗ν = ∆G(g) ν for every g ∈ G. Since ν ∈ Prob(G/Γ) is a probability
measure, we obtain ∆G(g) = 1 and g∗ν = ν for every g ∈ G. Thus, ∆G ≡ 1
and so G is unimodular. Moreover, ν ∈ Prob(G/Γ) is G-invariant and so
Γ < G is a lattice.

Assume moreover that G is compactly generated. Choose a compact
subset Q ⊂ G such that e ∈ Q and G =

⋃
n≥1Q

n. Since G/Γ is compact,

we may choose a compact subset K ⊂ G such that p(K) = G/Γ (see the
proof of surjectivity of the map T : Cc(G) → Cc(G/Γ)). Upon replacing
Q by Q ∪K, we may further assume that Q · Γ = G. Then S0 = Q ∩ Γ is
finite. Moreover, since Q2 is compact, there exists a finite subset S1 ⊂ Γ
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such that Q2 ⊂ QS1. Indeed, otherwise we could find sequences (gn)n in
Q2, (hn)n in Q and (γn)n in Γ such that gn = hnγn for every n ∈ N and
(γn)n are pairwise distinct. This would imply that γn = h−1

n gn ∈ Q3 ∩ Γ
for every n ∈ N. Since Q3 is compact and Γ < G is discrete, Q3 ∩ Γ must
be finite, a contradiction. Set S = S0 ∪ S1 ⊂ Γ. Then Q ∩ Γ ⊂ S and for
every n ≥ 1, we have Qn+1 ⊂ QSn. We claim that S is a finite generating
set for Γ. Indeed, by construction, we have Q ∩ Γ ⊂ S. Next, let n ≥ 1 and
γ ∈ Qn+1 ∩ Γ ⊂ QSn ∩ Γ. Then γ = gγn where g ∈ Q and γn ∈ Sn. This
implies that γγ−1

n = g ∈ Q ∩ Γ ⊂ S. Then γ = gγn ∈ SSn = Sn+1 and
hence Qn+1∩Γ ⊂ Sn+1. This implies that Γ =

⋃
n≥1Q

n∩Γ ⊂
⋃
n≥1 S

n and
so Γ is finitely generated. �

Proposition 1.15. Let G be a locally compact group that possesses a
lattice Γ < G. Then G is unimodular. Moreover, there is a unique G-
invariant regular Borel probability measure ν ∈ Prob(G/Γ).

Proof. Let ν ∈ Prob(G/Γ) be a G-invariant regular Borel probability
measure. We claim that there exists a unique left invariant Haar measure
mG on G such that

(1.3) ∀f ∈ Cc(G),

∫
G
f(h) dmG(h) =

∫
G/Γ

f(gΓ) dν(gΓ).

Indeed, the well-defined positive linear functional

Cc(G)→ C : f 7→
∫
G/Γ

f(gΓ) dν(gΓ)

is left invariant. By Riesz’s representation theorem, there exists a unique
left invariant Haar measure mG on G for which (1.3) holds.

Applying (1.1), for every f ∈ Cc(G) and every γ ∈ Γ, letting fγ =
f( · γ−1) ∈ Cc(G), we have

∆G(γ)

∫
G
f(h) dmG(h) =

∫
G
fγ(h) dmG(h)

=

∫
G/Γ

fγ(hΓ) dν(hΓ)

=

∫
G/Γ

f(hΓ) dν(hΓ)

=

∫
G
f(h) dmG(h).

This implies that ∆G(γ) = 1 for every γ ∈ Γ. Consider the well-defined con-
tinuous mapping ∆ : G/Γ→ R∗+ : gΓ 7→ ∆G(g). Then η = ∆∗ν ∈ Prob(R∗+)
is a Borel probability measure that is invariant under multiplication by
∆G(g) for every g ∈ G. This implies that ∆G ≡ 1 and so G is unimod-
ular.
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Observe that (1.3) together with surjectivity of T : Cc(G) → Cc(G/Γ)
imply that there is a unique G-invariant regular Borel probability measure
ν ∈ Prob(G/Γ). �

The next proposition provides a group-theoretic characterization of uni-
form lattices in locally compact groups.

Proposition 1.16. Let G be a locally compact group and Γ < G a
lattice. The following assertions are equivalent:

(i) Γ < G is uniform.
(ii) There exists a compact neighborhood U ⊂ G of e ∈ G such that for

every g ∈ G, we have gΓg−1 ∩ U = {e}.

Proof. (i) ⇒ (ii) Assume that Γ < G is uniform. Since Γ < G is
discrete, we may choose a compact neighborhood W ⊂ G of e ∈ G such that
Γ ∩W = {e}. Next, we may choose a symmetric compact neighborhood
V ⊂ W of e ∈ G such that V V V ⊂ W . Observe that for every h ∈ V , we
have

hΓh−1 ∩ V ⊂ h(Γ ∩ h−1V h)h−1 ⊂ h(Γ ∩W )h−1 = {e}.
By compactness of G/Γ, there exist n ≥ 1 and g1, . . . , gn ∈ G such that
G/Γ =

⋃n
i=1 gip(V ). Set U =

⋂n
i=1 giV g

−1
i . Then for every g ∈ G, there

exist 1 ≤ i ≤ n and h ∈ V such that gΓ = gihΓ and hence

gΓg−1 ∩ U = gihΓh−1g−1
i ∩ U ⊂ gi(hΓh−1 ∩ V )g−1

i = {e}.

(ii)⇒ (i) Denote by ν ∈ Prob(G/Γ) the unique G-invariant regular Borel
probability measure and by mG the unique Haar measure on G such that
(1.3) holds. Assume that there exists such a compact neighborhood U ⊂ G
of e ∈ G. Choose a compact neighborhood V ⊂ G of e ∈ G such that
V −1V ⊂ U . Choose a nonnegative function ϕ ∈ Cc(G) such that 0 ≤ ϕ ≤ 1
and supp(ϕ) ⊂ V . Set ε =

∫
G ϕ(h) dmG(h).

For every g ∈ G, define ϕg = ϕ( · g−1) ∈ Cc(G). Note that 0 ≤ ϕg ≤ 1
and supp(ϕg) ⊂ V g. Moreover, we have supp(ϕg) ⊂ V gΓ. Since mG is right
invariant, we have

ε =

∫
G
ϕ(h) dmG(h)

=

∫
G
ϕg(h) dmG(h)

=

∫
G/Γ

ϕg(hΓ) dν(hΓ)

=

∫
V gΓ

ϕg(hΓ) dν(hΓ)

=

∫
V gΓ

∑
γ∈Γ

ϕg(hγ) dν(hΓ).
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We claim that for every h ∈ V gΓ, there is at most one γ ∈ Γ such that
hγ ∈ V g. Indeed, if γ1, γ2 ∈ Γ are elements such that hγ1, hγ2 ∈ V g, then
gγ−1

1 γ2g
−1 ∈ V −1V ⊂ U . Since gΓg−1 ∩ U = {e}, we have γ1 = γ2. Since

0 ≤ ϕg ≤ 1 and supp(ϕg) ⊂ Vg, it follows that

ε =

∫
V gΓ

∑
γ∈Γ

ϕg(hγ) dν(hΓ) ≤
∫
V gΓ

1 dν(hΓ) = ν(V gΓ).

We have showed that ν(V gΓ) ≥ ε for every g ∈ G.
Let F ⊂ G be a finite subset for which for every g, h ∈ F such that

g 6= h, we have V gΓ ∩ V hΓ = ∅. Then we have

]F · ε ≤
∑
g∈F

ν(V gΓ) = ν(
⋃
g∈F

V gΓ) ≤ 1

and hence ]F ≤ ε−1. We may then choose a maximal finite subset F ⊂ G
with the aforementioned property. It follows that for every g ∈ G, we have
V gΓ ∩ V FΓ 6= ∅ and hence gΓ ∈ V −1V FΓ ⊂ UFΓ. Since UFΓ ⊂ G/Γ is
compact, it follows that G/Γ = UFΓ is compact. �

When G is a locally compact second countable group, we prove a very
useful criterion to ensure that a discrete subgroup Γ < G is a lattice.

Theorem 1.17. Let G be a locally compact second countable group and
Γ < G a discrete subgroup. The following assertions are equivalent:

(i) Γ < G is a lattice.
(ii) G is unimodular and there is a Borel fundamental domain F ⊂ G

for the right translation action Γ y G such that 0 < mG(F ) <
+∞.

(iii) G is unimodular and there is a Borel subset S ⊂ G such that
S · Γ = G and 0 < mG(S) < +∞.

Proof. Recall that since G is a locally compact second countable group,
the discrete subgroup Γ < G is necessarily countable.

(i) ⇒ (ii) We already know that G is unimodular by Proposition 1.15.
Denote by ν ∈ Prob(G/Γ) the unique G-invariant regular Borel probability
measure. Denote by mG the unique Haar measure on G satisfying (1.3).
Since G is locally compact second countable, (1.3) holds for every nonnega-
tive Borel function f : G → R+. In particular, for f = 1F , we have f ≡ 1
and so

mG(F ) =

∫
G
f(h) dmG(h) =

∫
G/Γ

f dν(hΓ) = 1 < +∞.

Since mG(G) > 0, G =
⋃
γ∈Γ Fγ and mG(Fγ) = mG(F ) for every γ ∈ Γ,

we also have mG(F ) > 0.
(ii)⇒ (iii) It is trivial.
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(iii)⇒ (i) Following the proof of Proposition 1.14 and since mG is right
invariant, we may consider the well-defined nonzero left invariant linear func-
tional

Φ : Cc(G/Γ)→ C : f 7→
∫
G
f(g) dmG(g).

By Riesz’s representation theorem, there exists a unique nonzero G-invariant
regular Borel measure ν on G/Γ such that (1.3) holds. Since G is locally
compact second countable, (1.3) holds for every nonnegative Borel function
f : G→ R+. In particular, for f = 1S, we have f ≥ 1 and so

ν(G/Γ) ≤
∫
G/Γ

f dν(hΓ) =

∫
G
f(h) dmG(h) = mG(S) < +∞.

Then 1
ν(G/Γ)ν ∈ Prob(G/Γ) is a G-invariant regular Borel probability mea-

sure and so Γ < G is a lattice. �

Let us point out that when Γ < G is a lattice, all Borel fundamental
domains for the right translation action Γ y G have the same finite Haar
measure. Indeed, whenever F1,F2 ⊂ G are Borel fundamental domains,
since the Haar measure mG on G is right invariant, we have

mG(F1) =
∑
γ∈Γ

mG(F1 ∩F2γ)

=
∑
γ∈Γ

mG(F1γ
−1 ∩F2)

= mG(F2).

Examples 1.18. Here are some examples of lattices in locally compact
groups.

(i) For every d ≥ 1, the discrete subgroup Zd < Rd is a uniform lattice.
(ii) More generally, any lattice Γ < G in a locally compact second

countable abelian group G is necessarily uniform.
(iii) The discrete Heisenberg group H3(Z) < H3(R) is a uniform lattice

in the continuous Heisenberg group H3(R):

H3(Z) =


1 x z

0 1 y
0 0 1

 | x, y, z ∈ Z


H3(R) =


1 x z

0 1 y
0 0 1

 | x, y, z ∈ R

 .

(iv) More generally, any lattice Γ < G in a locally compact second
countable nilpotent group G is necessarily uniform.
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3. SLd(Z) is a lattice in SLd(R), d ≥ 2

In this section, we prove the following theorem due to Minkowski.

Theorem 1.19 (Minkowski). For every d ≥ 2, the discrete subgroup
SLd(Z) < SLd(R) is a nonuniform lattice.

Before proving Theorem 1.19, we need to prove some preliminary results
that are also of independent interest.

Let d ≥ 1. Endow Rd with its canonical euclidean structure. Denote by
K = SOd(R) < SLd(R) the special orthogonal subgroup and observe that
K < SLd(R) is compact. Denote by A < SLd(R) the subgroup of diagonal
matrices with positive entries, that is,

A = {a = diag(λ1, . . . , λd) | λ1, . . . , λd > 0, λ1 · · ·λd = 1} < SLd(R).

Denote by N = Td(R) < SLd(R) the strict upper triangular subgroup as in
Example 1.10(vi).

Lemma 1.20 (Iwasawa decomposition). The map K×A×N → SLd(R) :
(k, a, n) 7→ kan is a homeomorphism. We simply write SLd(R) = K ·A ·N .

Proof. Denote by (e1, . . . , ed) the canonical basis of Rd. The map
Ψ : K × A × N → SLd(R) : (k, a, n) 7→ kan is clearly continuous. Con-
versely, let g ∈ SLd(R) and write vi = gei ∈ Rd for every 1 ≤ i ≤ d.
By Gram–Schmidt’s orthogonalization process, set w1 = v1 and wi+1 =
vi+1 − PVi(vi+1) where Vi = Vect(v1, . . . , vi) for every 1 ≤ i ≤ d − 1. Then
( w1
‖w1‖ , . . . ,

wd
‖wd‖) is an orthonormal basis for Rd and we may find k ∈ Od(R)

such that kei = wi
‖wi‖ for every 1 ≤ i ≤ d. Then the matrix k−1g is

upper triangular and (k−1g)ii = ‖wi‖ for every 1 ≤ i ≤ d. It follows
that det(k−1) = det(k−1g) = ‖w1‖ · · · ‖wd‖ > 0 and hence k ∈ SOd(R).
Letting a = diag(‖w1‖, . . . , ‖wd‖) ∈ A, we have g = kan and the map
SLd(R) → K × A × N : g 7→ (k, a, n) is continuous. Since its inverse is
Ψ, we have showed that Ψ : K × A × N → SLd(R) : (k, a, n) 7→ kan is a
homeomorphism. �

Lemma 1.21. Endow (K,dk), (A,da), (N, dn) with their respective Haar
measure. Then the pushforward measure of∏

1≤i<j≤d

λi
λj

dk da dn

under the map K × A × N → SLd(R) : (k, a, n) 7→ kan is a Haar measure
on SLd(R).

Proof. Consider the product map Ψ : K × AN → SLd(R) : (k, p) 7→
k−1p. Since SLd(R) is unimodular, the regular Borel measure (Ψ−1)∗mSLd(R)

on K×AN is right invariant. Then (Ψ−1)∗mSLd(R) is a right invariant Haar
measure on the locally compact second countable group K ×AN and hence
(Ψ−1)∗mSLd(R) = µK ⊗ µAN where µK is a right invariant Haar measure on
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K and µAN is a right invariant Haar measure on AN . Since K is compact,
µK is also left invariant and hence we may assume that dµK(k) = dk. It

remains to prove that
∏

1≤i<j≤d
λi
λj

dadn is a right invariant Haar measure

on AN .
As explained in Examples 1.10(vi), we may assume that dmN (n) =

dn =
∏

1≤i<j≤d dnij . Observe that N C AN is a normal subgroup and

define the conjugation action Ad : Ay N by Ad(a)(n) = ana−1 for a ∈ A,
n ∈ N . Then AN = A n N and da dn is a left invariant measure on
AN by Proposition 1.9. A simple calculation shows that Ad(a)∗mN =

(
∏

1≤i<j≤d
λi
λj

)−1 ·mN . Then Proposition 1.9 implies that
∏

1≤i<j≤d
λi
λj

da dn

is a right invariant Haar measure on AN . �

For all t, u > 0, set

At = {a = diag(λ1, . . . , λd) ∈ A | ∀1 ≤ i ≤ d− 1, λi ≤ tλi+1}
Nu = {n = (nij)ij ∈ N | ∀1 ≤ i < j ≤ d, |nij | ≤ u}

St,u = K ·At ·Nu.

The Borel subset St,u ⊂ G is called a Siegel domain. We now have all the
tools to prove Theorem 1.19.

Proof of Theorem 1.19. For every t ≥ 2√
3

and every u ≥ 1
2 , we

show that SLd(R) = St,u · SLd(Z) and that St,u has finite Haar measure.
By Theorem 1.17, this implies that SLd(Z) < SLd(R) is a lattice. We divide
the proof into a series of claims.

Claim 1.22. For all t, u > 0, the Siegel domain St,u has finite Haar
measure.

Indeed, note that since K and Nu are both compact in SLd(R), using
Lemma 1.21 it suffices to prove that

κt =

∫
At

∏
1≤i<j≤d

λi
λj

da < +∞.

Observe that the map

Θ : A→ Rd−1 : diag(λ1, . . . , λd) 7→
(

log
λ2

λ1
, . . . , log

λd
λd−1

)
is a topological group isomorphism. We may choose the Haar measure da
on A that is the pushforward of the Lebesgue measure on Rd−1 by Θ−1. We
then have

κt =

∫
Rd−1

∏
1≤i<j≤d

exp(−(si + · · ·+ sj−1))1{s1,...,sd−1≥− log t} ds1 · · · dsd−1

=
d−1∏
k=1

∫ +∞

− log t
exp(−k(d− k)sk) dsk < +∞.
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Claim 1.23. For every u ≥ 1
2 , we have N = Nu · (N ∩ SLd(Z)).

Indeed, it suffices to prove Claim 1.23 for u = 1
2 . We proceed by induc-

tion over d ≥ 1. For d = 1, there is nothing to prove. Assume that the
result is true for d − 1 ≥ 1 and let us prove it for d. Let n ∈ N = Td(R)
that we write

n =

(
1 ∗
0 n0

)
where n0 ∈ Td−1(R).

By induction hypothesis, there exists γ0 ∈ Td−1(R) ∩ SLd−1(Z) such that
n1 = n0γ

−1
0 ∈ Td−1(R)1/2. Write

n

(
1 0
0 γ−1

0

)
=

(
1 x
0 n1

)
where x ∈ Rd−1.

Choose y ∈ Zd−1 such that x− y ∈ [−1/2, 1/2]d−1. Then

n =

(
1 x
0 n1

)(
1 0
0 γ0

)
=

(
1 x− y
0 n1

)(
1 y
0 1

)(
1 0
0 γ0

)
where (

1 x− y
0 n1

)
∈ N1/2 and

(
1 y
0 1

)(
1 0
0 γ0

)
∈ N ∩ SLd(Z).

This shows the result is true for d and finishes the proof of Claim 1.23.

Claim 1.24. For every t ≥ 2√
3
, we have SLd(R) = K ·At ·N · SLd(Z).

Indeed, it suffices to prove Claim 1.24 for t = 2√
3
. We proceed by

induction over d ≥ 1. For d = 1, there is nothing to prove. Assume that the
result is true for d− 1 ≥ 1 and let us prove it for d. Denote by (e1, . . . , ed)
the canonical basis of Rd. Let g ∈ SLd(R). Since Λ = gZd is a lattice in Rd,
there must exist a vector v1 ∈ Λ \ {0} such that

‖v1‖ = min {‖v‖ | v ∈ Λ \ {0}} .
By minimality of the norm of v1 ∈ Λ \ {0}, we may find v2, . . . , vd ∈ Λ \ {0}
such that (v1, . . . , vd) is a basis of Λ (see e.g. [Ca71, Corollary I.3]). Upon
further replacing v1 by −v1, there exists γ ∈ SLd(Z) such that γei = g−1vi
for every 1 ≤ i ≤ d. Note that gγe1 = v1.

Next, consider the Iwasawa decomposition gγ = kan and write

an =

(
λd−1 ∗

0 λ−1g0

)
where λ ∈ R∗+, g0 ∈ SLd−1(R).

By induction hypothesis, there exist k0 ∈ SOd−1(R) and γ0 ∈ SLd−1(Z) such
that k−1

0 g0γ
−1
0 ∈ (Ad−1)2/

√
3 · Td−1(R). If we consider

h =

(
1 0
0 k−1

0

)
k−1gγ

(
1 0
0 γ−1

0

)
=

(
λd−1 ∗

0 λ−1 k−1
0 g0γ

−1
0

)
∈ AN
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we obtain that the diagonal coefficients of h satisfy hi,i ≤ 2√
3
hi+1,i+1 for

every 2 ≤ i ≤ d − 1. It remains to prove that h1,1 ≤ 2√
3
h2,2. Observe that

for every w ∈ Zd \ {0}, we have

‖he1‖ = ‖gγ
(

1 0
0 γ−1

0

)
e1‖ = ‖gγe1‖ = ‖v1‖ ≤ ‖gγ

(
1 0
0 γ−1

0

)
w‖ = ‖hw‖.

Using Claim 1.23, write h = diag(h11, . . . , hdd)n1γ1 where n1 ∈ N1/2 and
γ1 ∈ N ∩ SLd(Z). Then he1 = diag(h11, . . . , hdd)e1 = h11e1 and with w =
γ−1

1 e2 ∈ Zd \ {0}, we have hw = diag(h11, . . . , hdd)n1e2 = h11n12e1 + h22e2.
Then we obtain

h2
11 = ‖he1‖2 ≤ ‖hw‖2 = h2

11n
2
12 + h2

22 ≤
1

4
h2

11 + h2
22

and so h2
11 ≤ 4

3h
2
22. This finishes the proof of Claim 1.24.

A combination of Claims 1.22, 1.23, 1.24 and Theorem 1.17 implies that
SLd(Z) < SLd(R) is a lattice.

It remains to prove that SLd(Z) < SLd(R) is nonuniform. Indeed, regard
SL2(R) < SLd(R) as a subgroup in the top left corner and set

γ =

(
1 1
0 1

)
∈ SL2(Z) < SLd(Z).

Then a simple calculation shows that

gnγg
−1
n =

(
1 n−2

0 1

)
→ e with gn =

(
n−1 0

0 n

)
∈ SL2(R) < SLd(R).

Then Proposition 1.16 implies that SLd(Z) < SLd(R) is nonuniform. �

Let r ≥ 2 and G1, . . . , Gr be locally compact groups. Set G =
∏r
i=1Gi.

For every 1 ≤ i ≤ r, set Ĝi =
∏
j 6=iGj and denote by pi : G → Ĝi the

canonical factor map.

Definition 1.25. Let Γ < G be a discrete subgroup. We say that Γ < G

is irreducible if for every 1 ≤ i ≤ r, the image pi(Γ) is dense in Ĝi.

Example 1.26. Here are some examples of discrete irreducible sub-
groups Γ < G in locally compact groups.

(i) Let q ≥ 2 be a square-free integer. Define the field automorphism
σ : Q(

√
q) → Q(

√
q) : x + y

√
q 7→ x − y√q. For every d ≥ 2, the

subgroup

Γ = {(g, gσ) | g ∈ SLd(Z[
√
q])} < SLd(R)× SLd(R)

is discrete and irreducible. Write SLd(Z[
√
q]) < SLd(R)× SLd(R).

(ii) Let p ∈P be a prime. For every d ≥ 2, the subgroup

Γ =
{

(g, g) | g ∈ SLd(Z[p−1])
}
< SLd(R)× SLd(Qp)

is discrete and irreducible. Write SLd(Z[p−1]) < SLd(R)×SLd(Qp).
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Borel–Harish-Chandra’s results [BHC61] provide many examples of ir-
reducible lattices in locally compact groups. We refer the reader to [Ma91,
Chapter IX] and [Be09, §2] for further details.

Examples 1.27. Let d ≥ 2.

(i) The discrete subgroup SLd(Z) < SLd(R) is a nonuniform lattice
(see Theorem 1.19).

(ii) For every square-free integer q ≥ 2, the discrete subgroup

SLd(Z[
√
q]) < SLd(R)× SLd(R)

is a nonuniform irreducible lattice.
(iii) For every prime p ∈P, the discrete subgroup

SLd(Z[p−1]) < SLd(R)× SLd(Qp)

is a nonuniform irreducible lattice.
(iv) More generally, for every finite set of primes S = {p1, . . . , pr} ⊂P,

the discrete subgroup

SLd(Z[S−1]) < SLd(R)× SLd(Qp1)× · · · × SLd(Qpr)

is a nonuniform irreducible lattice.
(v) Let d ≥ 3 and p ≥ q ≥ 1 such that p+ q = d. Define

Jp,q =

(
1p 0

0 −
√

2 1q

)
Γ =

{
g ∈ SLd(Z[

√
2]) | gJp,qtg = Jp,q

}
G =

{
g ∈ SLd(R) | gJp,qtg = Jp,q

}
.

Then Γ < G is a uniform lattice.



CHAPTER 2

Ergodic group theory

In this chapter, we give an introduction to ergodic
group theory. We prove a dynamical dichotomy re-
sult for continuous isometric actions of SLd(R), d ≥ 2.
We also discuss unitary representation theory for lo-
cally compact groups in relation with ergodic theory.
Finally, we investigate the notion of amenability for
groups and group actions.

1. Ergodic theory

1.1. Topological dynamics. In this subsection, we give an introduc-
tion to topological dynamics and we prove a dynamical dichotomy result for
continuous isometric actions of SLd(R), d ≥ 2.

Let G be a locally compact group, X a Hausdorff topological space and
G y X a continuous action in the sense that the action map G × X →
X : (g, x) 7→ gx is continuous. For every x ∈ X, we denote by Gx =
{gx | g ∈ G} ⊂ X its G-orbit and by StabG(x) = {g ∈ G | gx = x} < G its
stabilizer subgroup (note that StabG(x) < G is closed subgroup). Denote
by G\X = {Gx | x ∈ X} the quotient space endowed with the quotient
topology. Then the quotient map p : X → G\X : x 7→ Gx is continuous and
open. In general, G\X behaves pathologically with respect to the quotient
topology.

Firstly, we investigate when the quotient space G\X is T0. A topological
space Z is said to be T0 if for all z1, z2 ∈ Z such that z1 6= z2, there exists
an open set U ⊂ Z such that z1 ∈ U and z2 /∈ U or z1 /∈ U and z2 ∈ U .
A subset Y ⊂ Z of a topological space is locally closed in Z if Y = F ∩ U
where F ⊂ Z is closed and U ⊂ Z is open.

Proposition 2.1. Let G be a locally compact group, X a Hausdorff
topological space and G y X a continuous action. Assume that for every
x ∈ X, the orbit Gx is locally closed in X. Then the quotient space G\X is
T0.

Proof. Denote by p : X → G\X the quotient map that is continuous
and open. Let x1, x2 ∈ X. Assume that p(x1) and p(x2) are not separated
by an open set of G\X. Let U ⊂ X be an open set such that x1 ∈ U .
Then p(U) ⊂ G\X is an open set such that p(x1) ∈ p(U). It follows that
p(x2) ∈ p(U) and so x2 ∈ p−1(p(U)) =

⋃
g∈G gU . This further implies

27
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that x1 ∈ Gx2 and so Gx1 ⊂ Gx2. Likewise, we have Gx2 ⊂ Gx1. Then
Gx1 = Gx2. Since Gx2 ⊂ X is locally closed, Gx2 is open in Gx2. Since
Gx1 is dense in Gx2, it follows that Gx1∩Gx2 6= ∅ and so Gx1 = Gx2. This
shows that X\G is T0. �

Secondly, we investigate when the quotient space G\X is Hausdorff.
We need to introduce some further terminology. We say that a Hausdorff
topological space Y is a K -space if for any subset C ⊂ Y , we have that C is
closed when C ∩K is closed for every compact subset K ⊂ Y . Examples of
Hausdorff K -spaces include locally compact spaces and metrizable spaces.
A continuous map f : X → Y is proper if f−1(K) ⊂ X is compact for every
compact subset K ⊂ Y .

Lemma 2.2. Let X be a Hausdorff topological space and Y a Hausdorff
topological K -space. Then any continuous proper map f : X → Y is closed.

Proof. Let f : X → Y be a continuous proper map. Let C ⊂ X be
a closed subset. Since Y is a K -space, in order to show that f(C) ⊂ Y is
closed, it suffices to show that f(C) ∩K is closed for every compact subset
K ⊂ Y . Let K ⊂ Y be a compact subset. Since f is proper, f−1(K) is
compact and so is f−1(K) ∩ C. Since f is continuous, f(f−1(K) ∩ C) =
f(C) ∩K is compact hence closed since Y is Hausdorff. �

We say that a continuous action Gy X is proper if the continuous map
G ×X : X ×X : (g, x) 7→ (x, gx) is proper. The next proposition provides
a sufficient condition for the quotient space G\X to be Hausdorff.

Proposition 2.3. Let G be a locally compact group, X a Hausdorff
topological space such that X×X is K -space and Gy X a proper continu-
ous action. Then the quotient space G\X is Hausdorff. Moreover, for every
x ∈ X, the orbit Gx ⊂ X is closed and the stabilizer subgroup StabG(x) < G
is compact.

Proof. Denote by p : X → G\X the quotient map that is continuous
and open. Write f : G×X → X ×X : (g, x) 7→ (x, gx). Since the map f is
proper, for every x ∈ X, StabG(x)×{x} = f−1({x, x}) ⊂ X×X is compact
and so the stabilizer subgroup StabG(x) < G is compact. Since the map f
is closed by Lemma 2.2, for every x ∈ X, f(G× {x}) = {x} ×Gx ⊂ X ×X
is closed and so Gx ⊂ X is closed.

Since the map f is closed by Lemma 2.2, f(G ×X) ⊂ X ×X is closed
and so its complement X ×X \ f(G×X) ⊂ X ×X is open. Since the map
p×p : X×X → G\X×G\X is open, (p×p)(X×X\f(G×X)) ⊂ G\X×G\X
is open. This further implies that the diagonal

∆ = {(z, z) | z ∈ G\X} = G\X ×G\X \ (p× p)(X ×X \ f(G×X))

is closed. Thus, the quotient space G\X is Hausdorff. �

In order to state the main result of this subsection, we introduce the
following terminology.
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Definition 2.4. Let G be a locally compact group. We say that G
satisfies the dynamical dichotomy for isometric actions if whenever G y
(X, d) is a continuous isometric action on a separable metric space, then
either there exists x ∈ X such that gx = x for every g ∈ G or the action
Gy X is proper.

The main result of this subsection shows that for every d ≥ 2, SLd(R)
satisfies the dynamical dychotomy for isometric actions. More generally, we
have the following result.

Theorem 2.5 (Bader–Gelander [BG14]). Any noncompact simple con-
nected real Lie group G satisfies the dynamical dichotomy for isometric ac-
tions.

We will prove Theorem 2.5 for G = SLd(R), d ≥ 2. First, we need to
prove some preliminary results that are also of independent interest. The
next easy result is commonly known as Mautner’s phenomenon. We refer
the reader to [BG14] for some historical background.

Lemma 2.6 (Mautner’s phenomenon). Let G be a locally compact group,
(X, d) a metric space and Gy X a continuous isometric action. Let (gn)n∈N
be a sequence of elements in G and h ∈ G such that limn gnhg

−1
n = e. Let

x ∈ X be a point for which limn gnx = x. Then hx = x.

Proof. We have

d(hx, x) = lim
n
d(hg−1

n x, g−1
n x) = lim

n
d(gnhg

−1
n x, x) = d(lim

n
gnhg

−1
n x, x) = 0.

Thus, hx = x. �

Let d ≥ 2. For all 1 ≤ a 6= b ≤ d and all t ∈ R, denote by Eab(t) ∈ SLd(R)
the elementary matrix defined by (Eab(t))ij = 1 if i = j, (Eab(t))ij = t if
i = a and j = b, (Eab(t))ij = 0 otherwise. We leave as an exercise to check
that SLd(R) is generated by {Eab(t) | 1 ≤ a 6= b ≤ d, t ∈ R}. For every
2 ≤ k ≤ d, regard SLk(R) < SLd(R) as the following subgroup:

SLk(R) ∼=
{(

A 0d−k,k
0k,d−k 1d−k,d−k

)
| A ∈ SLk(R)

}
< SLd(R).

For all 1 ≤ `1 < `2 ≤ d, denote by H`1,`2 < SLd(R) the (`1, `2)-copy of
SL2(R) in SLd(R) that consists of all matrices g ∈ SLd(R) such that g`1`1 =
α, g`1`2 = β, g`2`1 = γ, g`2`2 = δ, gii = 1 for all i 6= `1, `2, gij = 0 for all
i 6= j and {i, j} 6= {`1, `2} and such that(

α β
γ δ

)
∈ SL2(R).

Lemma 2.7. Let d ≥ 2. Let (X, dX) be a metric space and SLd(R) y
(X, dX) a continuous isometric action. Let x ∈ X be a H`1,`2-fixed point for
some 1 ≤ `1 < `2 ≤ d. Then x ∈ X is a global fixed point.
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Proof. Upon permuting the indices, we may assume that `1 = 1 and
`2 = 2. We proceed by induction over 2 ≤ k ≤ d. By assumption,
x ∈ X is a SL2(R)-fixed point. Assume that x is a SLk(R)-fixed point
for 2 ≤ k ≤ d − 1 and let us show that x is a SLk+1(R)-fixed point. Let
1 ≤ j ≤ k and t ∈ R. For every n ≥ 1, denote by gn ∈ SLk(R) < SLk+1(R)
any diagonal matrix such that (gn)ii = 1

n if i = j. Then a simple com-

putation shows that gnEj(k+1)(t)g
−1
n = Ej(k+1)(

t
n) → 1 as n → ∞ and

g−1
n E(k+1)j(t)gn = E(k+1)j(

t
n) → 1 as n → ∞. Since gnx = x for every

n ≥ 1, Lemma 2.6 implies that Ej(k+1)(t)x = x for every t ∈ R. Likewise,
we have E(k+1)j(t)x = x for every t ∈ R. Since SLk+1(R) is generated by
SLk(R) ∪ {Ej(k+1)(t), E(k+1)j(t) | 1 ≤ j ≤ k, t ∈ R}, it follows that x is a
SLk+1(R)-fixed point. By induction over 2 ≤ k ≤ d, it follows that x is a
SLd(R)-fixed point. �

Let d ≥ 2. Denote by K = SOd(R) < SLd(R) the special orthogonal
subgroup and observe that K < SLd(R) is compact. Define the subset
A+ ⊂ SLd(R) of diagonal matrices by

A+ = {diag(λ1, . . . , λd) | λ1 ≥ · · · ≥ λd > 0, λ1 · · ·λd = 1} ⊂ SLd(R)

and by A < SLd(R) the subgroup of diagonal matrices generated by A+.

Lemma 2.8 (Cartan decomposition). We have SLd(R) = K ·A+ ·K.

Proof. Let g ∈ SLd(R). By polar decomposition, we may write g =
k0h where k0 ∈ K and h ∈ SLd(R) is symmetric positive definite. By
diagonalization, there exists k2 ∈ K such that k2hk

−1
2 = a ∈ A+. Then

g = k1ak2 with k1 = k0k
−1
2 ∈ K. �

We now have all the tools to prove Theorem 2.5.

Proof of Theorem 2.5. Let d ≥ 2 and write G = SLd(R). Let
(X, dX) be a separable metric space and G y (X, dX) a continuous iso-
metric action. Assuming that the action G y X is not proper, we show
that there exists a global fixed point. Since G is second countable and X is
a separable metric space and since the map G×X → X×X : (g, x) 7→ (x, gx)
is not proper, there exist a sequence (gn)n∈N in G such that gn →∞ in G,
a sequence (xn)n∈N in X and x, y ∈ X such that limn(xn, gnxn) = (x, y) in
X×X. Using Lemma 2.8, there exist sequences (k1,n)n∈N and (k2,n)n∈N in K
and (an)n∈N in A+ such that gn = k1,nank2,n for every n ∈ N. Upon taking
a subsequence, we may further assume that k1,n → k1 in K and k2,n → k2

in K. Set x1 = k−1
1 y ∈ X and x2 = k2x ∈ X. Choose an increasing func-

tion ψ : N → N such that bn = aψ(n)a
−1
n → ∞ in G. Since G y (X, d)

is continuous and isometric, we have limn anx2 = x1, limn a
−1
n x1 = x2 and

limn bnx1 = x1.
For every n ∈ N, upon conjugating bn by an element inK and using again

the fact that K is compact, we may assume that bn = diag(λ1,n, . . . , λd,n) ∈
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A+ with λ1,n ≥ · · · ≥ λd,n and λ1,n · · ·λd,n = 1. Since bn → ∞, it follows

that
λ1,n
λd,n
→ +∞. A simple computation shows that for every t ∈ R,

b−1
n E1d(t)bn = E1d(

λd,n
λ1,n

t)→ 1 as n→∞.

Then Lemma 2.6 implies that E1d(t)x1 = x1 for every t ∈ R. Likewise, we
have Ed1(t)x1 = x1 for every t ∈ R. Then Lemma 2.7 further implies that
x1 ∈ X is a global fixed point. This finishes the proof of Theorem 2.5. �

1.2. Measurable dynamics. In this subsection, we assume that the
group G is locally compact second countable. We endow G with its σ-
algebra B(G) of Borel subsets. We fix a left invariant Haar measure mG on
G. Let X be a standard Borel space and denote by Prob(X) the standard
Borel space of all Borel probability measures on X. We say that the action
Gy X is Borel if the action map G×X → X : (g, x) 7→ gx is Borel. We say
that the action Gy X is tame if the quotient Borel space G\X is countably
separated. Recall that a Borel space Z is countably separated if there exists a
countable family (Un)n∈N of Borel subsets of Z that separates the points in
Z in the following sense: for every z1, z2 ∈ Z such that z1 6= z2, there exists
n ∈ N such that z1 ∈ Un and z2 /∈ Un or z1 /∈ Un and z2 ∈ Un. If the Borel
action G y X is tame, then the quotient Borel space G\X is standard by
Theorem A.1. We record the following consequence of Proposition 2.1.

Proposition 2.9. Let G be a locally compact second countable group,
X a Polish space and G y X a continuous action. Assume that for every
x ∈ X, the orbit Gx is locally closed in X. Then the Borel action G y X
is tame and the quotient Borel space G\X is standard.

Proof. By Proposition 2.1, the quotient space G\X is T0. Since X is
a Polish space, there is a countable basis of open sets that generates the
topology on G\X. Therefore, the Borel space G\X is countably separated
and so the Borel action G y X is tame and the quotient Borel space G\X
is standard by Theorem A.1. �

Let ν ∈ Prob(X) and assume that for every g ∈ G, the measures ν
and g∗ν are equivalent on X. In that case, we say that the action G y
(X, ν) is nonsingular. Recall that L∞(X, ν) = L1(X, ν)∗ so that L∞(X, ν) is
also endowed with the weak∗-topology. By [Ru91, Theorem 3.10], we may
identify L1(X, ν) with the space of all weak∗-continuous linear functionals
on L∞(X, ν). Any nonsingular action G y (X, ν) gives rise to an action
α : Gy L∞(X, ν) defined by the formula

∀g ∈ G, ∀F ∈ L∞(X, ν), α(g)(F ) = F ◦ g−1.

The action map G×L∞(X, ν)→ L∞(X, ν) : (g, F ) 7→ α(g)(F ) is separately
continuous when L∞(X, ν) is endowed with the weak∗-topology. This follows
from the fact that the action Gy L1(X, ν) is ‖·‖1-continuous. We will then
simply say that the action α : Gy L∞(X, ν) is weak∗-continuous. We refer
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the reader to [Ta03, Proposition XIII.1.2] for further details. For every
Borel probability measure η ∈ Prob(X) such that η ≺ ν, me may regard η ∈
L1(X, ν) and we simply denote by η : L∞(X, ν) → C : f 7→

∫
X f(x) dη(x)

the corresponding weak∗-continuous positive unital linear functional. When
the context is clear, we will often simply write L∞(X) = L∞(X, ν).

In these notes, we will be particularly interested in nonsingular actions
arising from homogeneous spaces.

Theorem 2.10. Let G be a locally compact second countable group and
H < G a closed subgroup. Then the quotient space G/H = {gH | g ∈ G} en-
dowed with the quotient topology is Hausdorff locally compact second count-
able. The left translation action G y G/H is continuous and transitive.
Moreover, G/H carries a unique G-invariant measure class.

Proof. Simply denote by p : G → G/H : g 7→ gH the quotient map.
Firstly, we show that the right multiplication action H y G is proper.
Indeed, consider the continuous map f : H×G→ G×G : (h, g) 7→ (g, gh−1).
For every compact subset K ⊂ G × G, we may choose a compact subset
L ⊂ G such that K ⊂ L× L. Then we have

f−1(K) ⊂ f−1(L× L) ⊂ L−1L× L

and so f−1(K) ⊂ H ×G is compact. Then Proposition 2.3 implies that the
quotient space G/H = {gH | g ∈ G} is Hausdorff. Since the quotient map
p : G→ G/H is continuous and open and since G is locally compact second
countable, it follows that G/H is locally compact second countable.

Next, define the action map a : G ×G/H → G/H : (g, c) 7→ gc. Recall
that the multiplication map m : G × G → G is continuous. Since the map
idG×p : G×G→ G×G/H : (g, h) 7→ (g, hH) is continuous and open, the
commutative diagram

G×G G

G×G/H G/H

m

idG×p p

a

shows that the action map a : G×G/H → G/H is continuous.
Finally, we show that G/H carries a unique G-invariant measure class.

Fix a Borel probability measure µ ∈ Prob(G) that is equivalent to the left
Haar measure mG and set ν = p∗µ ∈ Prob(G/H). For every g ∈ G, since
g∗µ ∼ µ, we have g∗ν ∼ ν. This implies that the measure class of ν is
G-invariant. Let now η ∈ Prob(G/H) be a Borel probability measure such
that g∗η ∼ η for every g ∈ G. We prove the following claim.

Claim 2.11. For every Borel function f : G/H → R+, the following
assertions are equivalent:

(i) η(f) = 0.
(ii) For every c ∈ G/H, we have

∫
G f(gc) dmG(g) = 0.
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Proof of Claim 2.11. (i) ⇒ (ii) For every g ∈ G, since g∗η ∼ η and
since η(f) = 0, we have∫

G/H
f(gc) dη(c) =

∫
G/H

f(c)
dg∗η

dη
(c) dη(c) = 0

Applying Fubini’s theorem, we have∫
G/H

∫
G
f(gc) dmG(g) dη(c) =

∫
G

∫
G/H

f(gc) dη(c) dmG(g) = 0.

This implies that there exists c ∈ G/H such that
∫
G f(gc) dmG(g) = 0.

Then for every h ∈ G, we have∫
G
f(ghc) dmG(g) = ∆G(h−1)

∫
G
f(gc) dmG(g) = 0.

Since G y G/H is transitive, this shows that for every c ∈ G/H, we have∫
G f(gc) dmG(g) = 0.

(ii)⇒ (i) Applying Fubini’s theorem, we have∫
G

∫
G/H

f(gc) dη(c) dmG(g) =

∫
G/H

∫
G
f(gc) dmG(g) dη(c) = 0.

This implies that there exists g ∈ G such that
∫
G/H f(gc) dη(c) = 0. Since

g−1
∗ η ∼ η, it follows that

η(f) =

∫
G/H

f(c) dη(c) =

∫
G/H

f(gc)
dg−1
∗ η

dη
(c) dη(c) = 0.

This finishes the proof of the claim. �

Observe that item (ii) in Claim 2.11 does not depend on the choice of
the G-quasi-invariant measure η ∈ Prob(G/H). Therefore, for every Borel
function f : G/H → R+, we have η(f) = 0 if and only if ν(f) = 0. This
shows that η ∼ ν. Thus, there is a unique G-invariant measure class on
G/H. �

Next, exploiting the structure of homogeneous space, we record the fol-
lowing useful fact due to Effros (see e.g. [Zi84, Lemma 2.1.15]).

Proposition 2.12. Let G be a locally compact second countable group,
X a Polish space and G y X a continuous action. For every x ∈ X, the
following assertions are equivalent:

(i) The orbit Gx is locally closed in X.
(ii) The continuous map G/ StabG(x) → Gx : g StabG(x) 7→ gx is a

homeomorphism when G/ StabG(x) is endowed with the quotient
topology and Gx ⊂ X is endowed with the relative topology.

Proof. Set Y = Gx ⊂ X. Then Y is a Polish space, G y Y is
continuous and Gx is dense in Y . Since StabG(x) < G is a closed subgroup,
Theorem 2.10 implies that the homogeneous space G/ StabG(x) endowed
with the quotient topology is Hausdorff locally compact second countable.
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(i) ⇒ (ii) The map ζ : G/ StabG(x) → Gx : g StabG(x) 7→ gx is con-
tinuous and bijective. In order to prove that ζ : G/ StabG(x) → Gx is a
homeomorphism, it suffices to prove that ζ : G/ StabG(x) → Gx is open.
Thus, it suffices to prove that the orbit map G→ Gx : g 7→ gx is open. Let
V ⊂ G be an open neighborhood of e ∈ G. Choose a symmetric compact
neighborhood U ⊂ G of e ∈ G such that U2 ⊂ V . We claim that Ux has
nonempty interior. Indeed, choose a countable dense subset {gn | n ∈ N} of
G and observe that

⋃
n∈N gnU = G. Then

⋃
n∈N gnUx = Gx. Since Gx < Y

is open and since for every n ∈ N, gnUx is compact hence closed, Baire’s
property implies that there exists n ∈ N such that gnUx has nonempty in-
terior. Thus, Ux has nonempty interior. Choose u ∈ U such that Ux is a
neighborhood of ux. Then u−1Ux is a neighborhood of x ∈ X and so V x is
a neighborhood of x ∈ X. This shows that the orbit map G → Gx is open
and so ζ : G/ StabG(x)→ Gx is a homeomorphism.

(ii)⇒ (i) SinceG/ StabG(x) is a Hausdorff locally compact second count-
able space and since the map G/ StabG(x) → Gx is a homeomorphism, it
follows that Gx satisfies Baire’s property with respect to the relative topol-
ogy. Since G is σ-compact, there exists a sequence of compact subsets
Kn ⊂ G such that G =

⋃
n∈NKn. Then Gx =

⋃
n∈NKnx and for every

n ∈ N, Knx ⊂ Gx is compact hence closed. Then there exists n ∈ N such
that Knx has a nonempty interior with respect to the relative topology. In
particular, there exists an open set V ⊂ Y such that V ∩Gx ⊂ Knx. Since
Gx ⊂ Y is dense and since V ⊂ Y is open, we have

V = V ∩Gx ⊂ V ∩Gx ⊂ Knx.

This further implies that Gx = GV and so Gx ⊂ Y is open. �

More generally, we state the following characterization due to Effros (see
[Zi84, Theorem 2.14] for a proof).

Theorem 2.13. Let G be a locally compact second countable group, X
a Polish space and G y X a continuous action. The following assertions
are equivalent:

(i) For every x ∈ X, the orbit Gx is locally closed in X.
(ii) For every x ∈ X, the map G/ StabG(x) → Gx : g StabG(x) 7→ gx

is a homeomorphism.
(iii) The Borel action Gy X is tame.

Let now G y (X, ν) be a nonsingular action. Let Y ⊂ X be a mea-
surable subset. We say that Y ⊂ X is G-invariant if for every g ∈ G, we
have ν(gY4Y ) = 0. Let f : X → C be a measurable map. We say that
f : X → C is G-invariant if for every g ∈ G and ν-almost every x ∈ X,
we have f(gx) = f(x). The next lemma shows that a G-invariant measur-
able subset (resp. function) coincides ν-almost everywhere with a strictly
G-invariant measurable subset (resp. function).
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Lemma 2.14. Let G y (X, ν) be a nonsingular action. The following
assertions hold:

(i) For any G-invariant measurable subset Y ⊂ X, there is a strictly
G-invariant measurable subset Z ⊂ X such that ν(Y4Z) = 0.

(ii) For any G-invariant measurable function f : X → C, there is a
strictly G-invariant measurable function F : X → C such that
ν({f 6= F}) = 0.

Proof. Since the proofs of items (i) and (ii) are analogous, we only
prove item (i). Fix a left invariant Haar measure mG on G. By assumption
and using Fubini’s theorem, the measurable subset

X0 =
{
x ∈ X | G→ [0, 1] : g 7→ 1Y (g−1x) is mG-a.e. constant

}
is conull in X. For every x ∈ X0, denote by f(x) the unique essential value of
the measurable function G→ [0, 1] : g 7→ 1Y (g−1x). For every x ∈ X \X0,
set f(x) = 0. Note that f(X) ⊂ {0, 1}. Fubini’s theorem implies that
the function f : X → [0, 1] is measurable and f(x) = 1Y (x) for ν-almost
every x ∈ X. For every x ∈ X0 and every h ∈ G, the measurable function
G → [0, 1] : g 7→ 1Y (g−1h−1x) is mG-almost everywhere constant, hence
h−1x ∈ X0 and f(h−1x) = f(x). This further implies that X0 ⊂ X is strictly
G-invariant and f is strictly G-invariant in the sense that f(g−1x) = f(x)
for every g ∈ G and every x ∈ X. Set Z = {x ∈ X | f(x) = 1}. Then Z ⊂ X
is a strictly G-invariant measurable subset such that ν(Y4Z) = 0. �

Proposition 2.15. Let G y (X, ν) be a nonsingular action. The fol-
lowing assertions are equivalent:

(i) Every G-invariant measurable subset Y ⊂ X is null or conull.
(ii) Every G-invariant measurable function f : X → C is ν-almost

everywhere constant.

Proof. (i) ⇒ (ii) By contraposition, assume that there exists a G-
invariant measurable function f : X → C that is not ν-almost everywhere
constant. Upon taking the real or imaginary part of f , we may assume
that f(X) ⊂ R. Next, upon taking f+ = max(f, 0) or f− = max(−f, 0),
we may further assume that f(X) ⊂ R+. For every t > 0, define the
G-invariant measurable subset Xt = {x ∈ X | f(x) ≥ t}. By Fubini’s
theorem, the function R∗+ → R+ : t 7→ ν(Xt) is measurable, nonincreasing

and satisfies
∫
X f(x) dν(x) =

∫ +∞
0 ν(Xt) dt. We claim that there exists

t > 0 such that 0 < ν(Xt) < 1. Indeed, otherwise there would exist s > 0
such that ν(Xt) = 0 for every t > s and ν(Xt) = 1 for every t ≤ s. This
would imply that f = s ν-almost everywhere, a contradiction. Therefore,
there exists t > 0 such that 0 < ν(Xt) < 1. This shows the existence of a
G-invariant measurable subset Y = Xt ⊂ X that is neither null nor conull.

(ii) ⇒ (i) Let Y ⊂ X be a G-invariant measurable subset. Then the
measurable function f = 1Y is G-invariant whence ν-almost everywhere
constant. If f = 0 ν-almost everywhere, then Y ⊂ X is null. If f = 1
ν-almost everywhere, then Y ⊂ X is conull. �
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Definition 2.16. We say that the nonsingular action Gy (X, ν) is

• ergodic if G y (X, ν) satisfies one of the equivalent conditions in
Proposition 2.15.
• doubly ergodic if the diagonal action Gy (X×X, ν⊗ν) is ergodic.

Let Z be a standard Borel space and Gy Z a Borel action. Let f : X →
Z be a measurable map. We say that f is G-equivariant if for every g ∈ G
and ν-almost every x ∈ X, we have f(gx) = gf(x). The next lemma shows
that any G-equivariant measurable map coincides ν-almost everywhere with
a strictly G-equivariant measurable map.

Lemma 2.17. For any G-equivariant measurable map f : X → Z, there
is a conull strictly G-invariant measurable subset X0 ⊂ X and a strictly
G-equivariant measurable map F : X0 → Z such that f = F ν-almost
everywhere.

Proof. Fix a left invariant Haar measure mG on G. We may regard
Z ⊂ [0, 1] as a Borel subset. By assumption and using Fubini’s theorem, the
measurable subset

X0 =
{
x ∈ X | G→ Z : g 7→ g−1f(gx) is mG-a.e. constant

}
is conull in X. For every x ∈ X0, denote by F (x) the unique essential
value of the measurable function G→ Z : g 7→ g−1f(gx). Fubini’s theorem
implies that the function F : X0 → Z is measurable and f = F ν-almost
everywhere. For every x ∈ X0 and every h ∈ G, the measurable function
G→ Z : g 7→ (gh)−1f(ghx) is mG-almost everywhere constant, hence hx ∈
X0 and h−1F (hx) = F (x). This further implies that X0 ⊂ X is strictly
G-invariant and F : X0 → Z is strictly G-equivariant in the sense that
F (gx) = gF (x) for every g ∈ G and every x ∈ X0. �

The following terminology due to Bader–Furman [BF14] will be crucial
in these notes.

Definition 2.18 (Metric ergodicity). We say that the nonsingular ac-
tion G y (X, ν) is metrically ergodic if for every separable metric space
(Z, d) and every continuous isometric actionGy (Z, d), everyG-equivariant
measurable map f : X → Z is ν-almost everywhere constant.

One of the main examples of metrically ergodic actions arise from ho-
mogeneous spaces associated with locally compact groups satisfying the dy-
namical dichotomy for isometric ations.

Proposition 2.19. Let G be a locally compact second countable group
satisfying the dynamical dichotomy for isometric ations. Let H < G be
a noncompact closed subgroup. Then the action G y G/H is metrically
ergodic.

Proof. Let Gy (Z, d) be a continuous isometric action on a separable
metric space. Let f : G/H → Z be a G-equivariant measurable map.



1. ERGODIC THEORY 37

By Lemma 2.17 and since G y G/H is transitive, we may assume that
f : G/H → Z is strictly G-equivariant. Set z = f(H) ∈ Z. For every
g ∈ G, we have f(gH) = gf(H) = gz so that f(G/H) = Gz. Moreover, for
every h ∈ H, we have hz = f(hH) = f(H) = z. Applying the dynamical
dichotomy to the continuous isometric action Gy (Gz, d) and since H < G
is noncompact and H < StabG(z), it follows that StabG(z) = G. Then for
every g ∈ G, we have f(gH) = gf(H) = gz = z and so f : G/H → Z is
constant. This shows that Gy G/H is metrically ergodic. �

Next, we show that metrically ergodic actions are stable under taking
restrictions to lattices.

Proposition 2.20. Let G be a locally compact second countable group
and Γ < G a lattice. Then for any metrically ergodic action G y (X, ν),
the restriction Γ y (X, ν) is metrically ergodic.

Proof. Let (Z, dZ) be a separable metric space and Γ y (Z, dZ) an
isometric action. Let f : X → Z be a Γ-equivariant measurable map. We
need to show that f is ν-almost everywhere constant.

In order to do so, we define the induced metric space (Z , dZ ) as fol-
lows. As usual, denote by mG a Haar measure on G. Denote by mG/Γ the
unique G-invariant Borel probability measure on G/Γ. Upon replacing dZ
by min(dZ , 1), we may assume that dZ is bounded on Z. Define Z to be the
space of all mG-equivalence classes of measurable maps F : G→ Z that are
right Γ-equivariant in the sense that for mG-almost every g ∈ G and every
γ ∈ Γ, we have F (gγ−1) = γF (g). Observe that for all F1, F2 ∈ Z , the
measurable function G → R+ : g 7→ dZ(F1(g), F2(g)) is right Γ-invariant.
We may then endow the space Z with the metric dZ defined by

∀F1, F2 ∈ Z , dZ (F1, F2) =

∫
G/Γ

dZ(F1(g), F2(g)) dmG/Γ(gΓ).

Then (Z , dZ ) is a separable metric space. Define the action G y Z by
gF : G → Z : h 7→ F (g−1h) for every g ∈ G and every F ∈ Z . We prove
the following claim.

Claim 2.21. The action Gy (Z , dZ ) is continuous and isometric.

Proof of Claim 2.21. It is plain to see that Gy (Z , dZ ) is isomet-
ric. It remains to prove that Gy (Z , dZ ) is continuous. It suffices to prove
that for every F ∈ Z , the map G → R+ : g 7→ dZ (gF, F ) is continuous at
e ∈ G.

Let F ∈ Z . Fubini’s theorem implies that the map G → R+ : g 7→
dZ (gF, F ) is measurable. Let ε > 0 and set B = {g ∈ G | dZ (gF, F ) < ε/2}.
Then B ⊂ G is a measurable subset such that B−1 = B and B2 = BB−1 ⊂
{g ∈ G | dZ (gF, F ) < ε}. Since Z is separable, there exists a sequence
(gn)n∈N in G such that {gnF | n ∈ N} is dense in {gF | g ∈ G}. This
implies that

⋃
n∈N gnB = G and so mG(B) > 0. Since G is σ-compact,

upon replacing B by B ∩ K for a suitable symmetric compact subset, we
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may further assume that B = B−1, B ⊂ K and 0 < mG(B) < +∞. Then
1B ∈ L2(G,B(G),mG) and ϕ = 1B ∗1B ∈ Cc(G). Since ϕ(e) = mG(B) > 0,
the subset U = ϕ−1(0,+∞) is open, e ∈ U and U ⊂ B2 ⊂ {g ∈ G |
dZ (gF, F ) < ε}. This shows that the map G → R+ : g 7→ dZ (gF, F ) is
continuous at e ∈ G. �

We now have all the tools to show that f is ν-almost everywhere con-

stant. Define the G-equivariant measurable map f̂ : X → Z : x 7→(
g 7→ f(g−1x)

)
. Since G y (X, ν) is metrically ergodic, it follows that

f̂ is ν-almost everywhere constant. Then there exists F ∈ Z such that

f̂(x) = F for ν-almost every x ∈ X. Fubini’s theorem implies that there
exists g ∈ G such that f(g−1x) = F (g) for ν-almost every x ∈ X. Thus,
f : X → Z is ν-almost everywhere constant. �

The following proposition clarifies the relations between the various no-
tions of ergodicity we have introduced so far.

Proposition 2.22. Any doubly ergodic action is metrically ergodic. Any
metrically ergodic action is ergodic.

Proof. It is obvious that any metrically ergodic action is ergodic. Thus,
we only prove that any doubly ergodic action is metrically ergodic. Let Gy
(X, ν) be a doubly ergodic action. Let Gy (Z, d) be a continuous isometric
action on a separable metric space. Let f : X → Z be a G-equivariant
measurable map. Define the G-invariant measurable map X × X → R+ :
(x, y) 7→ d(f(x), f(y)). Since G y (X, ν) is doubly ergodic, there exists
α ≥ 0 such that d(f(x), f(y)) = α for ν ⊗ ν-almost every (x, y) ∈ X × X.
We claim that α = 0. Indeed, otherwise assume that α > 0. Choose an
essential value z ∈ Z of the measurable f : X → Z. Denote by B(z, α/2)
the open ball in Z of center z and radius α/2. Define the measurable subset
U = f−1(B(z, α/2)) ⊂ X and observe that ν(U) > 0. By the triangle
inequality, for every (x, y) ∈ U × U , we have d(f(x), f(y)) ≤ d(f(x), z) +
d(z, f(y)) < α/2 + α/2 = α. This is a contradiction. Thus α = 0. By
Fubini’s theorem, we may choose x ∈ X such that f(y) = f(x) for ν-almost
every y ∈ X. Thus, f is ν-almost everywhere constant. This shows that
Gy (X, ν) is metrically ergodic. �

In the next section, we will provide a characterization of doubly ergodic
probability measure preserving (pmp) actions and we will prove that double
ergodicity and metric ergodicity are equivalent for pmp actions.

2. Unitary representations

2.1. Generalities. Let (H , 〈 · , · 〉) be a (complex) Hilbert space. We
always assume that 〈 · , · 〉 is conjugate linear in the second variable. Denote
by B(H ) the unital Banach ∗-algebra of all bounded linear operators T :
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H → H . Besides the norm topology on B(H ) given by the supremum
norm

∀T ∈ B(H ), ‖T‖∞ = sup {‖Tξ‖ | ξ ∈H , ‖ξ‖ ≤ 1} ,
we can define two weaker locally convex Hausdorff topologies on B(H ) as
follows.

• The strong operator topology on B(H ) is defined as the initial topol-
ogy on B(H ) that makes the maps B(H )→H : T 7→ Tξ contin-
uous for all ξ ∈H .
• The weak operator topology on B(H ) is defined as the initial topol-

ogy on B(H ) that makes the maps B(H ) → C : T 7→ 〈Tξ, η〉
continuous for all ξ, η ∈H .

Observe that when H is separable, both strong and weak operator topolo-
gies are metrizable on the unit ball of B(H ) denoted by Ball(B(H )). More-
over, Ball(B(H )) is weakly compact. We also denote by

U (H ) = {u ∈ B(H ) | u∗u = uu∗ = 1H }

the group of unitary operators on H . We simply write 1 = 1H . On U (H ),
strong and weak operator topologies coincide. Then U (H ) is a topological
group but U (H ) need not be locally compact. When H is separable,
U (H ) is a Polish group.

Choose an orthonormal basis (ei)i on H and denote by

Tr : B(H )+ → R+ : T 7→
∑
i∈I
〈Teiei〉

the associated trace. Denote by

HS(H ) = {T ∈ B(H ) | Tr(T ∗T ) < +∞}

the space of Hilbert–Schmidt operators on H . Then the space HS(H )
endowed with the inner product defined by 〈S, T 〉HS = Tr(T ∗S) for all S, T ∈
HS(H ) is a Hilbert space. Denote by H the conjugate Hilbert space and
consider the tensor product Hilbert space H ⊗H . Then the mapping

H ⊗alg H → HS(H ) : ξ ⊗ η 7→ 〈 · , η〉 ξ

extends to a well-defined unitary operator W : H ⊗H → HS(H ). More-
over, for every u ∈ U (H ) and every ζ ∈ H ⊗ H , we have W (uζ) =
uW (ζ)u∗.

Definition 2.23. Let G be a locally compact group. We say that the
mapping π : G→ U (Hπ) is a strongly continuous unitary representation if
the following conditions hold:

(i) π : G→ U (Hπ) is a group homomorphism.
(ii) π : G → U (Hπ) is strongly continuous, meaning that π is a con-

tinuous map when U (Hπ) is endowed with the strong operator
topology as above.
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When π : G → U (Hπ) only satisfies condition (i), we simply say that
π is a unitary representation. When G is discrete, condition (ii) is trivially
satisfied.

The next result shows that in order to prove that the unitary represen-
tation π : G→ U (Hπ) is strongly continuous, it is enough to show that the
coefficients of π are measurable functions.

Lemma 2.24. Let G be a locally compact group, Hπ a separable Hilbert
space and π : G → U (Hπ) a unitary representation. Assume that for all
ξ, η ∈ Hπ, the map ϕξ,η : G→ C : g 7→ 〈π(g)ξ, η〉 is measurable. Then π is
strongly continuous.

Proof. Let ξ ∈ Hπ. It suffices to show that the map G → Hπ :
g 7→ π(g)ξ is continuous at e ∈ G. Let Q ⊂ G be a symmetric compact
neighborhood of e ∈ G. Consider the compactly generated open subgroup
H =

⋃
n≥1Q

n < G. It further suffices to show that the map H → Hπ :

g 7→ π(g)ξ is continuous at e ∈ H. Thus, we may as well assume that G is
σ-compact.

As usual, we denote by mG a left invariant Haar measure on G. Let
ε > 0 and set B = {g ∈ G | ‖π(g)ξ − ξ‖ < ε/2}. Then B ⊂ G is a
measurable subset since B = {g ∈ G | 2<(〈π(g)ξ, ξ〉) > 2‖ξ‖2 − ε2/4}.
Moreover, we have B−1 = B and B2 = BB−1 ⊂ {g ∈ G | ‖π(g)ξ − ξ‖ < ε}.
Since π(G)ξ ⊂ Hπ is separable, there exists a sequence (gn)n∈N in G such
that (π(gn)ξ)n∈N is dense in π(G)ξ. This implies that

⋃
n∈N gnB = G and

so mG(B) > 0. Since G is σ-compact, up to replacing B by B ∩ K for a
suitable symmetric compact subset, we may further assume that B = B−1,
B ⊂ K and 0 < mG(B) < +∞. Then 1B ∈ L2(G,B(G),mG) and ϕ =
1B ∗ 1B ∈ Cc(G). Since ϕ(e) = mG(B) > 0, the subset U = ϕ−1(0,+∞) is
open, e ∈ U and U ⊂ BB ⊂ {g ∈ G | ‖π(g)ξ − ξ‖ < ε}. �

Definition 2.25. Let G be a locally compact group and π : G →
U (Hπ) a strongly continuous unitary representation. We say that

• π has invariant vectors and we write 1G ⊂ π if the subspace of
π(G)-invariant vectors

(Hπ)G = {ξ ∈Hπ | ∀g ∈ G, π(g)ξ = ξ}
is nonzero. Otherwise, we say that π is ergodic and we write 1G 6⊂ π.
• π is weakly mixing if there exists a net (gi)i in G such that π(gi)→ 0

weakly as gi →∞.

Whenever π : G → U (Hπ) is a strongly continuous unitary represen-
tation, we consider the strongly continuous unitary representation π ⊗ π :
G→ U (H ⊗H ) defined by

∀g ∈ G,∀ξ, η ∈H , (π ⊗ π)(g)(ξ ⊗ η) = π(g)ξ ⊗ π(g)η.

We prove the following useful characterization of weakly mixing unitary
representations.
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Proposition 2.26. Let G be a locally compact group and π : G →
U (Hπ) a strongly continuous unitary representation. The following asser-
tions are equivalent:

(i) π is weakly mixing.
(ii) π has no nonzero finite dimensional subrepresentation.

(iii) π ⊗ π is ergodic.

Proof. (i) ⇒ (ii) By contraposition, assume that there is a nonzero
finite dimensional subrepresentation ρ ⊂ π. Denote by K ⊂ H the finite
dimensional π(G)-invariant subspace associated with ρ ⊂ π. Let (gi)i be
a net in G. Since K is finite dimensional, the unitary group U (K ) is
compact and so there exist a subnet (hj)j of (gi)i and v ∈ U (K ) such
that ρ(hj) → v in U (K ) as j → ∞. In particular, the net (π(gi))i cannot
converge to 0 weakly. Thus, π is not weakly mixing.

(ii)⇒ (iii) By contraposition, assume that there is a nonzero (π⊗π)(G)-
invariant vector ζ ∈H ⊗H . Consider the nonzero Hilbert–Schmidt oper-
ator W (ζ) ∈ HS(H ) which satisfies W (ζ) ∈ π(G)′. Set T = W (ζ)∗W (ζ) ∈
π(G)′ and note that T ∗ = T , T ≥ 0 and 0 < Tr(T ) < +∞. Choose ε > 0
small enough so that the spectral projection p = 1[ε,ε−1](T ) ∈ π(G)′ is

nonzero. Since ε p ≤ Tp ≤ T , we have Tr(p) ≤ ε−1 Tr(T ) < +∞. Then
p(H ) ⊂H is a nonzero finite dimensional π(G)-invariant subspace. Thus,
π has a nonzero finite dimensional subrepresentation.

(iii)⇒ (i) By contraposition, assume that π is not weakly mixing. Then
there exist ε > 0 and a finite subset F ⊂H such that

∀g ∈ G,
∑
ξ,η∈F

|〈π(g)ξ, η〉|2 ≥ ε.

Set ζ =
∑

ξ∈F ξ ⊗ ξ ∈H ⊗H . Then we have

(2.1) ∀g ∈ G, 〈(π(g)⊗ π(g))ζ, ζ〉 =
∑
ξ,η∈F

|〈π(g)ξ, η〉|2 ≥ ε.

Consider the closed convex subset C = co{(π(g)⊗π(g))ζ | g ∈ G} ⊂H ⊗H
and denote by c ∈ C its unique circumcenter. Since C is (π ⊗ π)(G)-
invariant, it follows that c ∈ C is (π ⊗ π)(G)-invariant. Moreover, (2.1)
implies that c 6= 0. Thus, π ⊗ π is not ergodic. �

For every i ∈ {1, 2}, let πi : G → U (Hπi) be a strongly continuous
unitary representation. We say that π1 and π2 are unitarily equivalent if
there exists a unitary operator U : Hπ1 → Hπ2 such that for every g ∈ G,
we have π2(g) = Uπ1(g)U∗. In this situation, we will identify π1 with π2.

2.2. Examples of unitary representations. Let G be a locally com-
pact group.

The left regular representation λG. Let mG be a left invariant
Haar measure on G and simply denote by L2(G) = L2(G,B(G),mG) the
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corresponding Hilbert space of L2-integrable functions on G. Define the left
regular representation λG : G→ U (L2(G)) by the formula

∀g ∈ G, ∀ξ ∈ L2(G), (λG(g)ξ)(h) = ξ(g−1h).

The left regular representation λG : G→ U (L2(G)) is a strongly continuous
unitary representation. This follows from the well known facts that the
subspace Cc(G) of compactly supported continuous functions on G is ‖ · ‖2-
dense in L2(G) and the left translation action λ : G y Cc(G) is ‖ · ‖∞-
continuous (see Lemma 1.8).

Proposition 2.27. Keep the same notation as above. Then 1G ⊂ λG if
and only if G is compact.

Proof. If G is compact, then the left invariant Haar measure mG is
finite. This implies that the constant function 1G belongs to L2(G) and
is λG(G)-invariant. Conversely, assume that there exists a nonzero λG(G)-
invariant vector ξ ∈ L2(G).

Claim 2.28. There exists a σ-compact open subgroup H < G such that
ξ = 1Hξ.

Indeed, define the measurable subsets B = {h ∈ G | ξ(h) 6= 0} and
Bn = {h ∈ G | |ξ(h)| ≥ n−1} for every n ≥ 1. Then B =

⋃
n≥1Bn and

mG(Bn) < +∞ for every n ≥ 1. By regularity, for every n ≥ 1, there exists
an open set Un ⊂ G such that Bn ⊂ Un and mG(Un) < +∞. To prove
the claim, it suffices to show that every open set U ⊂ G with finite Haar
measure is contained in a σ-compact open subgroup H < G.

Let U ⊂ G be a nonempty open set such that mG(U) < +∞. Let L < G
be a σ-compact open subgroup. Since mG(U) < +∞, the set Λ = {gL ∈
G/L | U ∩ gL 6= ∅} is at most countable. Letting H < G be the subgroup
generated by L and Λ, we have that U ⊂ H and H < G is σ-compact and
open. This finishes the proof of Claim 2.28.

Using Claim 2.28 and the assumption, for every g ∈ G, we have

1Hξ = ξ = λG(g)ξ = λG(g)(1Hξ) = 1gHξ = 1H∩gHξ.

Since ξ 6= 0, we have mG(H ∩ gH) > 0 for every g ∈ G. It follows that
gH = H for every g ∈ G and hence H = G. This shows that G is σ-
compact.

We may now apply Fubini’s theorem. Indeed, since for every g ∈ G and
mG-almost every h ∈ G, we have ξ(g−1h) = ξ(h), Fubini’s theorem implies
that there exists h ∈ G such that for mG-almost every g ∈ G, we have
ξ(g−1h) = ξ(h). This further implies that ξ is essentially constant. If we
denote by c > 0 the essential value of |ξ|2, we obtain c·mG(G) = ‖ξ‖2 < +∞
and so mG(G) < +∞. Then G is compact by Proposition 1.6. �

The Koopman representation κ. Let G be a locally compact second
countable group and (X,B, ν) a standard probability space. We simply
write (X, ν) in what follows. We endow G with its σ-algebra B(G) of Borel
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subsets. Let G y (X, ν) be a probability measure preserving (pmp) action
meaning that the action map G×X → X : (g, x) 7→ gx is measurable (where
we endow G×X with the product σ-algebra B(G)⊗B) and that g∗ν = ν for
every g ∈ G. Denote by L2(X, ν) the Hilbert space of L2-integrable functions
on X. Since (X, ν) is a standard probability space, L2(X, ν) is separable (see
e.g. [Zi84, Theorem A.11]). Define the Koopman representation κ : G →
U (L2(X, ν)) associated with the pmp action Gy (X, ν) by the formula

∀g ∈ G, ∀ξ ∈ L2(X, ν), (κ(g)ξ)(x) = ξ(g−1x).

The Koopman representation κ : G→ U (L2(X, ν)) is a strongly continuous
unitary representation. This follows from Lemma 2.24 after noticing that
for all ξ, η ∈ L2(X, ν), the map

ϕξ,η : G→ C : g 7→ 〈κ(g)ξ, η〉 =

∫
X
ξ(g−1x)η(x) dν(x)

is measurable thanks to Fubini’s theorem. The constant function 1X is
κ(G)-invariant. For this reason, it is natural to consider the restriction of
the Koopman representation to the orthogonal complement L2(X, ν)0 =
L2(X, ν)	C1X that we denote by κ0 : G→ U (L2(X, ν)0). By Proposition
2.15, we obtain the following useful characterization of ergodicity.

Proposition 2.29. Let Gy (X, ν) be a pmp action. Then Gy (X, ν)
is ergodic if and only if κ0 : G→ U (L2(X, ν)) is ergodic.

Next, we say that the pmp action G y (X, ν) is weakly mixing if κ0 :
G→ U (L2(X, ν)) is weakly mixing. Using the Koopman representation, we
obtain the following characterization of weakly mixing pmp actions.

Proposition 2.30. Let G y (X, ν) be a pmp action. The following
assertions are equivalent:

(i) Gy (X, ν) is weakly mixing.
(ii) Gy (X, ν) is doubly ergodic.

(iii) Gy (X, ν) is metrically ergodic.

Proof. The equivalence (i)⇔ (ii) follows by applying Proposition 2.26
to π = κ0. By Proposition 2.22, we already know that (ii)⇒ (iii).

It remains to prove that (iii) ⇒ (ii). Consider the separable metric
space (Z, d) = (L2(X, ν), ‖ · ‖2) and the continuous isometric action κ : Gy
(L2(X, ν), ‖ · ‖2). Let Y ⊂ X × X be a nonnull G-invariant measurable
subset. By Lemma 2.14(i), we may assume that Y is strictly G-invariant.
For every x ∈ X, denote by Yx ⊂ X the measurable subset defined by
Yx = {y ∈ X | (x, y) ∈ Y } and set ξx = 1Yx ∈ L2(X, ν). Then the
map f : X → L2(X, ν) : x 7→ ξx is measurable and G-equivariant. Since
G y (X, ν) is metrically ergodic, it follows that f : X → L2(X, ν) is ν-
almost everywhere constant. Choose ξ ∈ L2(X, ν) so that ξ = ξx = 1Yx
for ν-almost every x ∈ X. Since (ν ⊗ ν)(Y ) > 0, we have ξ 6= 0. Since
Gy (X, ν) is ergodic and since ξ is κ(G)-invariant, it follows that ξ = α1X
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for some α > 0. This further implies that ν(Yx) = 1 for ν-almost every
x ∈ X and so (ν ⊗ ν)(Y ) = 1. Thus, Gy (X, ν) is doubly ergodic. �

The next proposition shows that ergodic pmp actions of locally compact
groups satisfying the dynamical dichotomy for isometric actions are weakly
mixing.

Proposition 2.31. Let G be a locally compact second countable group
satisfying the dynamical dichotomy for isometric actions. Let Gy (X, ν) be
an ergodic pmp action. Then for any noncompact closed subgroup H < G,
the action H y (X, ν) is weakly mixing.

Proof. Consider the separable metric space (Z, d) = (L2(X, ν)0, ‖ · ‖2)
and the continuous isometric action κ0 : G y (L2(X, ν)0, ‖ · ‖2). Since
G y (X, ν) is ergodic, the action G y Z has no global fixed point and
so G y Z is proper. Let H < G be a closed subgroup and assume that
H y (X, ν) is not weakly mixing. By Proposition 2.26, there exists a
nonzero finite dimensional κ0(G)-invariant subspace K ⊂ L2(X, ν)0. Then
Ball(K ) ⊂ Z is a H-invariant compact subset. Since the map f : G× Z →
Z×Z is proper, f−1(Ball(K )×Ball(K )) is compact. Since H×Ball(K ) ⊂
f−1(Ball(K )× Ball(K )) is closed, it follows that H < G is compact. �

The quasi-regular representation λG/Γ. Let G be a locally compact
second countable group and Γ < G a lattice. We endow the locally compact
second countable space X = G/Γ with its σ-algebra B of Borel subsets (see
Proposition 1.11(iii)). We denote by ν ∈ Prob(X) the unique G-invariant
Borel probability measure (see Proposition 1.15). Then the action G y
(X, ν) is pmp. In that case, we denote by λG/Γ : G → U (L2(G/Γ, ν))
the Koopman representation and we call it the quasi-regular representation.
Since G y X is transitive, Lemma 2.14 implies that G y (X, ν) is ergodic
and Proposition 2.29 implies that λ0

G/Γ : G→ U (L2(G/Γ, ν)0) is ergodic.

3. Amenability

3.1. Amenable groups.

Definition 2.32. Let G be a locally compact group. We say that G
is amenable if any affine continuous action G y C on a nonempty convex
compact subset of a Hausdorff locally convex topological vector space has a
G-fixed point.

We give a few examples of locally compact amenable groups.

Proposition 2.33. Any compact group is amenable.

Proof. Denote by mG the (unique) Haar probability measure on G. Let
Gy C be an affine continuous action on a nonempty convex compact subset
of a Hausdorff locally convex topological vector space. Define the convex
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weak∗-compact subset Prob(C ) = {µ ∈ CR(C )∗ | µ ≥ 0 and µ(1C ) = 1}
and consider the affine weak∗-continuous action Gy Prob(C ) defined by

∀g ∈ G,∀f ∈ CR(C ), ∀µ ∈ Prob(C ), (g∗µ)(f) = µ(f ◦ g).

Define the barycenter map Bar : Prob(C )→ C as the unique continuous map
satisfying f(Bar(µ)) = µ(f) for every real-valued continuous affine function
f ∈ AR(C ). Since G y C is continuous affine, Bar : Prob(C ) → C is G-
equivariant. Choose a point c ∈ C and define the G-equivariant continuous
orbital map ι : G → C : g 7→ gc. We may define µ = ι∗mG ∈ Prob(C ).
Since mG is a left invariant Borel measure, it follows that g∗µ = µ for every
g ∈ G. This further implies that Bar(µ) ∈ C is a G-fixed point. �

Proposition 2.34. Any abelian locally compact group is amenable.

Proof. Let Gy C be an affine continuous action on a nonempty con-
vex compact subset of a Hausdorff locally convex topological vector space.
Whenever F ⊂ G is a finite subset, denote by C F the convex compact
subset of F -fixed points in C . Since G is abelian, G leaves C F globally
invariant. If we show that the compact subset C F is nonempty for every
finite subset F ⊂ G, by finite intersection property, we will have that the
compact subset of G-fixed points CG =

⋂
{C F | F ⊂ G finite subset} is

nonempty. It remains to prove that C F is nonempty for every finite sub-
set F ⊂ G. By induction and since G is abelian, it suffices to prove that
C g = {c ∈ C | gc = c} is nonempty for every g ∈ G. This in turn follows
from Markov–Kakutani’s fixed point theorem. Choose c ∈ C and for every
n ∈ N, set

cn =
1

n+ 1
(c+ gc+ · · ·+ gnc) ∈ C .

By compactness, denote by c∞ ∈ C an accumulation point of the sequence
(cn)n∈N. Since 1

n+2c+ n+1
n+2gcn = n+1

n+2cn + 1
n+2g

n+1c and since g is a homeo-
morphism of C , it follows that gc∞ = c∞ and so c∞ ∈ C g. �

We prove various permanence properties enjoyed by amenable locally
compact groups.

Proposition 2.35. Let G,H be locally compact groups. Assume that G
is amenable. The following assertions hold:

(i) If ρ : G → H is a continuous homomorphism with dense range,
then H is amenable.

(ii) If H CG is a closed normal subgroup, then G/H is amenable.

Proof. (i) Let H y C be an affine continuous action on a nonempty
convex compact subset of a Hausdorff locally convex topological vector
space. By composing with ρ : G → H, we obtain an affine continuous
G-action. Since G is amenable, the affine continuous G-action has a G-fixed
point. This shows that the original affine continuous H-action has a ρ(G)-
fixed point. By continuity and density of ρ(G) in H, we obtain a H-fixed

point. Thus, H = ρ(G) is amenable.
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(ii) It suffices to apply item (i) to the continuous homomorphism G →
G/H. �

Let now G be a locally compact σ-compact group. As usual, we denote
by B(G) the σ-algebra of Borel subsets of G and we fix a left invariant Haar
measure mG on G. Denote by ∆G : G → R∗+ the modular function. For
every p ∈ [1,+∞], we simply write Lp(G) = Lp(G,B(G),mG). Since G is
σ-compact, mG is σ-finite and hence we have L∞(G) = L1(G)∗. We denote
by λ : Gy Lp(G) the left translation action defined by

∀g ∈ G, ∀F ∈ Lp(G), (λ(g)F )(h) = F (g−1h).

The left translation action λ : Gy Lp(G) is isometric for every p ∈ [1,+∞]
and continuous for every p ∈ [1,+∞). Since G y L∞(G) need not be
continuous, we denote by UC`(G) ⊂ L∞(G) the subspace of left uniformly
continuous functions

UC`(G) = {F ∈ L∞(G) | ‖λ(g)F − F‖∞ → 0 as g → e}.
Observe that UC`(G) ⊂ L∞(G) is a λ(G)-invariant ‖ · ‖∞-closed subspace.
Letting Cb(G) be the space of bounded continuous functions on G, we have
the following inclusions UC`(G) ⊂ Cb(G) ⊂ L∞(G). Observe that when G
is discrete, we have UC`(G) = Cb(G) = `∞(G). Whenever F ⊂ L∞(G) is a
‖ · ‖∞-closed subspace such that C1G ⊂ F , we say that an element m ∈ F ∗

is a mean if m(F ) ≥ 0 for every F ∈ F+ and m(1G) = 1. If F ⊂ L∞(G)
is moreover λ(G)-invariant, we say that m ∈ F ∗ is a left invariant mean if
m(λ(g)F ) = m(F ) for every g ∈ G and every F ∈ F .

Recall that the convolution product of two measurable functions F1, F2 :
G→ C, whenever it makes sense, is defined as

(F1 ∗ F2)(h) =

∫
G
F1(g)F2(g−1h) dmG(g).

Set P(G) = {µ ∈ L1(G) | µ ≥ 0 and ‖µ‖1 = 1}. We will use the following
technical lemma whose proof is left to the reader.

Lemma 2.36. The following assertions hold:

(i) If µ ∈ P(G) and F ∈ L∞(G), then µ ∗ F ∈ UC`(G).
(ii) If (µi)i∈I is a net in L1(G) such that limi ‖µi‖1 = 0, then for every

F ∈ L∞(G), we have limi ‖µi ∗ F‖∞ = 0.
(iii) There exists a net (µi)i∈I in P(G) such that for every µ ∈ L1(G),

we have limi ‖µi ∗ µ− µ‖1 = limi ‖µ ∗ µi − µ‖1 = 0.
(iv) If g ∈ G, µ ∈ P(G) and F ∈ L∞(G), then (λ(g)µ)∗F = λ(g)(µ∗F ).

The main result of this section is a functional analytic characterization
of amenability for locally compact groups.

Theorem 2.37. Let G be a locally compact σ-compact group. The fol-
lowing conditions are equivalent:

(i) 1G ≺ λG, that is, the left regular representation λG has almost
invariant vectors.
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(ii) There exists a left invariant mean m ∈ L∞(G)∗.
(iii) There exists a left invariant mean m ∈ UC`(G)∗.
(iv) G is amenable, that is, any affine continuous action G y C on

a nonempty convex compact subset of a Hausdorff locally convex
topological vector space has a G-fixed point.

Proof. (i) ⇒ (ii) There exists a net (ξi)i∈I of unit vectors in L2(G)
such that for every compact subset Q ⊂ G, we have

lim
i

sup
g∈Q
‖λG(g)ξi − ξi‖2 = 0.

Choose a nonprincipal ultrafilter U on I. Define the unital ∗-homomorphism
ρ : L∞(G) → B(L2(G)) by the formula ρ(F )ξ = Fξ for every F ∈ L∞(G)
and every ξ ∈ L2(G). Then we have λG(g)ρ(F )λG(g)∗ = ρ(λ(g)F ) for every
g ∈ G and every F ∈ L∞(G). Define the mean m ∈ L∞(G)∗ by the formula

∀F ∈ L∞(G), m(F ) = lim
i→U
〈ρ(F )ξi, ξi〉.

Then for every g ∈ G and every F ∈ L∞(G), we have

m(λ(g)F ) = lim
i→U
〈ρ(λ(g)F )ξi, ξi〉

= lim
i→U
〈λG(g)ρ(F )λG(g)∗ξi, ξi〉

= lim
i→U
〈ρ(F )λG(g)∗ξi, λG(g)∗ξi〉

= m(F ).

Thus, m ∈ L∞(G)∗ is a left invariant mean.
(ii)⇒ (iii) This is trivial.
(iii) ⇒ (iv) As in Proposition 2.33, define the convex weak∗-compact

subset Prob(C ) = {µ ∈ CR(C )∗ | µ ≥ 0 and µ(1C ) = 1} and consider the
affine weak∗-continuous action Gy Prob(C ) defined by

∀g ∈ G, ∀f ∈ CR(C ),∀µ ∈ Prob(C ), (g∗µ)(f) = µ(f ◦ g).

Recall that the barycenter map Bar : Prob(C )→ C is the unique continuous
map satisfying f(Bar(µ)) = µ(f) for every real-valued continuous affine
function f ∈ AR(C ). Since G y C is continuous affine, Bar : Prob(C ) →
C is G-equivariant. Choose a point c ∈ C and define the G-equivariant
continuous orbital map ι : G→ C : g 7→ gc. For every f ∈ CR(C ), we have
f ◦ ι ∈ UC`(G). We may define µ ∈ Prob(C ) by the formula

∀f ∈ CR(C ), µ(f) = m(f ◦ ι).
Since m ∈ UC`(G)∗ is a left invariant mean, it follows that g∗µ = µ for every
g ∈ G. This further implies that Bar(µ) ∈ C is a G-fixed point.

(iv)⇒ (iii) Endow E = UC`(G)∗ with the weak∗-topology and consider
the nonempty convex weak∗-compact subset C ⊂ UC`(G)∗ of all means
on UC`(G). Since the action G y UC`(G) is ‖ · ‖∞-continuous, the action
Gy C is affine weak∗-continuous. Thus, there exists a G-fixed point m ∈ C
and so m ∈ UC`(G)∗ is a left invariant mean.
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(iii) ⇒ (i) We proceed in several intermediate steps. Let m ∈ UC`(G)∗

be a left invariant mean.

Claim 2.38. For every µ ∈ P(G) and every F ∈ UC`(G), we have
m(µ ∗ F ) = m(F ).

Indeed, let µ ∈ P(G) and F ∈ UC`(G). Observe that using Lemma
2.36(ii), we may assume that µ ∈ P(G) is compactly supported. Then
denote by K = supp(µ) ⊂ G the compact support of µ ∈ P(G). The G-
equivariant mapping ι : G → UC`(G) : g 7→ λ(g)F is continuous and thus
ι(K) ⊂ UC`(G) is a compact subset. Then the closed convex hull C of ι(K)
is a convex compact subset of UC`(G) (see [Ru91, Theorem 3.20]). Set
ν = ι∗µ and regard ν ∈ Prob(C ) by the formula

∀f ∈ CR(C ), ν(f) =

∫
G
µ(g)f(λ(g)F ) dmG(g).

We claim that µ ∗ F = Bar(ν) ∈ C . Recall that f(Bar(ν)) = ν(f) for every
f ∈ AR(C ). For every h ∈ G, regarding the evaluation map eh : UC`(G)→
C : f 7→ f(h) as an element of AR(C ), we have

Bar(ν)(h) = eh(Bar(ν)) = ν(eh) =

∫
G
µ(g)eh(λ(g)F ) dmG(g) = (µ ∗ F )(h).

Thus, we have Bar(ν) = µ ∗F . Since m ∈ UC`(G)∗ is a left invariant mean,
we can regard m ∈ AR(C ) and we obtain

m(µ ∗ F ) = m(Bar(ν)) =

∫
G
µ(g)m(λ(g)F ) dmG(g) = m(F ).

This finishes the proof of Claim 2.38.

Claim 2.39. There exists a mean m0 ∈ L∞(G)∗ such that for every
µ ∈ P(G) and every F ∈ L∞(G), we have m0(µ ∗ F ) = m0(F ).

Indeed, choose µ0 ∈ P(G). Thanks to Lemma 2.36(i), we may define
the mean m0 ∈ L∞(G)∗ by the formula m0(F ) = m(µ0 ∗ F ) for every F ∈
L∞(G). Choose a net as in Lemma 2.36(iii). Using Lemma 2.36(ii), for
every µ ∈ P(G), we have

m0(µ ∗ F ) = lim
i
m0(µ ∗ µi ∗ F )

= lim
i
m(µ0 ∗ µ ∗ µi ∗ F )

= lim
i
m(µi ∗ F ) by Claim 2.38

= lim
i
m(µ0 ∗ µi ∗ F ) by Claim 2.38

= m(µ0 ∗ F )

= m0(F ).

This finishes the proof of Claim 2.39.
Denote by M the nonempty convex weak∗-compact subset of all means

on L∞(G). Hahn–Banach theorem implies that the map P(G) → M :
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µ 7→ mµ defined by the formula mµ(F ) =
∫
G µ(g)F (g) dmG(g) for every

F ∈ L∞(G) has dense range. Thus, we can find a net (µi)i∈I in P(G)
such that mµi → m0 for the weak∗-topology. For every µ ∈ P(G), define
µop ∈ P(G) by the formula µop(g) = ∆G(g)−1µ(g−1). For every µ ∈ P(G)
and every F ∈ L∞(G), using Fubini’s theorem, we have∫

G
(µ ∗ µi)(g)F (g) dmG(g) =

∫
G×G

µ(h)µi(h
−1g)F (g) dm⊗2

G (g, h)

=

∫
G×G

µi(h
−1g)µ(h)F (g) dm⊗2

G (g, h)

=

∫
G×G

µi(g)µ(h)F (hg) dm⊗2
G (g, h)

=

∫
G×G

µi(g)µop(h)F (h−1g) dm⊗2
G (g, h)

=

∫
G×G

µi(g) (µop ∗ F )(g) dmG(g).

Then Claim 2.39 implies that for every µ ∈ P(G), µ ∗ µi − µi → 0 weakly
in L1(G). Denote by J the directed set of all pairs (ε,F ) where ε > 0 and
F ⊂ P(G) is a finite subset endowed with the order (ε1,F1) ≤ (ε2,F2) if
and only if ε1 ≤ ε2 and F2 ⊂ F1. Let j = (ε,F ) ∈ J and consider the
Banach space (Ej , ‖ · ‖) =

⊕
µ∈F (L1(G), ‖ · ‖1). The weak topology on Ej

is simply the product of the weak topologies on L1(G). Then 0 belongs to
the weak closure in Ej of the convex subset

Cj = {(µ ∗ ψ − ψ)µ∈F | ψ ∈ P(G)} ⊂ Ej .

Hahn–Banach theorem implies that 0 belongs to the strong closure in Ej
of Cj . Then we may find ψj ∈ P(G) such that for every µ ∈ F , we have
‖µ ∗ ψj − ψj‖1 < ε. Thus, we have found a net (ψj)j∈J in P(G) such that
for every µ ∈ P(G), we have limj ‖µ ∗ ψj − ψj‖1 = 0.

Note that for every nonempty ‖ · ‖1-compact subset K ⊂ P(G), we have
limj ‖µ ∗ ψj − ψj‖1 = 0 uniformly on K. Indeed, let ε > 0 and choose
µ1, . . . , µn ∈ K such that for every µ ∈ K, there exists 1 ≤ i ≤ n for which
‖µ − µi‖ ≤ ε. Choose j0 ∈ J such that ‖µi ∗ ψj − ψj‖1 ≤ ε for every
1 ≤ i ≤ n and every j ≥ j0. Then for every µ ∈ K and every j ≥ j0,
choosing 1 ≤ i ≤ n such that ‖µ− µi‖ ≤ ε, we have

‖µ ∗ ψj − ψj‖1 ≤ ‖(µ− µi) ∗ ψj‖1 + ‖µi ∗ ψj − ψj‖1
≤ ‖µ− µi‖1 + ‖µi ∗ ψj − ψj‖1
≤ 2ε.

This shows that limj ‖µ ∗ ψj − ψj‖1 = 0 uniformly on K.
Fix ε > 0 and Q ⊂ G a compact subset. Fix µ ∈ P(G). The orbital

map G → P(G) : g 7→ λ(g)µ is ‖ · ‖1-continuous and so ι(Q) ⊂ P(G) is
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‖ · ‖1-compact. Lemma 2.36(iv) implies that

sup
g∈Q
‖λ(g)(µ ∗ ψj)− µ ∗ ψj‖1 = sup

g∈Q
‖(λ(g)µ) ∗ ψj − µ ∗ ψj‖1 → 0.

We may find j ∈ J large enough so that with ζ = µ ∗ ψj ∈ P(G), we have

sup
g∈Q
‖λ(g)ζ − ζ‖1 ≤ ε2.

Set ξ = ζ1/2 ∈ L2(G)+ and observe that ‖ξ‖ = 1. Moreover, we have

sup
g∈Q
‖λG(g)ξ − ξ‖22 = sup

g∈Q

∫
G
|ξ(g−1h)− ξ(h)|2 dmG(h)

= sup
g∈Q

∫
G
|ζ(g−1h)1/2 − ζ(h)1/2|2 dmG(h)

≤ sup
g∈Q

∫
G
|ζ(g−1h)− ζ(h)|dmG(h)

= sup
g∈Q
‖λ(g)ζ − ζ‖1 ≤ ε2.

This implies that 1G ≺ λG and finishes the proof of Theorem 2.37. �

We conclude this section by proving von Neumann’s result regarding
nonamenability of free groups.

Theorem 2.40 (von Neumann). Denote by F2 = 〈a, b〉 the free group
on two generators. Then F2 is nonamenable.

Proof. By contradiction, assume that F2 = 〈a, b〉 is amenable. Denote
by m ∈ `∞(F2)∗ a left invariant mean. Define n : P(F2) → [0, 1] : W 7→
m(1W ) and observe that n is a finitely additive left invariant probability mean
on F2. Then we necessarily have n(F ) = 0 for every finite subset F ⊂ F2.
In particular, we have n({e}) = 0.

Denote by Wa ⊂ F2 the subset of reduced words whose first letter is a.
Likewise, consider the subsetsWa−1 ,Wb,Wb−1 ⊂ F2. Observe that F2\{e} =
Wa tWa−1 tWb tWb−1 . Since a · (Wa tWb tWb−1) ⊂Wa, it follows that

n(Wa) + n(Wb) + n(Wb−1) = n(Wa tWb tWb−1)

= n(a · (Wa tWb tWb−1))

≤ n(Wa).

This implies that n(Wb) = n(Wb−1) = 0. Likewise, we have n(Wa) =
n(Wa−1) = 0. This further implies that n(F2) = 0, a contradiction. �

One can show that amenability is inherited by closed subgroups (see e.g.
[Zi84, Proposition 4.2.20]). Thus, any locally compact group that contains
F2 as a closed subgroup is nonamenable.
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3.2. Amenable actions. For every p ∈ [1,+∞], we simply denote by
Lp(G) = Lp(G,B(G),mG) and by λ : Gy Lp(G) the left translation action.
Let G y (X, ν) be a nonsingular action and denote by σ : G y L∞(X)
the corresponding weak∗-continuous action. Simply write L∞(G × X) =
L∞(G×X,mG⊗ν). Denote by λ⊗σ : Gy L∞(G×X) the weak∗-continuous
action arising from the diagonal nonsingular action Gy (G×X,mG ⊗ ν).

Definition 2.41. We say that a nonsingular action G y (X, ν) is
amenable if there exists a unital positive linear contractive mapping Φ :
L∞(G×X)→ L∞(X) such that

(i) For every f ∈ L∞(X), we have Φ(1G ⊗ f) = f .
(ii) For every g ∈ G and every F ∈ L∞(G×X), we have

Φ((λ⊗ σ)(g)F ) = σ(g)Φ(F ).

We simply say that Φ : L∞(G×X)→ L∞(X) is a G-equivariant projection.

Amenable actions are very useful as they provide the existence of equi-
variant measurable maps.

Theorem 2.42. Let G be a locally compact second countable group and
Gy (X, ν) an amenable nonsingular action. Let Y be a compact metrizable
space and G y Y a continuous action. Then there exists a G-equivariant
measurable map β : X → Prob(Y ).

Proof. Denote by Φ : L∞(G × X) → L∞(X) the G-equivariant pro-
jection witnessing that the nonsingular action G y (X, ν) is amenable.
Choose a point y ∈ Y . Consider the G-equivariant unital positive linear
contractive mapping Ψ : C(Y ) 7→ L∞(G) : f 7→ (g 7→ f(gy)). Regard
L∞(G) ⊂ L∞(G × X) and define the G-equivariant unital positive linear
contractive mapping Θ = Φ ◦Ψ : C(Y )→ L∞(X).

Since Y is compact metrizable, C(Y ) is ‖·‖∞-separable. We may choose
a countable ‖ · ‖∞-dense subset S ⊂ C(Y )+ such that 1Y ∈ S . Denote
by D ⊂ C(Y ) the countable ‖ · ‖∞-dense Q[i]-linear subspace generated by
S . Then we may choose a conull measurable subset X0 ⊂ X such that
Θ|D : D → L∞(X) induces a unital positive Q[i]-linear contractive mapping
Θ0,D : D → L∞(X0). By ‖ · ‖∞-density of D in C(Y ), we may uniquely
extend Θ0,D to a unital positive linear contractive mapping Θ0 : C(Y ) →
L∞(X0). Observe that for every f ∈ C(Y ), the class of Θ0(f) in L∞(X) is
equal to Θ(f) ∈ L∞(X). Using Riesz’s representation theorem, we obtain a
measurable map β0 : X0 → Prob(Y ) such that for every x ∈ X0 and every
f ∈ C(Y ), we have β0

x(f) = Θ0(f)(x). We may extend β0 to a measurable
map β : X → Prob(Y ) by letting βx = η ∈ Prob(Y ) for every x ∈ X \X0,
where η ∈ Prob(Y ) is some Borel probability measure on Y .

It remains to check that β : X → Prob(Y ) is G-equivariant. Fix g ∈ G.
Let f ∈ C(Y ). Then for every x ∈ X0∩g−1X0, we have βgx(f) = Θ0(f)(gx)
and (g∗βx)(f) = Θ0(f ◦ g)(x). Since Θ(f ◦ g) = Θ(f) ◦ g in L∞(X), it
follows that βgx(f) = (g∗βx)(f) for ν-almost every x ∈ X. Considering the
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countable ‖ · ‖∞-dense subset D ⊂ C(Y ), there exists a conull measurable
subset X1 ⊂ X such that βgx(f) = (g∗βx)(f) for every x ∈ X1 and every
f ∈ D . By ‖ · ‖∞-density of D ⊂ C(Y ), we obtain βgx(f) = (g∗βx)(f) for
every x ∈ X1 and every f ∈ C(Y ). This implies that βgx = g∗βx for every
x ∈ X1. Thus, the measurable map β : X → Prob(Y ) is G-equivariant. �

Recall that P(G) = {µ ∈ L1(G) | µ ≥ 0 and ‖µ‖1 = 1}. For every
µ ∈ L1(G) and every F ∈ L∞(G×X), we denote by (µ⊗ idX)(F ) ∈ L∞(X)
the unique element that satisfies

∀ψ ∈ L1(X, ν), ψ((µ⊗ idX)(F )) = (µ⊗ ψ)(F ).

If µ ∈ P(G), then µ⊗ idX : L∞(G×X)→ L∞(X) is a unital positive linear
contractive mapping. If (µi)i∈I is a net in L1(G) such that limi ‖µi‖1 = 0,
then for every F ∈ L∞(G×X), we have (µi ⊗ idX)(F )→ 0 with respect to
the weak∗-topology.

Firstly, we observe that all nonsingular actions of amenable groups are
amenable.

Proposition 2.43. Let G be an amenable locally compact second count-
able group. Then any nonsingular action Gy (X, ν) is amenable.

Proof. Since G is amenable, there exists a net of elements (µi)i∈I in
P(G) such that ‖λ(g)µi−µi‖1 → 0 uniformly on compact subsetsK ⊂ G (see
the proof of Theorem 2.37(iii)⇒ (i)). Choose a nonprincipal ultrafilter U on
I. Define the unital positive linear contractive mapping Φ : L∞(G×X) →
L∞(X) by the formula

∀F ∈ L∞(G×X), Φ(F ) = lim
i→U

(µi ⊗ idX)(F ).

The above limit is taken with respect to the weak∗-topology in L∞(X).

(i) For every f ∈ L∞(X), we have

Φ(1G ⊗ f) = lim
i→U

(µi ⊗ idX)(1G ⊗ f) = lim
i→U

µi(1G) f = f.

(ii) For every g ∈ G and every F ∈ L∞(G×X), we have

Φ((λ⊗ σ)(g)F ) = lim
i→U

(µi ⊗ idX)((λ⊗ σ)(g))F )

= lim
i→U

(λ(g−1)µi ⊗ σ(g))(F )

= lim
i→U

(µi ⊗ σ(g))(F )

= σ(g)

(
lim
i→U

(µi ⊗ idX)(F )

)
= σ(g)Φ(F )

where in the third line we used the fact that ‖λ(g−1)µi−µi‖1 → 0.

Thus, Φ : L∞(G × X) → L∞(X) is a G-equivariant projection and so the
nonsingular action Gy (X, ν) is amenable. �
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Next, we provide natural examples of amenable actions arising from
homogeneous spaces.

Theorem 2.44. Let G be a locally compact second countable group and
H < G an amenable closed subgroup. Then the nonsingular left translation
action Gy G/H is amenable.

Proof. Firstly, we show that the nonsingular left translation action
G y (G,mG) is amenable. Fix µ ∈ P(G). Define the unital positive linear
contractive mapping Ψ = µ⊗idG : L∞(G×G)→ L∞(G). Then the following
properties hold:

(i) For every f ∈ L∞(G), we have Ψ(1G ⊗ f) = µ(1G) f = f .
(ii) For every g ∈ G and every F ∈ L∞(G×G), we have

Ψ((idG⊗λ)(g)F ) = (µ⊗ λ(g))(F ) = λ(g)Ψ(F ).

Next consider the nonsingular automorphism θ : G×G→ G×G : (h, k) 7→
(kh, k) and define the unital positive linear contractive mapping Φ : L∞(G×
G) → L∞(G) by the formula Φ(F ) = Ψ(F ◦ θ) for every F ∈ L∞(G × G).
Then the following properties hold:

(i) For every f ∈ L∞(G), we have

Φ(1G ⊗ f) = Ψ((1G ⊗ f) ◦ θ) = Ψ(1G ⊗ f) = f.

(ii) For every g ∈ G and every F ∈ L∞(G×G), we have

Φ((λ⊗ λ)(g)F ) = Ψ(F ◦ (g−1 ⊗ g−1) ◦ θ)
= Ψ(F ◦ θ ◦ (idG⊗g−1))

= Ψ((idG⊗λ)(g)(F ◦ θ))
= λ(g)Ψ(F ◦ θ)
= λ(g)Φ(F ).

Thus, Φ : L∞(G × G) → L∞(G) is a G-equivariant projection and so the
nonsingular translation action Gy (G,mG) is amenable.

Secondly, let H < G be an amenable closed subgroup. Consider the
weak∗-continuous right translation action ρ : H y L∞(G). Observe that we

have the following identification of the fixed point subalgebra L∞(G)ρ(H) =
L∞(G/H). Consider the unital weak∗-continuous embedding

ι : L∞(G)→ L∞(H ×G) : f 7→ ((h, g) 7→ f(gh)) .

The embedding ι satisfies the following invariance property:

∀h ∈ H,∀f ∈ L∞(G), (λ(h)⊗ ρ(h))ι(f) = ι(f).

Since H is amenable, there exists a net of elements (µi)i∈I in P(H) such
that ‖λ(h)µi − µi‖1 → 0 uniformly on compact subsets K ⊂ H (see the
proof of Theorem 2.37(iii)⇒ (i)). Choose a nonprincipal ultrafilter U on I.
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Define the unital positive linear contractive mapping E : L∞(G) → L∞(G)
by the formula

∀f ∈ L∞(G), E(f) = lim
i→U

(µi ⊗ idG)(ι(f)).

The above limit is taken with respect to the weak∗-topology in L∞(G). For
every g ∈ G and every f ∈ L∞(G), we have E(λ(g)f) = λ(g) E(f). For

every f ∈ L∞(G)ρ(H) = L∞(G/H), we have ι(f) = 1H ⊗f and so E(f) = f .
Moreover, for every h ∈ H and every f ∈ L∞(G), we have

ρ(h) E(f) = ρ(h)

(
lim
i→U

(µi ⊗ idG)(ι(f))

)
= lim

i→U
(µi ⊗ ρ(h))(ι(f))

= lim
i→U

(λ(h−1)µi ⊗ ρ(h))(ι(f))

= lim
i→U

(µi ⊗ idG) ((λ(h)⊗ ρ(h))ι(f))

= lim
i→U

(µi ⊗ idG)(ι(f)) = E(f).

where in the third line we used the fact that ‖λ(h−1)µi − µi‖1 → 0. This
implies that E : L∞(G)→ L∞(G) is a λ(G)-equivariant unital positive linear

contractive mapping such that E(L∞(G)) = L∞(G)ρ(H) = L∞(G/H) and
E |L∞(G/H) = idL∞(G/H).

Finally, regard L∞(G × G/H) = L∞(G × G)(idG⊗ρ)(H) ⊂ L∞(G × G)
and define Θ : E ◦Φ|L∞(G×G/H) : L∞(G × G/H) → L∞(G/H). Then Θ
is a G-equivariant projection and so the nonsingular left translation action
Gy G/H is amenable. �

Finally, we observe that amenable actions are stable under taking re-
strictions to lattices.

Proposition 2.45. Let G be a locally compact second countable group
and Γ < G a lattice. Then for any amenable nonsingular action Gy (X, ν),
the restriction Γ y (X, ν) is amenable.

Proof. Denote by Φ : L∞(G×X)→ L∞(X) the G-equivariant projec-
tion witnessing amenability of the nonsingular action G y (X, ν). Choose
a Borel fundamental domain F ⊂ G so that G = F · Γ. Then F−1 ⊂ G
is a Borel fundamental domain for the left translation action Γ y G. We
may assume that mG(F−1) = 1 so that η = mG|F−1 ∈ Prob(F−1). Then
θ : (Γ ×F−1,mΓ ⊗ η) → (G,mG) : (γ, y) 7→ γy is a measure space isomor-
phism. Moreover, for all γ, s ∈ Γ and all y ∈ F , we have θ(γs, y) = γθ(s, y).
This implies that the canonical inclusion L∞(Γ×X) ⊂ L∞(Γ×F−1×X) ∼=
L∞(G×X) is Γ-equivariant. Thus Ψ = Φ|L∞(Γ×X) : L∞(Γ×X)→ L∞(X)
is a Γ-equivariant projection. This shows that the nonsingular action Γ y
(X, ν) is amenable. �



CHAPTER 3

Algebraic groups

We give an introduction to algebraic groups and their
algebraic actions on algebraic varieties. We investigate
the structure of stabilizers and the notion of tameness
for algebraic actions. Standard references on linear
algebraic groups are [Bo91, Hu75].

1. Algebraic varieties

We assume that K is an algebraically closed field of characteristic zero
and that k ⊂ K is a subfield. For every n ≥ 1, we denote by K[X1, . . . , Xn]
(resp. k[X1, . . . , Xn]) the ring of polynomials in n indeterminates with coef-
ficients in K (resp. k).

We say that V ⊂ Kn is an affine algebraic variety if there exists a subset
S ⊂ K[X1, . . . , Xn] such that

V = {(x1, . . . , xn) ∈ Kn | ∀P ∈ S, P (x1, . . . , xn) = 0} .
We then denote by

I(V) = {P ∈ K[X1, . . . , Xn] | ∀(x1, . . . , xn) ∈ V, P (x1, . . . , xn) = 0}
the vanishing ideal of V in K[X1, . . . , Xn]. We also denote by

K[V] = K[X1, . . . , Xn]/I(V)

the ring of regular functions on V. Hilbert’s basis theorem shows that K[V]
is a Noetherian ring. In particular, any ideal in K[V] is finitely generated.
By Hilbert’s Nullstellensatz, there is a one-to-one correspondence between
affine algebraic varieties V ⊂ Kn and radical ideals I ⊂ K[X1, . . . , Xn]. Any
intersection of affine algebraic varieties is again an algebraic variety and any
finite union of algebraic varieties is again an algebraic variety. We define
the Zariski topology on Kn by declaring that an algebraic variety V ⊂ Kn

is a Zariski closed subset of Kn.
Let F be a vector space over K. A k-structure on F is a k-submodule

Fk ⊂ F such that the natural K-map Fk ⊗k K → F is an isomorphism. A
subspace E ⊂ F is said to be defined over k or is a k-subspace if Ek = E∩Fk
is k-structure on E, that is, E = Ek ⊗k K. We have that k[X1, . . . , Xn] is
a k-structure on K[X1, . . . , Xn]. We say that V ⊂ Kn is an affine algebraic
variety defined over k or is an affine algebraic k-variety if Ik(V) = I(V) ∩
k[X1, . . . , Xn] is a k-structure on I(V). In that case, we denote by V(k) =
V∩kn the set of k-points of V and by k[V] = k[X1, . . . , Xn]/Ik(V) the ring

55
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of k-regular functions on V. We regard k[V] ⊂ K[V] via the well-defined
injective mapping k[V]→ K[V] : P+Ik(V) 7→ P+I(V). We naturally have
I(V) = Ik(V) ⊗k K and K[V] = k[V] ⊗k K. By definition, any algebraic
variety V is defined over K. Note that V = V(K) and IK(V) = I(V).

We say that an affine algebraic variety V ⊂ Kn is irreducible if it can-
not be written as a union of two proper Zariski closed subsets. Then the
vanishing ideal I(V) is prime and the ring of regular functions K[V] is an
integral domain. We then denote by K(V) the field of rational functions on
V, which is the field of fractions of K[V]. More generally, any affine alge-
braic variety V ⊂ Kn can be written as a finite union of irreducible Zariski
closed subsets. This follows from the fact that the ring K[V] is Noetherian.

Let V ⊂ Kn and W ⊂ Kp be affine algebraic varieties. We identify
Kn ×Kp with Kn+p and we endow Kn+p with the Zariski topolopy. Then
the product V ×W ⊂ Kn+p is an affine algebraic variety. If V and W are
irreducible, then V ×W is irreducible. In particular, Kn is irreducible for
every n ≥ 1.

Let V ⊂ Kn be an irreducible affine algebraic variety. The dimension
dim(V) is defined as the transcendence degree of the field extension K ⊂
K(V). For every P ∈ I(V) and every v = (v1, . . . , vn) ∈ V, define the
differential dvP =

∑n
i=1

∂P
∂Xi

(v)Xi. The tangent space Tv(V) at the point
v ∈ V is defined as

Tv(V) = {(x1, . . . , xn) ∈ Kn | ∀P ∈ I(V), dvP (x1, . . . , xn) = 0} .

Observe that if V is defined over k, then for every v ∈ V(k), Tv(V) has
a natural k-structure Tv(V)k ⊂ Tv(V) and we have Tv(V) = Tv(V)k ⊗k
K. We always have dimK(Tv(V)) ≥ dim(V). We say that v ∈ V is a
simple point if dimK(Tv(V)) = dim(V). The set of simple points of V is a
nonempty Zariski open set. We say that V is smooth if every point v ∈ V
is simple. In particular, Kn is a smooth variety and dim(Kn) = n for every
n ≥ 1.

Let V ⊂ Kn be an affine algebraic variety. We say that U ⊂ V is a
principal open set if there exists a polynomial P ∈ K[X1, . . . , Xn] such that

U = {(x1, . . . , xn) ∈ V | P (x1, . . . , xn) 6= 0} .

Observe that U can be identified with the affine algebraic variety W ⊂
V ×K ⊂ Kn+1 defined by

W = {(x1, . . . , xn, t) ∈ V ×K | P (x1, . . . , xn)t = 1} .

Then we have K[U] = K[V]([1/P ]). Any open set of V can be written as a
union of principal open sets.

Let V ⊂ Kn and W ⊂ Kp be affine algebraic varieties. We say that
f : V→W is a regular map or a morphism if for every P ∈ K[W], we have
P ◦ f ∈ K[V]. For every j ∈ {1, . . . , p}, choose Pj ∈ K[X1, . . . , Xn] such
that f = (P1 + I(V), . . . , Pp + I(V)). For every v ∈ V, we may define the
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differential dvf : Tv(V)→ Tf(v)(W) by the formula

∀x = (x1, . . . , xn) ∈ Tv(V), (dvf)(x) =

(
n∑
i=1

∂Pj
∂Xi

(v)xi

)
j

.

In case V and W are irreducible, we say that f : V → W is dominant
if f(V) is Zariski dense in W. This amounts to saying that the map f∗ :
K[W] → K[V] : P 7→ P ◦ f is injective. We say that f : V → W is
an isomorphism if f is a bijection and if both f and f−1 are regular maps.
Assume moreover that V ⊂ Kn and W ⊂ Kp are affine algebraic k-varieties.
Then we say that f : V→W is a k-regular map or a k-morphism if for every
P ∈ k[W], we have P ◦ f ∈ k[V]. In that case, for every v ∈ V(k), we have
f(v) ∈W(k) and (dvf)(Tv(V)k) ⊂ Tf(v)(W)k. We say that f : V→W is

a k-isomorphism if f is a bijection and if both f and f−1 are k-morphisms.
Consider the Galois group of the field extension k ⊂ K

Gal(K/k) = {σ ∈ Aut(K) | ∀a ∈ k, σ(a) = a} .

Then Gal(K/k) naturally acts on the polynomial ring K[X1, . . . , Xn] in the

following way: for every P =
∑
ai1,...,inX

i1
1 · · ·Xin

n ∈ K[X1, . . . , Xn] and

every σ ∈ Gal(K/k), define P σ =
∑
σ(ai1,...,in)Xi1

1 · · ·Xin
n ∈ K[X1, . . . , Xn].

Let V ⊂ Kn be an affine algebraic variety and σ ∈ Gal(K/k). We may define
the affine algebraic variety Vσ ⊂ Kn by the formula

Vσ = σ(V) = {x ∈ Kn | ∀P ∈ I(V), P σ(x) = 0} .

Then we have I(Vσ) = I(V)σ and K[Vσ] = K[X1, . . . , Xn]/I(V)σ. More-
over, for every morphism of affine algebraic varieties f : V→W and every
σ ∈ Gal(K/k), we may define the morphism fσ = σfσ−1 : Vσ →Wσ.

It is useful to extend the notion of variety to the projective setting.
Consider the projective space Pn = Pn(K) = P(Kn+1). We say that V ⊂ Pn

is a projective algebraic variety if there exists a subset S ⊂ K[X0, . . . , Xn]
consisting of homogeneous polynomials such that

V = {(x0, . . . , xn) ∈ Pn | ∀P ∈ S, P (x0, . . . , xn) = 0} .

We say that V ⊂ Pn is a projective algebraic k-variety if there exists a subset
S ⊂ k[X0, . . . , Xn] consisting of homogeneous polynomials such that

V = {(x0, . . . , xn) ∈ Pn | ∀P ∈ S, P (x0, . . . , xn) = 0} .

We then denote by V(k) = V ∩ P(kn+1) the set of k-points of V. As in
the affine case, we can define the Zariski topology on Pn. A quasiprojective
algebraic k-variety is a Zariski open set defined over k in a projective alge-
braic k-variety. Observe that any affine algebraic k-variety can be regarded
as a quasiprojective algebraic k-variety. More generally, one can define the
notion of abstract algebraic k-variety that generalizes the notion of quasipro-
jective algebraic k-variety. All examples of algebraic k-varieties we consider
in these notes are quasiprojective algebraic k-varieties.
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The following result provides a criterion for an algebraic variety to be
defined over k and for a morphism between algebraic varieties to be defined
over k. For further details, we refer the reader to [Bo91, AG 14].

Proposition 3.1. The following assertions hold:

(i) Let V be an algebraic variety. Then V is defined over k if and only
if Vσ = V for every σ ∈ Gal(K/k).

(ii) Let V and W be algebraic k-varieties and f : V→W a morphism.
Then f is defined over k if and only if fσ = f for every σ ∈
Gal(K/k).

Proof. (i) We may and will assume that V ⊂ Kn is an affine algebraic
variety. If V is defined over k, then I(V) = Ik(V) ⊗k K. Then for every
σ ∈ Gal(K/k), we have I(V)σ = I(V) and so Vσ = V. Conversely, assume
that Vσ = V for every σ ∈ Gal(K/k). It suffices to show that I(V) is
generated by Ik(V). Denote by J ⊂ I(V) the ideal generated by Ik(V).
Then F = K[X1, . . . , Xn]/J has a k-structure Fk = k[X1, . . . , Xn]/Ik(V)
so that F = Fk ⊗k K. By contradiction, assume that J 6= I(V). Set
E = I(V)/J ⊂ K[X1, . . . , Xn]/J and note that Ek = E ∩Fk = {0}. Choose
a basis (ei)i of Fk and choose w ∈ E\{0} such that w can be expressed with a
minimal number of elements of (ei)i. Upon multiplying w by a scalar in K∗,
we may assume that w = ei1 +α2ei2 + · · ·+αreir with r ≥ 2, α2, . . . , αr ∈ K
and α2 /∈ k. Then there exists σ ∈ Gal(K/k) such that σ(α2) 6= α2. Then
w − σ(w) = (α2 − σ(α2))ei2 + · · · + (αr − σ(αr))eir and w − σ(w) ∈ E
because I(V)σ = I(V). Since w − σ(w) 6= 0, we obtain a contradiction on
the minimal number of elements of (ei)i. Therefore I(V) = J is generated
by Ik(V) and so V is defined over k.

(ii) We may and will assume that V ⊂ Kn and W ⊂ Kp are affine
algebraic k-varieties. We have K[V] = k[V]⊗kK and K[W] = k[W]⊗kK.
Denote by f∗ : K[W] → K[V] : P 7→ P ◦ f the associated K-algebra
homomorphism. If f is defined over k, then f∗(k[W]) ⊂ k[V]. It follows
that fσ = f for every σ ∈ Gal(K/k). Conversely, assume that fσ = f for
every σ ∈ Gal(K/k). Let P ∈ k[W]. For every σ ∈ Gal(K/k), we have
(f∗(P ))σ = (P ◦ f)σ = P σ ◦ fσ = P ◦ f = f∗(P ) and so f∗(P ) ∈ k[V].
Therefore we have f∗(k[W]) ⊂ k[V] and so f is defined over k. �

The following useful result provides another sufficient condition for an
algebraic variety to be defined over k and for a morphism between algebraic
varieties to be defined over k.

Proposition 3.2. The following assertions hold:

(i) Let V be an algebraic k-variety and B ⊂ V(k) a nonempty subset.
Denote by W the Zariski closure of B in V. Then W is defined
over k.

(ii) Let V and W be algebraic k-varieties and f : V→W a morphism.
Let B ⊂ V(k) be a Zariski dense subset such that f(B) ⊂ W(k).
Then f is defined over k.
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Proof. (i) We may and will assume that V ⊂ Kn is an affine algebraic
k-variety. Then V(k) ⊂ kn. Denote by I(W) ⊂ K[X1, . . . , Xn] the vanish-
ing ideal of W. For every d ≥ 1, set I(W)d = {P ∈ I(W) | deg(P ) ≤ d}.
We then have I(W) =

⋃∞
d=1 I(W)d. Denote by r the number of n-tuples

(i1, . . . , in) ∈ Nn such that
∑n

j=1 ij ≤ d. Any polynomial P ∈ I(W)d
has at most r coefficients in K and so we may identify P with a r-tuple
(α1, . . . , αr) ∈ Kr. Since B ⊂ V(k) is Zariski dense in W, we have
P ∈ I(W)d if and only if P (g) = 0 for every g ∈ B. We can regard
the system of equations P (g) = 0 for g ∈ B as a system of linear equations
with coefficients in k and variables α1, . . . , αr. Then there are at most r
linear equations such that the solutions of the original system of equations
are exactly the same as the solutions of these r linear equations. In other
words, there is a linear transformation T : Kr → Kr for which P ∈ I(W)d if
and only if (α1, . . . , αr) ∈ ker(T ). Since the matrix representation of T with
respect to the canonical basis of Kr lies in Mr(k), it follows that ker(T ) has
a basis that we can choose in kr. This implies that I(W)d is generated by
I(W)d ∩ k[X1, . . . , Xn]. Since this is true for every d ≥ 1, this implies that
I(W) is generated by I(W) ∩ k[X1, . . . , Xn] and so W is defined over k.

(ii) We may and will assume that V ⊂ Kn and W ⊂ Kp are algebraic
affine k-varieties. Moreover using coordinate functions, we may further as-
sume that W = K. Then we have f ∈ K[V] = K[X1, . . . , Xn]/I(V).
Regarding f : V → K, we have f(B) ⊂ k. Choose P ∈ K[X1, . . . , Xn]
such that P + I(V) = f . Write P = P0 +

∑r
i=1 αiPi where P0, P1, . . . , Pr ∈

k[X1, . . . , Xn], α1, . . . , αr ∈ K and 1, α1, . . . , αr are linearly independent
over k. Since f(B) ⊂ k, we have P (B) ⊂ k and the linear independence
of 1, α1, . . . , αr over k implies that P (v) = P0(v) for every v ∈ B. Since
B ⊂ V(k) is Zariski dense, it follows that P = P0 ∈ k[X1, . . . , Xn]. This
implies that f = P0 + I(V) = P0 + Ik(V) is defined over k. �

We will need the following classical result regarding morphisms between
algebraic varieties.

Theorem 3.3 (Chevalley). Let V and W be algebraic varieties and

f : V →W a morphism. Then f(V) contains a Zariski open dense subset
U such that U ⊂ f(V).

Proof. We may and will assume that V and W are affine algebraic
varieties. We may further assume that V and W are irreducible. Indeed,
denote by V1, . . . ,Vk the irreducible components of V so that V = V1∪· · ·∪
Vk. For every i ∈ {1, . . . , k}, set Wi = f(Vi). Since W1∪· · ·∪Wk is closed

and contains f(V), it follows that W1 ∪ · · · ∪Wk = f(V). Moreover, for
every i ∈ {1, . . . , k}, Wi is irreducible. Therefore, without loss of generality,
we may and will assume that V and W are irreducible affine algebraic
varieties.

Set A = K[W] and B = K[V]. Then the map f∗ : A→ B : P 7→ P ◦f is
injective. We prove the following technical result from commutative algebra.
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Claim 3.4. For every b ∈ B \{0}, there exists a ∈ A such that for every
K-algebra homomorphism ϕ : A → K such that ϕ(a) 6= 0, there exists a
K-algebra homomorphism ϕ : B → K such that ϕ = ϕ ◦ f∗ and ϕ(b) 6= 0.

Proof of Claim 3.4. We may identify A = f∗(A) and regard A ⊂
B. Since B is finitely generated over A, by induction over the number of
generators, we may assume that there exists x ∈ B such that B = A[x]. Let
T be an indeterminate variable. Then B is a quotient of A[T ]. Denote by L
the fraction field of A. We regard A ⊂ L and A[T ] ⊂ L[T ]. Let b ∈ B \ {0}.
There are two cases to consider.

Firstly, assume that B ∼= A[T ]. Since b = Q ∈ A[T ] \ {0}, there exists
c ∈ A such that a = Q(c) 6= 0. For every K-algebra homomorphism ϕ :
A → K, consider the canonical extension ϕ : A[T ] → K : P 7→ ϕ(P (c)).
Then ϕ(b) = ϕ(Q) = ϕ(Q(c)) = ϕ(a) and we are done.

Secondly, assume that B is a proper quotient of A[T ]. Then we may

choose a nonzero polynomial P =
∑d

i=0 piT
i ∈ A[T ] of minimal degree such

that P (x) = 0. Then the principal ideal I(x) = {R ∈ L[T ] | R(x) = 0}
is generated by P . We may regard B ⊂ L[T ]/I(x) so that we may write
b = Q0(x) for some Q0 ∈ L[T ] such that deg(Q0) ≤ d−1. Upon multiplying
Q0 by an element of A, we obtain a polynomial Q =

∑
qiT

i ∈ A[T ] such
that deg(Q) ≤ d− 1 and such that b divides Q(x).

Since B = A[x] is an integral domain, it follows that the polynomial
P ∈ A[T ] is irreducible in L[T ]. Since the characteristic of L is zero, it
follows that P has exactly d distinct roots and so the gcd of P and P ′ is equal
to 1. This further implies that there exists r ∈ A \ {0} and R1, R2 ∈ A[T ]
such that r = R1P+R2P

′. Set a = rpdq where q ∈ A is a nonzero coefficient
of Q ∈ A[T ].

Let now ϕ : A→ K be a K-algebra homomorphism such that ϕ(a) 6= 0.
Consider the canonical extension Φ : A[T ] → K[T ] :

∑
aiT

i 7→
∑
ϕ(ai)T

i.
Since ϕ(pd) 6= 0, the polynomial Φ(P ) has degree d. Since Φ(R1)Φ(P ) +
Φ(R2)Φ(P )′ = ϕ(r) 6= 0, the polynomial Φ(P ) has exactly d roots in K.
Since ϕ(q) 6= 0, the polynomial Φ(Q) is nonzero and has degree less than
or equal to d − 1. We may choose a root λ ∈ K of Φ(P ) that is not a
root of Φ(Q). This implies that

∑
ϕ(qi)λ

i 6= 0. Consider the K-algebra
homomorphism ϕ : A[T ] → K :

∑
aiT

i 7→
∑
ϕ(ai)λ

i. Denote by I =
ker(A[T ] → B). We claim that ϕ(I ) = 0. Indeed, let R ∈ I . Then
R ∈ I(x) and so there exists R0 ∈ L[T ] such that R = R0P ∈ A[T ]. If
R = 0, it is clear that ϕ(R) = 0. If R 6= 0, set n− 1 = deg(R0) with n ≥ 1.
Then it is easy to see that pndR0 ∈ A[T ]. It follows that pndR = (pndR0)P and
so ϕ(pndR) = ϕ(pndR0)ϕ(P ) = 0. Since ϕ(pnd ) 6= 0, it follows that ϕ(R) = 0.
Therefore, ϕ : B → K :

∑
aix

i 7→
∑
ϕ(ai)λ

i is a well-defined K-algebra
homomorphism such that ϕ|A = ϕ and such that ϕ(b) 6= 0 since ϕ(b) divides∑
ϕ(qi)λ

i 6= 0. This finishes the proof of the claim. �

We may apply Claim 3.4 to b = 1 to obtain a regular function a ∈
A = K[W] satisfying the conclusion of the claim. Consider the principal
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open set Ua = {w ∈ W | a(w) 6= 0}. For every w ∈ Ua, consider the
K-algebra homomorphism ϕw : K[W] → K : P 7→ P (w). Since ϕw(a) =
a(w) 6= 0, there exists a K-algebra homomorphism ϕw : B → K such that
ϕw = ϕw ◦ f∗. Note that there exists a unique point v ∈ V such that ϕw =
ϕv : K[V]→ K : P 7→ P (v). Then we have ϕw = ϕw ◦ f∗ = ϕv ◦ f∗ = ϕf(v)

and so w = f(v) ∈ f(V). This shows that Ua ⊂ f(V) and finishes the proof
of the theorem. �

It is possible to further refine Chevalley’s Theorem to obtain the follow-
ing precise statement.

Corollary 3.5. Let V and W be irreducible algebraic varieties and
f : V→W a dominant morphism. The following assertions hold:

(i) There exists a Zariski dense open set U ⊂ V such that for every
u ∈ U, the differential duf : Tu(V)→ Tf(u)(W) is surjective.

(ii) Assume that V and W are defined over k and that f : V → W
a bijective k-morphism. Then there exists a Zariski dense open
set W0 ⊂ W such that W0 is defined over k and such that f :
f−1(W0)→W0 is a k-isomorphism.

We refer the reader to [Hu75, Section I.4] for further details.

2. Algebraic groups

2.1. Generalities. For every n ≥ 1, we identify the space Mn =

Mn(K) with Kn2
in the usual way. Recall that det ∈ K[Xij | 1 ≤ i, j ≤ n].

Then the linear group GLn = GLn(K) = det−1(K \ {0}) is a principal open

set of Kn2
. It can also be regarded as the affine algebraic variety

GLn = {(A, t) ∈ Mn(K)×K | det(A)t = 1} ⊂ Kn2+1.

Definition 3.6. A linear algebraic group G is a Zariski closed subgroup
G < GLn. We say that G is a linear algebraic k-group if the affine algebraic
variety G ⊂ GLn is defined over k. Then we define the group of its k-points
by G(k) = G ∩GLn(k).

By definition, GLn is a linear algebraic group and we have

K[GLn] = K[Xij , Z | 1 ≤ i, j ≤ n]/(det((Xij)ij)Z = 1)

= K[Xij ,det((Xij)ij)
−1 | 1 ≤ i, j ≤ n].

All the algebraic groups we consider in these notes are assumed to be linear.

Examples 3.7. Here are some classical examples of (linear) algebraic
groups. All the following algebraic groups are defined over Q.

(1) The additive group Ga = (K,+) can be regarded as

Ga =

{(
1 x
0 1

)
| x ∈ K

}
< GL2 .

Then we have K[Ga] = K[T ].
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(2) The multiplicative group Gm = (K∗,×) can be regarded as

Gm =

{(
z 0
0 t

)
| z, t ∈ K, zt = 1

}
< GL2 .

Then we have K[Gm] = K[Z, T ]/(ZT = 1) = K[T, T−1].
(3) The special linear group SLn is defined as

SLn = {g ∈ GLn | det(g) = 1} < GLn .

Then K[SLn] = K[Xij | 1 ≤ i, j ≤ n]/(det((Xij)ij) = 1).
(4) The projective linear group PGLn can be regarded as a linear alge-

braic group as follows. Consider the algebra Mn = Mn(K) and its
automorphism group Aut(Mn). The map ι : PGLn → Aut(Mn) :
g 7→ (X 7→ gXg−1) is a well-defined injective group homomor-
phism. By Skolem–Noether theorem, ι : PGLn → Aut(Mn) is onto
and so we may identify PGLn with Aut(Mn). Using the usual iden-

tification of Mn with Kn2
, we may then regard Aut(Mn) < GLn2

as a Zariski closed subgroup.

We record the following useful fact.

Lemma 3.8. Let H < GLn be a subgroup and denote by H = H ⊂ GLn
its Zariski closure. Then H < GLn is an algebraic group.

Proof. It suffices to prove that H < GLn is a subgroup. Firstly, the
inversion map m : GLn → GLn : x 7→ x−1 is an isomorphism of algebraic
varieties. Since H−1 = H, it follows that

H−1 = H
−1

= H−1 = H = H

and so H is stable under inversion. Secondly, for every g ∈ GLn, the left
multiplication Lg : GLn → GLn : x 7→ gx is an isomorphism of algebraic
varieties. If g ∈ H, then gH = H and so we have

gH = gH = gH = H = H.

Likewise, for every h ∈ GLn, the right multiplication Rh : GLn → GLn :
x 7→ xh is an isomorphism of algebraic varieties. If h ∈ H, then the above
equality implies that Hh ⊂ H and so we have

Hh = Hh = Hh ⊂ H = H.

Thus, H is stable under multiplication and so H < GLn is a subgroup. �

Next, we turn to general structural properties of algebraic groups.

Proposition 3.9. Let G be an algebraic group. The following assertions
hold:

(i) The Zariski connected components of G coincide with the Zariski
irreducible components of G.
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(ii) Denote by G0 the Zariski connected component of the identity ele-
ment e ∈ G. Then G0CG is a normal Zariski closed subgroup and
has finite index. Moreover, any Zariski connected closed subgroup
of G is contained in G0. If G is defined over k, then so is G0.

(iii) Any finite index Zariski closed subgroup of G contains G0.

We say that an algebraic group G is (Zariski) connected if G = G0.

Proof. (i) Denote by Z1, . . . ,Zn the irreducible components of G that
contain the identity element e ∈ G. Denote by Z = Z1 · · ·Zn ⊂ G the
range of the morphism Z1 × · · · × Zn → G : (z1, . . . , zn) 7→ z1 · · · zn. Since
Z1 × · · · × Zn is irreducible, Z is irreducible and contains e ∈ G. Then
there exists i ∈ {1, . . . , n} such that Z ⊂ Zi. Since Zj ⊂ Z for every
j ∈ {1, . . . , n}, we infer that there exists a unique irreducible component
that contains e ∈ G. We denote this unique irreducible component by G0.
Then G0 ⊂ G is Zariski closed and the previous reasoning shows that G0

is stable under multiplication.
For every g ∈ G0, g−1G0 is the range of the morphism G0 → G : h 7→

g−1h and so g−1G0 is irreducible. Since e ∈ g−1G0, we have g−1G0 ⊂ G0.
This further implies that G0 is stable under inverse and so G0 < G is an
algebraic subgroup. For every g ∈ G, gG0g−1 is the range of the morphism
G0 → G : h 7→ ghg−1 and so gG0g−1 is irreducible. Since e ∈ gG0g−1,
we have gG0g−1 ⊂ G0. Likewise, we have g−1G0g ⊂ G0. This shows that
G0 CG is a normal subgroup.

For every g ∈ G0, the subset gG0 is an irreducible component of G hence
connected. Since K[G] is Noetherian, G has only finitely many irreducible
components and so G0 < G has finite index. This further implies that gG0

is Zariski open and closed for every g ∈ G. Therefore, (gG0)g∈G are the
Zariski connected components of G.

(ii) We already proved that G0CG is a normal Zariski closed subgroup
and has finite index. Let H < G be a Zariski connected closed subgroup.
Since e ∈ H and since G0 is the Zariski connected component of e ∈ G, it
follows that H < G0. Assume further that G is defined over k. For every
σ ∈ Gal(K/k), (G0)σ is the Zariski connected component in Gσ = G of the
identity element e ∈ G and so (G0)σ = G0. Thus, G0 < G is a k-subgroup.

(iii) Let H < G be a finite index Zariski closed subgroup. Then H < G
is also Zariski open and so H is a union of Zariski connected components of
G. Since e ∈ H, we have G0 < H. �

All the examples considered in Examples 3.7 are connected algebraic
groups.

A k-homomorphism ϕ : G→ H of algebraic k-groups is a k-morphism of
algebraic k-varieties that is also a group homomorphism. Note that ker(ϕ)C
G is a normal algebraic subgroup. Moreover, using Proposition 3.1, for every
σ ∈ Gal(K/k) and every h ∈ ker(ϕ), we have ϕ(σ(h)) = σ(ϕ(h)) = 0 and so
ker(ϕ)σ = ker(ϕ). Thus, ker(ϕ)CG is a k-subgroup.
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A k-representation of an algebraic k-group G in a finite dimensional
k-vector space V is a k-homomorphism π : G→ GL(V).

Definition 3.10. Let G be a connected algebraic k-group. We say that
G is

• semisimple if the only abelian normal connected algebraic subgroup
of G is {e}.
• simple if G is not abelian and if the only proper normal algebraic

subgroup of G is {e}.
• almost simple if G is not abelian and if the only proper normal

algebraic subgroups of G are finite.

Examples 3.11. For every n ≥ 2, we have that

• SLn is an almost simple connected algebraic group.
• PGLn is a simple connected algebraic group.

2.2. The Lie algebra of an algebraic group. Since GLn is a Zariski
open set of Mn, its tangent space Te(GLn) at e ∈ GLn is the k-vector space
Mn = End(Kn). More generally, let G < GLn be an algebraic k-group.
Then its tangent space Te(G) at e ∈ G is naturally a k-subspace of Mn

that we denote by Lie(G). It is the Lie algebra of G. By definition, we have
Lie(GLn) = Mn.

For every g ∈ G, consider the inner automorphism inn(g) : G → G :
x 7→ gxg−1. We denote by Ad(g) = de(inn(g)) : Lie(G) → Lie(G) : X 7→
gXg−1 its differential at e ∈ G. Then the map Ad : G→ GL(Lie(G)) : g 7→
Ad(g) is a k-representation called the adjoint representation of G.

The differential ad = de(Ad) : Lie(G) → End(Lie(G)) : X 7→ (Y 7→
XY −Y X) at e ∈ G is called the adjoint representation of Lie(G). We then
simply denote by [ · , · ] : Lie(G)×Lie(G)→ Lie(G) : (X,Y ) 7→ ad(X)(Y ) =
XY − Y X the Lie bracket on Lie(G). If H < G is a k-subgroup, then
Lie(H) ⊂ Lie(G) is a Lie k-subalgebra.

2.3. Algebraic actions of algebraic groups.

Definition 3.12. Let G be an algebraic k-group and V an algebraic
k-variety. An algebraic k-action G y V is an action for which the map
G × V → V : (g, v) 7→ gv is a k-morphism. We simply say that V is an
algebraic k-G-variety.

We say that V is a homogeneous algebraic k-G-variety if the action
G y V is transitive. The next result shows that orbits of algebraic actions
of algebraic groups are well-behaved.

Proposition 3.13. Let G be an algebraic k-group and V an algebraic
k-G-variety. Then for every v ∈ V, the orbit Gv is locally closed in V for
the Zariski topology. If v ∈ V(k), then the orbit Gv is a smooth k-G-variety
and the orbit map α : G→ Gv is a k-morphism.



2. ALGEBRAIC GROUPS 65

Proof. Let v ∈ V be a point and set W = Gv. Consider the G-
equivariant morphism f : G → W : g 7→ gv. By Theorem 3.3, there
exists a nonempty Zariski open set U of W such that U ⊂ Gv. Then
Gv =

⋃
g∈G gU is open in W. Therefore, the orbit Gv is locally closed

in V. Assume moreover that v ∈ V(k). Using Proposition 3.1, for every
σ ∈ Gal(K/k), we have (Gv)σ = Gσσ(v) = Gv and so Gv is a smooth
k-G-variety. Moreover, the orbit map α : G→ Gv is a k-morphism. �

Corollary 3.14. Let G and H be algebraic k-groups and ϕ : G → H
a k-homomorphism. Then ϕ(G) < H is a k-subgroup.

Proof. By Proposition 3.13, ϕ(G) is open in ϕ(G). Since any open

subgroup is also closed, it follows that ϕ(G) is closed in ϕ(G) and so ϕ(G) =

ϕ(G). Therefore, ϕ(G) < H is an algebraic subgroup. Moreover, the proof
of Proposition 3.13 shows that ϕ(G) < H is a k-subgroup. �

Let us point out that in Corollary 3.14, we always have ϕ(G(k)) ⊂
ϕ(G)(k) but in general ϕ(G(k)) 6= ϕ(G)(k). Indeed, consider ϕ : C∗ → C∗ :
z 7→ z2. Then ϕ(R∗) = R∗+ 6= R∗.

Proposition 3.15. Let G be an algebraic k-group and H < G a k-
subgroup. The following assertions hold:

(i) The centralizer ZG(H) < G is a k-subgroup. In particular, the
center Z (G) < G is a k-subgroup.

(ii) The normalizer NG(H) < G is a k-subgroup.

Proof. Consider the k-G-variety V = G with the conjugation action
G y G. For every x ∈ G, consider the orbit map αx : G→ G : g 7→ gxg−1,
which is a morphism of varieties.

(i) By definition, we have

ZG(H) = {g ∈ G | ∀h ∈ H, αh(g) = h} =
⋂
h∈H

α−1
h ({h}).

It follows that ZG(H) < G is Zariski closed. Using Proposition 3.1 and
since H is defined over k, for every σ ∈ Gal(K/k), every g ∈ ZG(H) and
every h ∈ H, we have σ(g)h = σ(gσ−1(h)) = σ(σ−1(h)g) = hσ(g) and so
σ(g) ∈ ZG(H). This implies that ZG(H) is a k-subgroup.

(ii) Using the descending chain condition, we have

NG(H) = {g ∈ G | ∀h ∈ H, αh(g) ∈ H} =
⋂
h∈H

α−1
h (H).

It follows that NG(H) < G is Zariski closed. Using Proposition 3.1 and
since H is defined over k, for every σ ∈ Gal(K/k), every g ∈ NG(H) and
every h ∈ H, we have σ(g)hσ(g−1) = σ(gσ−1(h)g−1) ∈ H. This implies
that NG(H) is a k-subgroup. �
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Note that if G is a connected algebraic group, then any finite (algebraic)
normal subgroup is necessarily central. Indeed, let H CG be a finite (al-
gebraic) normal subgroup. Then ZG(H) < G is a finite index algebraic
subgroup by Proposition 3.15. Since G is connected, we have G = ZG(H)
by Proposition 3.9 and so H < Z (G).

The next result enables us to define the notion of homogeneous space in
the setting of algebraic k-groups.

Theorem 3.16 (Chevalley). Let G be an algebraic k-group and H < G
a k-subgroup. Then there exists a k-representation π : G → GL(V) and a
point x ∈ P(V(k)) such that H = StabG(x).

In particular, the homogeneous space G/H has a natural structure of
smooth quasiprojective algebraic k-G-variety. Moreover, the canonical pro-
jection π : G→ G/H is a G-equivariant k-morphism such that H = π(e) ∈
(G/H)(k).

Proof. For every m ≥ 1, set Km[G] = {P ∈ K[G] | deg(P ) ≤ m}.
Then Km[G] is a finite dimensional k-subspace of K[G]. Since K[G] is
Noetherian, the vanishing ideal I(H) is finitely generated. Then there exists
m ≥ 1 such that Im(H) = Km[G]∩I(H) generates I(H). Consider the well-
defined k-representation ρ : G→ GL(Km[G]) given by (ρ(g)P )(h) = P (hg)
for all g, h ∈ G and all P ∈ Km[G].

We claim that g ∈ H if and only if ρ(g)(Im(H)) = Im(H). Indeed,
it is clear that if g ∈ H, then ρ(g)(Im(H)) = Im(H). Conversely, assume
that ρ(g)(Im(H)) = Im(H). In particular, for every P ∈ Im(H), we have
P (g) = ρ(g)(P )(e) = 0. This implies that g ∈ H.

Denote by p = dimK(Im(H)). Consider the pth exterior algebra V =∧p(Km[G]), which is a finite dimensional k-vector space. Then W =∧p(Im(H)) is a one dimensional k-subspace of V and the natural map
π =

∧p ρ : G→ GL(V) is a k-representation. Moreover, we have

H = {g ∈ G | π(g)(W) = W} .

Then we can take x = W(k) ∈ P(V(k)) and we have H = StabG(x).
We may identify G/H with Gx. Since the orbit Gx is open in its closure

Gx, it follows that G/H has a natural structure of smooth quasiprojective
algebraic k-G-variety. Moreover, the canonical projection π : G→ G/H is
a G-equivariant k-morphism such that H = π(e) ∈ (G/H)(k). �

Whenever H is an algebraic k-group, we denote by Xk(H) the abelian
group of all k-regular characters χ : H → Gm. In Theorem 3.16, in case
Xk(H) = {1}, we can choose a point v ∈ V(k) such that H = {h ∈ G |
π(g)v = v}.

Next, we record the following useful universal property of the homoge-
neous space G/H.

Proposition 3.17. Let G be an algebraic k-group and V an algebraic
k-G-variety. For every v ∈ V(k), the orbit Gv is a smooth k-G-variety,
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the stabilizer H = StabG(v) < G is a k-subgroup and there exists a unique
G-equivariant k-isomorphism β : G/H → Gv such that α = β ◦ π, where
π : G→ G/H is the canonical projection and α : G→ Gv is the orbit map.

Proof. Using Proposition 3.1, for every σ ∈ Gal(K/k) and every h ∈
H, we have σ(h)v = σ(hv) = σ(v) = v and so Hσ = H. Thus, H < G is
a k-subgroup. Consider the product k-G-variety W = G/H ×Gv. Then
the orbit map Θ = π × α : G → W : g 7→ (gH, gv) is a k-morphism
and the orbit Θ(G) = G · (H, v) is a smooth k-G-variety. Denote by p1 :
W → G/H (resp. p2 : W → Gv) the projection on the first (resp. second)
coordinate. Since p1 ◦ Θ = π and since π is surjective, p1 : W → G/H is
surjective. Moreover, for all g, h ∈ G, if p1(Θ(g)) = p1(Θ(h)), then π(g) =
π(h) which implies that g−1h ∈ H and so Θ(g) = Θ(h). It follows that
p1 : Θ(G)→ G/H is a bijective k-morphism. By homogeneity, Corollary 3.5
implies that p1 : Θ(G)→ G/H is a k-isomorphism. Then β = p2 ◦ (p1)−1 :
G/H → Gv is a k-morphism such that α = β ◦ π. Observe that since
π : G→ G/H is surjective, the G-equivariant k-morphism β : G/H→ Gv
is necessarily unique. By injectivity and homogeneity, Corollary 3.5 implies
that β : G/H→ Gv is a k-isomorphism. �

In the case when the k-subgroup H C G is normal, we show that the
k-G-variety G/H is a linear algebraic k-group.

Theorem 3.18. Let G be an algebraic k-group and H C G a normal
k-subgroup. Then the k-G-variety G/H is a linear algebraic k-group.

Proof. Since HCG is normal, we may consider the action G y Xk(H)
defined by (gχ)(h) = χ(g−1hg) for every g ∈ G, every h ∈ H and every
χ ∈ Xk(H). Keep the same notation as in the proof of Theorem 3.16. We
have a k-representation π : G→ GL(V) and a one-dimensional k-subspace
W ⊂ V such that H = {g ∈ G | π(g)(W) = W}. Choose a nonzero vector
w ∈ W(k) and denote by χW ∈ Xk(H) the unique k-character such that
π(h)w = χW(h)w for every h ∈ H. Denote by Y = G · χW ⊂ Xk(H) the
G-orbit of χW in Xk(W).

For every χ ∈ Y , set Vχ = {v ∈ V | ∀g ∈ H, π(g)v = χ(g)v}. The sum∑
χ∈Y Vχ is direct and globally invariant under π(G). Upon replacing V by⊕
χ∈Y Vχ, we may assume that V =

⊕
χ∈Y Vχ. Observe that W ⊂ VχW .

Consider the adjoint k-representation Ad : GL(V) → GL(End(V)) :
g 7→ (u 7→ gug−1). Define the k-subspace A =

⊕
χ∈Y End(Vχ) ⊂ End(V) of

all endomorphisms preserving the direct sum
⊕

χ∈Y Vχ. Then A ⊂ End(V)

is globally invariant under (Ad ◦π)(G) and we denote by Ψ = Ad ◦π : G→
GL(A) the corresponding k-representation. We claim that H = ker(Ψ).
Indeed, let h ∈ H. Since π(h) acts by scalar multiplication on each k-
subspace Vχ for χ ∈ Y , it follows that Ψ(h) = 1. Conversely, let g ∈ G
be such Ψ(g) = 1. Then π(g) is central in A and so π(g) acts by scalar
multiplication on each k-subspace Vχ for χ ∈ Y . In particular, we have
π(g)(W) = W and so g ∈ H.
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Then Ψ(G) < GL(A) is a k-subgroup. By Proposition 3.17, there exists
a unique G-equivariant k-isomorphism β : G/H → Ψ(G) such that Ψ =
β ◦ π. Moreover, β : G/H→ Ψ(G) is a group homomorphism. This shows
that G/H is a linear algebraic k-group. �

3. Stabilizers and tameness of algebraic actions

In this section, we assume that k is a local (i.e. nondiscrete locally
compact) field of characteristic zero. It is known that k is either R, C or a
finite extension of Qp for some prime p ∈P.

For any algebraic k-variety V, the set V(k) of its k-points is endowed
with a natural topology induced from the topology of the local field k. Then
V(k) is a Hausdorff locally compact second countable topological space. If
the algebraic k-variety V is moreover smooth, then V(k) has a natural
structure of smooth k-analytic manifold. In that case, for every v ∈ V(k),
the space Tv(V)k can be identified with the tangent space Tv(V(k)) of the
smooth k-analytic manifold V(k) at the point v ∈ V(k).

For any algebraic k-group G, the group G(k) of its k-points has a natural
structure of k-analytic Lie group. In particular, if k = R, then G(R) is a
real Lie group. Moreover, the space Lie(G)k can be identified with the Lie
algebra Lie(G(k)) of the k-analytic Lie group G(k).

Proposition 3.19. Let G be a Zariski connected algebraic k-group.
Then G(k) is Zariski dense in G.

Proof. Denote by H the Zariski closure of G(k) in G. Then H < G
is a k-subgroup by Proposition 3.2. Moreover, we have Lie(H) = Lie(G).
Since G is Zariski connected, it follows that H = G (see [Bo91, 7.1]). �

Let us point that even though G is Zariski connected, the k-analytic
Lie group G(k) need not be connected. More precisely, if k = C, then
G(k) is connected for the analytic topology. If k = R, then the connected
component G(R)0 of the identity element has finite index in G(R).

3.1. Stabilizers and tameness of Gy V . In this subsection, we use
the following notation. Let G be a connected algebraic k-group and V an
algebraic k-G-variety. Set G = G(k) and V = V(k). For every v ∈ V ,
the G-orbit Gv is a smooth k-G-variety, the stabilizer H = StabG(v) < G
is a k-subgroup and there exists a unique G-equivariant k-isomorphism β :
G/H → Gv such that α = β ◦ π, where α : G → Gv is the orbit map and
π : G→ G/H is the canonical G-equivariant k-regular projection.

Theorem 3.20. Keep the same notation as above. For every v ∈ V ,
the G-orbit Gv is locally closed in V for the analytic topology. Moreover,
letting H = H(k) = StabG(v), the restriction β|G/H : G/H → Gv is a
homeomorphism, when G/H is endowed with the quotient topology and Gv ⊂
V is endowed with the relative topology.
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In particular, Theorem 3.20 implies that the Borel action Gy V is tame
and the quotient Borel space G\V is standard.

Proof of Theorem 3.20. Since the orbit map α : G → Gv is sur-
jective, Corollary 3.5 implies that the differential dgα is surjective on a
nonempty Zariski open set U ⊂ G. By homogeneity, the differential dgα is
surjective everywhere on G. In particular, using the identification Te(G) =
Lie(G), we have that deα : Lie(G)→ Tv(Gv) is surjective. Then

dimK(Lie(G)) = dimK(Tv(Gv)) + dimK(ker(deα)).

This further implies that

dimk(Lie(G)) = dimk(Tv((Gv)(k))) + dimk(ker(deα)(k))

and so the k-linear map deα|Lie(G) : Lie(G) → Tv((Gv)(k)) is surjective.
By the submersion theorem (see [Se65, Chapter III, Theorem, pp. 85]),
α|G : G→ (Gv)(k) is open on a neighborhood of the identity element. This
further implies that all the G-orbits are open in (Gv)(k). Therefore, all the
G-orbits are both open and closed in (Gv)(k). In particular, the orbit Gv
is both open and closed in (Gv)(k).

By Theorem 3.3, Gv is Zariski locally closed in V. In particular, it
follows that (Gv)(k) is locally closed in V = V(k) for the analytic topology.
Therefore, we infer that Gv is locally closed in V . The conclusion of the
theorem follows from Proposition 2.12. �

For any algebraic k-group G and any k-subgroup H < G, we consider
the algebraic k-G-variety V = G/H and the canonical G-equivariant k-
regular projection π : G → G/H so that H = π(e) ∈ (G/H)(k). The
proof of Theorem 3.20 shows that the G(k)-orbit G(k)π(e) is open and
closed in (G/H)(k). Since H(k) = StabG(k)(π(e)), we may identify the
G(k)-orbit G(k)π(e) with G(k)/H(k) and we have a natural continuous
injective mapping ι : G(k)/H(k) ↪→ (G/H)(k). Let us point out that in
general, we have ι(G(k)/H(k)) 6= (G/H)(k). In what follows, we regard
G(k)/H(k) ⊂ (G/H)(k) as an open and closed subset.

Let (X, ν) be a standard probability space. We denote by V = L0(X,V )
the space of all ν-equivalence classes of measurable maps ψ : X → V .
Endowed with the topology of convergence in measure, V is a Polish space.
Consider the continuous action G y V defined by (gψ)(x) = gψ(x) for
every g ∈ G and every ψ ∈ V . We obtain the following generalization of
Theorem 3.20.

Theorem 3.21. Keep the same notation as above. For every ψ ∈ V ,
the orbit Gψ is locally closed in V and there exists a k-subgroup Hψ < G
such that StabG(ψ) = Hψ(k).

Proof. Let ψ ∈ V . In order to show that the orbit Gψ is locally
closed in V , using Proposition 2.12, it suffices to show that the map Gψ →
G/ StabG(ψ) : gψ 7→ g StabG(ψ) is continuous. Using the fact that con-
vergence in measure for a sequence implies convergence almost everywhere
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for a subsequence, it suffices to prove that for any sequence (gn)n in G
such that gnψ → ψ ν-almost everywhere, gn StabG(ψ) → StabG(ψ) in
G/ StabG(ψ). Let X1 ⊂ X be a conull measurable subset and (gn)n a
sequence in G such that gnψ(x) → ψ(x) for every x ∈ X1. Fix a count-
able dense subgroup Λ < StabG(ψ). It is clear that g ∈ StabG(ψ) if and
only if g ∈ StabG(ψ(x)) for ν-almost every x ∈ X. Since Λ < StabG(ψ)
is countable, there exists a conull measurable subset X0 ⊂ X1 ⊂ X such
that Λ ⊂

⋂
x∈X0

StabG(ψ(x)). Since the latter group is closed, it fol-
lows that StabG(ψ) ⊂

⋂
x∈X0

StabG(ψ(x)). Thus, we have StabG(ψ) =⋂
x∈X0

StabG(ψ(x)). For every x ∈ X0, set Hψ(x) = StabG(ψ(x)) which
is a k-subgroup by Proposition 3.17. By the descending chain condition,
there exist x1, . . . , xp ∈ X such that

⋂
x∈X0

Hψ(x) =
⋂p
i=1 Hψ(xi). Set

Hψ =
⋂p
i=1 Hψ(xi), which is a k-subgroup of G. Then we have

StabG(ψ) = Hψ(k) =

p⋂
i=1

Hψ(xi)(k) =

p⋂
i=1

StabG(ψ(xi)).

Set Y =
∏p
i=1G/ StabG(ψ(xi)) and y = (StabG(ψ(xi)))i ∈ Y . Observe that

StabG(y) =
⋂p
i=1 StabG(ψ(xi)) = StabG(ψ). Moreover, Y is homeomorphic

to
∏p
i=1Gψ(xi), which is locally closed in

∏p
i=1(Gψ(xi))(k). By applying

Theorem 3.20 to the algebraic k-G-variety
∏p
i=1 Gψ(xi), we obtain that the

continuous action G y Y has locally closed orbits and so the map Gy →
G/ StabG(y) : gy 7→ g StabG(y) is continuous by Proposition 2.12. Since
gnψ(xi) → ψ(xi) for every i ∈ {1, . . . , p}, Proposition 2.12 and Theorem
3.20 imply that gn StabG(ψ(xi)) → StabG(ψ(xi)) for every i ∈ {1, . . . , p}.
This further implies that gny → y and so gn StabG(ψ) = gn StabG(y) →
StabG(y) = StabG(ψ). �

3.2. Stabilizers and tameness of Gy Prob(V ). For a locally com-
pact second countable group L, a standard Borel space Z and a Borel
action L y Z, we denote by Prob(Z)L the standard Borel space of all
L-invariant Borel probability measures on Z. As usual, we simply write
Prob(Z) = Prob(Z){e}.

Definition 3.22. Let G be an algebraic k-group and set G = G(k).
A closed subgroup L < G is said to be almost algebraic if there exists a
k-subgroup H < G such that H = H(k) sits as a cocompact closed normal
subgroup in L.

The first main result of this subsection is due to Bader–Duchesne–
Lécureux (see [BDL14, Proposition 1.9]). It is a generalization of Shalom’s
result [Sh97, Theorem 1.1].

Theorem 3.23. Let G be an algebraic k-group and set G = G(k). Let
L < G be a closed subgroup that is Zariski dense in G.

Then there exists a normal k-subgroup NCG such that the image of L in
(G/N)(k) is precompact. Moreover, for every algebraic k-G-variety V and
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every Borel probability measure µ ∈ Prob(V(k))L, we have µ = µ|VN∩V(k),

that is, µ is supported on the subset VN ∩V(k) of N-fixed points.

Proof. Consider the set A consisting of all algebraic subgroups H < G
for which there exists g ∈ G such that gHg−1 < G is a k-subgroup and
such that Prob((G/gHg−1)(k))L 6= ∅. Note that G ∈ A and so A 6= ∅.
Since the ring K[G] is Noetherian, A contains a minimal element Hmin <
G. Choose h ∈ G such that H0 = hHminh

−1 < G is a k-subgroup and
Prob((G/H0)(k))L 6= ∅. Set V0 = G/H0 and choose µ0 ∈ Prob(V0(k))L.
Firstly, we prove the following claim.

Claim 3.24. H0 is a normal k-subgroup of G.

Proof of Claim 3.24. Denote by N = NG(H0) the normalizer of H0

in G. Then N < G is a k-subgroup by Proposition 3.15. By contradiction,
assume that N 6= G. Consider

U =
{

(xH0, yH0) ∈ V0 ×V0 | y−1x /∈ N
}
.

Observe that U ⊂ V0×V0 is a nonempty Zariski open set that is invariant
under the diagonal action G y V0 × V0. Indeed, its complement (V0 ×
V0) \U is the inverse image of the diagonal {(gN, gN) | gN ∈ G/N} under
the canonical k-morphism G/H0 ×G/H0 → G/N×G/N. Moreover, U is
defined over k.

Denote by B ⊂ (V0 × V0)(k) the topological support of µ0 ⊗ µ0 ∈
Prob((V0 × V0)(k))L×L and by W the Zariski closure of B in V0 × V0.
Since B is (L × L)-invariant and since L × L is Zariski dense in G ×G, it
follows that W ⊂ V0×V0 is G×G-invariant and so W = V0×V0. Since
U ⊂ V0 ×V0 is Zariski open, we have that (µ0 ⊗ µ0)(U(k)) > 0. Indeed,
otherwise we would have B ⊂ V(k) \U(k) and so W ⊂ V \U 6= V0 ×V0,
a contradiction. We regard (µ0⊗µ0)|U(k) as a nonzero L-invariant measure
for the diagonal action and we set

η =
1

(µ0 ⊗ µ0)(U(k))
(µ0 ⊗ µ0)|U(k) ∈ Prob(U(k))L.

By Theorem 3.20, the Borel action G y U(k) is tame and Corollary A.6
implies that there exists u ∈ U(k) such that Prob(Gu)L 6= ∅. By Theorem
3.20, denote by H = StabG(u) the stabilizer k-subgroup and by β : G/H→
Gu the k-isomorphism. Letting H = H(k), we have that β|G/H : G/H →
Gu is a homeomorphism. Regarding G/H ↪→ (G/H)(k), it follows that
Prob((G/H)(k))L 6= ∅. Write u = (xH0, yH0) ∈ V0(k)×V0(k). Since H =
StabG(u), we have H < xH0x

−1 and so h−1x−1Hxh < Hmin. By minimality
of Hmin, we obtain h−1x−1Hxh = Hmin and so x−1Hx = H0. Likewise, we
have y−1Hy = H0. This implies that y−1x ∈ N, a contradiction. Thus
H0 CG is a normal k-subgroup. In particular, we have H0 = Hmin. �

Since H0 CG is a normal k-subgroup by Claim 3.24, we simply write
H0 = N. We fix µN ∈ Prob((G/N)(k))L.
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Secondly, we show that the image of L in (G/N)(k) is precompact.
Indeed, set S = (G/N)(k) and denote by T the closure of the image of L in
S. By Theorem 2.10 and considering the left translation action T y S, the
quotient space T\S is a Hausdorff locally compact second countable space
and so T\S is a standard Borel space. By continuity and density and since
µN ∈ Prob(S)L, we have µN ∈ Prob(S)T . Then Corollary A.6 implies that
there exists s ∈ S and η ∈ Prob(Ts)T . Denote by µ = Rs∗η ∈ Prob(T )T

the pushforward measure of η by the right translation by s−1. Then T is a
locally compact group that carries a Haar probability measure and so T is
compact by Proposition 1.6. This shows that the image of L in (G/N)(k)
is precompact.

Thirdly, let V be a k-G-variety and µ ∈ Prob(V(k))L an L-invariant
Borel probability measure on V(k). We need to show that µ = µ|VN∩V(k).

By contradiction, assume that µ 6= µ|VN∩V(k). Denote by W the Zariski

closure of VN ∩V(k) in V. Then W is defined over k by Proposition 3.2
and since N CG, W is G-invariant. By definition, N acts trivially on W
and so W(k) = VN ∩ V(k). Consider the k-G-variety U = V\W. By
assumption, we have µ(U(k)) > 0. Upon replacing V by U and considering

1
µ(U(k))µ|U(k) on U(k), we may assume that V = U, that is, VN∩V(k) = ∅.
Consider the k-G-variety G/N×V and observe that µN⊗µ ∈ Prob((G/N×
V)(k))L. By Theorem 3.20, the Borel action G y (G/N ×V)(k) is tame
and Corollary A.6 implies that there exists w ∈ (G/N × V)(k) such that
Prob(Gw)L 6= ∅. By Theorem 3.20, denote by H = StabG(w) the stabilizer
k-subgroup and by β : G/H→ Gw the k-isomorphism. Letting H = H(k),
we have that β|G/H : G/H → Gw is a homeomorphism. Regarding G/H ↪→
(G/H)(k), it follows that Prob((G/H)(k))L 6= ∅. Write w = (xN, v) ∈
(G/N×V)(k) = (G/N)(k)×V(k). Since H = StabG(w) and since NCG,
we have H < xNx−1 = N. By minimality of N, we obtain H = N. This
further implies that v ∈ VN∩V(k), a contradiction. This finishes the proof
of the theorem. �

Theorem 3.23 has several striking consequences. The first corollary deals
with the structure of stabilizers of probability measures on algebraic varieties
(see also [Zi84, Theorem 3.2.4]).

Corollary 3.25. Let G be an algebraic k-group and V an algebraic
k-G-variety. For every µ ∈ Prob(V(k)), the stabilizer StabG(k)(µ) < G(k)
is almost algebraic.

Proof. Upon considering the Zariski closure of L = StabG(k)(µ) in G,
which is a k-subgroup of G by Proposition 3.2, we may assume that L is
Zariski dense in G. Set G = G(k) and V = V(k). By Theorem 3.23, there
exists a normal k-subgroup NCG such that the image of L in (G/N)(k) is
precompact and such that µ is supported on VN∩V . Since N acts trivially
on VN, N = N(k) acts trivially on VN ∩ V and we have that N C L is a
closed normal subgroup. It follows that the image of L in G/N is closed.
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Therefore, the image of L in (G/N)(k) is closed whence compact and so L
is almost algebraic in G. �

The second corollary is Borel’s density theorem.

Corollary 3.26. Let G be a connected algebraic k-group. Assume that
for every proper normal k-subgroup N CG, the group G(k)/N(k) in non-
compact.

Then for any lattice Γ < G(k), we have that Γ is Zariski dense in G.

Proof. Set G = G(k). Denote by ν ∈ Prob(G/Γ) the unique G-
invariant Borel probability measure on G/Γ. Denote by H the Zariski
closure of Γ in G and set H = H(k). Then H < G is a k-subgroup by
Proposition 3.2 and so G/H is an algebraic k-G-variety. Since Γ < H(k),
we may consider the G-equivariant factor map q : G/Γ → G/H. Regard-
ing G/H ↪→ (G/H)(k), we may view µ = q∗ν ∈ Prob((G/H)(k))G as a
G-invariant Borel probability measure on (G/H)(k). Using the assumption,
the k-normal subgroup NCG appearing in Theorem 3.23 is equal to G and
we obtain that µ is supported on (G/H)G ∩ (G/H)(k). In particular, we
have (G/H)G 6= ∅ and so H = G. �

In particular, for any (almost) simple algebraic k-group G such that
G(k) is noncompact, for any lattice Γ < G(k), we have that Γ is Zariski
dense in G.

The second main result of this subsection is Zimmer’s tameness theorem
(see [Zi84, Theorem 3.2.6]).

Theorem 3.27 (Zimmer [Zi84]). Let G < GLn be an algebraic k-group.
Regard the projective space Pn−1 as an algebraic k-G-variety.

Then the action G(k) y Prob(Pn−1(k)) is tame.

Firstly, we show that the proof reduces to the case when G = GLn.

Claim 3.28. Assume that the action GLn y Prob(Pn−1(k)) has locally
closed orbits. Then for any algebraic k-subgroup G < GLn, the action
G(k) y Prob(Pn−1(k)) is tame.

Proof. Let µ ∈ Prob(Pn−1(k)) be a Borel probability measure. Since
the orbit GLn(k)µ is locally closed in Prob(Pn−1(k)), Proposition 2.12 im-
plies that the map GLn(k)/StabGLn(k)(µ) → GLn(k)µ : g StabGLn(k)(µ) 7→
gµ is a homeomorphism. Since G(k)µ ⊂ GLn(k)µ, in order to show that
G(k)µ is locally closed in Prob(Pn−1(k)), it suffices to show that G(k)µ is
locally closed in GLn(k)µ. Thus, using Theorem 2.13, it suffices to show that
the action G(k) y GLn(k)/ StabGLn(k)(µ) is tame. Moreover, using Propo-
sition A.4, it suffices to show that action StabGLn(k)(µ) y GLn(k)/G(k) is
tame.

Set Z = GLn(k)/G(k). By Corollary 3.25, there exists a k-subgroup
H < G such that H = H(k) sits as a cocompact closed normal subgroup in
L = StabGLn(k)(µ). By Theorem 3.21, the actionH y Z is tame. Since L/H
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is a compact group and since H\Z is a standard Borel space, Proposition A.3
implies that the action L/H y H\Z is tame. It follows that the quotient
Borel space L\Z ∼= (L/H)\(H\Z) is countably separated. Therefore, the
action Ly Z is tame. This finishes the proof of the claim. �

Secondly, we consider the case when G = GLn. We introduce some
notation. The projective space X = Pn−1(k) is a compact metrizable space.
Then Prob(X) endowed with the weak∗-topology is a compact metrizable
space. Denote by C the space of all closed subsets of X. Then C endowed
with the Hausdorff metric is a compact metric space. For every A ∈ C , we
denote by Prob(A) the space of all Borel probability measures on X that are
supported on A. Then Prob(A) ⊂ Prob(X) is a closed subset. Whenever
A ⊂ C is a nonempty subset, we set Prob(A ) =

⋃
A∈A Prob(A). We record

the following easy lemma.

Lemma 3.29. Let (Aj)j be a sequence in C and A ∈ C . For every j ∈ N,
let µj ∈ Prob(Aj) and µ ∈ Prob(X). Assume that Aj → A in C and that
µj → µ in Prob(X). Then µ ∈ Prob(A).

In particular, if A ⊂ C is closed, then Prob(A ) ⊂ Prob(X) is closed.

Proof. Let f ∈ C(X) be a continuous function such that supp(f)∩A =
∅. Since Aj → A in C with respect to the Hausdorff metric, there exists
j0 ∈ N such that supp(f) ∩Aj = ∅ for every j ≥ j0. Then we have∫

X
f dµ = lim

j

∫
X
f dµj = 0.

This shows that µ ∈ Prob(A).
Next, assume that A ⊂ C is closed. Let (µj)j∈N be a sequence in

Prob(A ) and µ ∈ Prob(X) such that µj → µ in Prob(X). For every j ∈ N,
choose Aj ∈ A such that µj ∈ Prob(Aj). Since C is a compact metric space
and since A ⊂ C is closed, upon taking a subsequence, we may assume
that there exists A ∈ A such that Aj → A in A . The previous result
implies that µ = limj µj ∈ Prob(A) and so µ ∈ Prob(A ). This shows that
Prob(A ) ⊂ Prob(X) is closed. �

Consider the natural map q : kn \ {0} → Pn−1(k). For any nonzero
subspace V ⊂ kn, we denote by [V ] = q(V ) ⊂ Pn−1(k) the corresponding
projective subspace. We record the following variation of a well-known result
due to Furstenberg (see [Fu62, Lemma 1.5]).

Let V ⊂ kn be a nonzero subspace and set r = dim(V ). Denote by
In,r(k) ⊂ Mn,r(k) the open subset of all injective linear maps g : V → kn.
Consider the quotient space In,r(k)/k∗ and denote by In,r(k)→ In,r(k)/k∗ :
g 7→ [g] the quotient map.

Lemma 3.30. Let V ⊂ kn be a nonzero subspace, µ ∈ Prob([V ]) a Borel
probability measure and (gj)j∈N a sequence in In,r(k). Assume that [gjV ]→
[W ] in C and that gj∗µ→ ν in Prob(Pn−1(k)).
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Then either the sequence ([gj ])j∈N is precompact in In,r(k)/k∗ or there
exist nonzero subspaces Y,Z ⊂W such that ν is supported on [Y ]∪ [Z] with
dim(Y ) + dim(Z) = dim(W ).

Proof. Assume that ([gj ])j∈N is not precompact in In,r(k)/k∗. For
every j ∈ N, set hj =

gj
‖gj‖ : V → kn. Upon taking a subsequence, we may

assume that there exists a linear map h : V → kn such that limj ‖h−hj‖ = 0
and ker(h) 6= {0}. Set {0} 6= N = ker(h) ⊂ V and {0} 6= Z = range(h) ⊂W
so that we have dim(N) + dim(Z) = dim(V ) = dim(W ). Upon taking a
subsequence, we may assume that [gjN ] → [Y ] where Y ⊂ W . We have
dim(Y ) + dim(Z) = dim(W ). We claim that ν = limj gj∗µ is supported on
[Y ] ∪ [Z]. Write µ = µ1 + µ2 where µ1 = µ|[N ] and µ2 = µ|[V ]\[N ]. Upon
taking a subsequence, we may assume that for every i ∈ {1, 2}, the limit
νi = limj gj∗µi exists so that we have ν = ν1 + ν2. It is clear that ν1 is
supported on [Y ]. It remains to show that ν2 is supported on [Z]. Let
f ∈ C(Pn−1(k)) be a continuous function such that supp(f) ∩ [Z] = ∅. For
every j ∈ N, we may extend gj : kn → kn to a linear map and we have∫

Pn−1(k)
f dν2 = lim

j

∫
Pn−1(k)

f dgj∗µ2

= lim
j

∫
Pn−1(k)

f(gjx) dµ2(x)

= lim
j

∫
[V ]\[N ]

f(gjx) dµ2(x).

For every x ∈ [V ]\[N ], we have limj f(gjx) = 0. Then Lebesgue’s dominated
convergence theorem implies that

∫
Pn−1(k) f dν2 = 0. Thus, ν2 is supported

on [Z] and so ν = ν1 + ν2 is supported on [Y ] ∪ [Z]. �

Denote by A ⊂ C the closed subset consisting of all elements of the form

A =
⋃`
i=1[Vi] where Vi ⊂ kn is a nonzero subspace such that Vi 6⊂ Vj for all

1 ≤ i 6= j ≤ ` and
∑`

i=1 dim(Vi) ≤ n. Set `(A) = ` and d(A) =
∑`

i=1 dim(Vi)
and observe that 1 ≤ `(A), d(A) ≤ n.

We are now ready to prove Theorem 3.27.

Proof of Theorem 3.27. As we already explained, by Claim 3.28,
we may assume that G = GLn. By Proposition 2.12, It suffices to show
that the action GLn(k) y Prob(Pn−1(k)) has locally closed orbits. Let
µ ∈ Prob(Pn−1(k)) be a Borel probability measure. Set

d(µ) = min {d(A) | A ∈ A and µ ∈ Prob(A)}
`(µ) = max {`(A) | A ∈ A , µ ∈ Prob(A) and d(A) = d(µ)} .

Choose an element A ∈ A such that µ ∈ Prob(A) and d(A) = d(µ) and

`(A) = `(µ). Write A =
⋃`(µ)
i=1 [Vi] so that

∑`(µ)
i=1 dim(Vi) = d(µ). Since

µ ∈ Prob([
∑`(µ)

i=1 Vi]) and by choice of A ∈ A , it follows that dim(
∑`(µ)

i=1 Vi) =
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i=1 dim(Vi) = d(µ). In particular, the subspaces V1, . . . , V`(µ) are linearly

independent.
Denote by K (µ) ⊂ A the subset of all elements of the form B =⋃`(B)

i=1 [Wi] ∈ A where `(B) = `(µ)+1 and d(B) = d(µ), or d(B) ≤ d(µ)−1 or

dim(
∑`(B)

i=1 Wi) ≤ d(µ)−1. It is easy to see that K (µ) ⊂ Pn−1(k) is a closed
subset. Set U (µ) = Prob(X)\Prob(K (µ)), which is an open set by Lemma
3.29 and observe that µ ∈ U (µ). Moreover, U (µ) is invariant under the
natural action of GLn(k). To show that the orbit GLn(k)µ ⊂ Prob(Pn−1(k))

is locally closed, it suffices to show that GLn(k)µ = GLn(k)µ ∩ U (µ). We

clearly have GLn(k)µ ⊂ GLn(k)µ∩U (µ). It remains to prove the inclusion

GLn(k)µ ∩U (µ) ⊂ GLn(k)µ.
Choose a sequence (gj)j∈N in GLn(k) such that gj∗µ→ ν for some Borel

probability measure ν ∈ U (µ). We show that ν ∈ GLn(k)µ. Upon taking
a subsequence, we may further assume that [gjVi] → [Wi] in C for every
1 ≤ i ≤ `(µ). Note that dim(Wi) = dim(Vi) for every 1 ≤ i ≤ `(µ).

Moreover, since ν ∈ Prob([
⋃`(µ)
i=1 Wi]) and since ν ∈ U (µ), it follows that

d(µ) ≤ dim(

`(µ)∑
i=1

Wi) ≤
`(µ)∑
i=1

dim(Wi) =

`(µ)∑
i=1

dim(Vi) = d(µ).

This further implies that the subspaces W1, . . . ,W`(µ) are linearly indepen-
dent. For every 1 ≤ i ≤ `(µ), set µi = µ|[Vi], νi = ν|[Wi] and define the

sequence (hji : Vi → kn)j∈N by the formula hji = gj |Vi . Then for every

1 ≤ i ≤ `(µ), we have limj h
j
i ∗µi = νi.

Claim 3.31. For every 1 ≤ i ≤ `(µ), the sequence ([hji ])j∈N is precom-
pact in In,dim(Vi)(k)/k∗.

Proof. By contradiction, assume that the sequence ([hji ])j∈N is not
precompact in In,dim(Vi)(k)/k∗. Then Lemma 3.30 implies that there exist
nonzero subspaces Yi, Zi ⊂ Wi such that νi is supported on [Yi] ∪ [Zi] and
dim(Yi) + dim(Zi) = dim(Wi) = dim(Vi). There are two cases to consider:

• If Yi ∩Zi = {0}, then letting B = [W1] ∪ · · · ∪ [Wi−1] ∪ [Yi] ∪ [Zi] ∪
[Wi+1] ∪ · · · ∪ [W`(µ)] ∈ A , we have ν ∈ Prob(B), `(B) = `(µ) + 1
and d(B) = d(µ). This contradicts the fact that ν ∈ U (µ).
• If Yi ∩ Zi 6= {0}, then letting B = [W1] ∪ · · · ∪ [Wi−1] ∪ [Yi + Zi] ∪

[Wi+1]∪· · ·∪[W`(µ)] ∈ A , we have ν ∈ Prob(B) and dim(W1)+· · ·+
dim(Wi−1)+dim(Yi+Zi)+dim(Wi+1)+· · ·+dim(W`(µ)) ≤ d(µ)−1.
This contradicts again the fact that ν ∈ U (µ).

This finishes the proof of the claim. �

By Claim 3.31, upon taking a subsequence, for every 1 ≤ i ≤ `(µ), we

may assume that there exists a sequence (λji )j∈N in k∗ such that λjih
j
i → hi

as j → ∞, where hi : Vi → Wi is an isomorphism such that hi∗µi = νi.
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Choose any element h ∈ GLn(k) such that h|Vi = hi for every 1 ≤ i ≤ `(µ).
Then ν = h∗µ ∈ GLn(k)µ. This finishes the proof of the theorem. �





CHAPTER 4

Margulis’ superrigidity theorem

We prove Margulis’superrigidity theorem following the
approach by Bader–Furman [BF18a, BF18b].

This chapter is devoted to proving the following superrigidity theorem
for group homomorphisms due to Margulis (1975) (see [Ma91, Chapter 7]).

Margulis’superrigidity theorem. Let H be a connected semisimple
algebraic R-group with rkR(H) ≥ 2. Assume that H = H(R) has no compact
factor. Let Γ < H be an irreducible lattice.

Let k be a local field of characteristic zero, G a connected simple algebraic
k-group and set G = G(k). Let ρ : Γ → G be a homomorphism such that
ρ(Γ) < G is Zariski dense and unbounded.

Then there exists a unique continuous homomorphism ρ : H → G such
that ρ|Γ = ρ.

We will prove Margulis’ superrigidity theorem in the case when H is also
assumed to simple. More precisely, we will state and prove a superrigidity
theorem due to Bader–Furman [BF18a, BF18b]. We will then derive Mar-
gulis’ superrigidity theorem from Bader–Furman’s superrigidity theorem.

We present Bader–Furman’s approach to superrigidity that relies on the
concept of algebraic representation of ergodic actions. For Margulis’ proof
of his superrigidity theorem, we refer the reader to [Ma91, Chapter 7] (see
also [Zi84, Chapter 5] and [Be08, Chapter 10]).

1. Algebraic representations of ergodic actions

In this section, we follow the exposition given in [BF18a, Section 4] and
[BF18b, Section 3]. Let T be a locally compact second countable group,
(X, ν) a standard probability space and T y (X, ν) an ergodic action. Let
k be a local field of characteristic zero and G an algebraic k-group. Let
τ : T → G(k) be a continuous homomorphism. The following notion is
central in Bader–Furman’s approach (see [BF18a, Definition 4.1]).

Definition 4.1. An algebraic representation of T y X is the data of
an algebraic k-G-variety V and a T -equivariant measurable map φV : X →
V(k).

The equivariance condition means that for every t ∈ T and ν-almost
every x ∈ X, we have φV(tx) = τ(t)φV(x).

79
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We will simply refer to φV : X → V(k) as the algebraic representation
(of T y X). A morphism between φU and φV is the data of a G-equivariant
k-morphism π : U → V such that φV = π ◦ φU ν-almost everywhere. We
say that φV is a coset algebraic representation of T y X if V = G/H where
H < G is a k-subgroup. The class of algebraic representations of T y X
and their morphisms forms a category. Firstly, we prove the existence of
coset algebraic representations of T y X (see [BF18a, Proposition 4.2]).

Proposition 4.2. Let φV be an algebraic representation. Then there
exist a k-subgroup H < G, a coset algebraic representation φG/H and a G-
equivariant k-morphism β : G/H → V such that φV = β ◦ φG/H ν-almost
everywhere.

Proof. Set G = G(k) and V = V(k). We denote by p : V → G\V the
quotient map. By Theorem 3.20, the Borel action G y V is tame and the
quotient Borel space G\V is standard. Since the map p ◦ φV : X → G\V
is measurable and T -invariant and since the action T y (X, ν) is ergodic,
p ◦ φV is ν-almost everywhere constant. Let v ∈ V be a point such that
p ◦ φV = Gv ν-almost everywhere. Thus, φV(X) is essentially contained in
Gv.

By Theorem 3.20, denote by H = StabG(v) < G the stabilizer k-
subgroup and set H = H(k). Regard G/H ↪→ (G/H)(k). We obtain a
G-equivariant k-morphism β : G/H → V such that β|G/H : G/H → Gv
is a homeomorphism. Then the desired coset algebraic representation is
φG/H = (β|G/H)−1 ◦ φV : X → G/H ↪→ (G/H)(k). �

Secondly, we prove that the category of algebraic representations of T y
X has an initial object (see [BF18a, Theorem 4.3]).

Theorem 4.3. The category of algebraic representations of T y X has
an initial object that is a coset algebraic representation.

Proof. Consider the set A consisting of all algebraic subgroups H < G
for which there exists g ∈ G such that gHg−1 < G is a k-subgroup and
such that there exists a coset algebraic representation φG/gHg−1 : X →
(G/gHg−1)(k) of T y X. Note that G ∈ A and so A 6= ∅. Since the
ring K[G] is Noetherian, A contains a minimal element Hmin < G. Choose
h ∈ G such that H0 = hHminh

−1 < G is a k-subgroup and such that there
exists a coset algebraic representation φ0 : X → (G/H0)(k) of T y X. We
show that the coset algebraic representation φ0 : X → (G/H0)(k) is the
required initial object.

Let φV : X → V(k) be an algebraic representation of T y X. We need
to show that there exists a unique G-equivariant k-morphism β : G/H0 →
V such that φV = β ◦ φ0 ν-almost everywhere. By transitivity of G y
G/H0, if such a G-equivariant k-morphism β : G/H0 → V exists, it is nec-
essarily unique. It remains to prove that such a G-equivariant k-morphism
β : G/H0 → V exists. To do this, we consider the product algebraic repre-
sentation W = V ×G/H0 with φW = φV × φ0 ν-almost everywhere. By
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Proposition 4.2, there exists a k-subgroup H < G, a coset algebraic represen-
tation φG/H : X → (G/H)(k) of T y X and a G-equivariant k-morphism
θ : G/H → W such that φW = θ ◦ φG/H ν-almost everywhere. Consider
the G-equivariant k-morphism p2 ◦ θ : G/H → G/H0. Let g ∈ G be such
that gH0 = (p2 ◦ θ)(H) ∈ (G/H0)(k). Then H < gH0g

−1 = ghHmin(gh)−1.
By minimality of Hmin, it follows that H = ghHmin(gh)−1 = gH0g

−1 and
so p2 ◦ θ is a k-isomorphism. Then β = (p1 ◦ θ) ◦ (p2 ◦ θ)−1 : G/H0 → V is
the required G-equivariant k-morphism that satisfies φV = β ◦ φ0 ν-almost
everywhere. �

Following [BF18a], by a slight abuse of terminology, we call (a choice
of) a coset algebraic representation that is an initial object in the category
of algebraic representations of T y X the algebraic gate of T y X (even
though the choice is not canonical in general).

Thirdly, we prove that the algebraic gate is nontrivial when the action
T y X is amenable and metrically ergodic (see [BF18a, Theorem 4.5] and
[BDL14, Corollary 1.17]).

Theorem 4.4. Assume that G is a simple connected algebraic k-group,
T y X is amenable and metrically ergodic, and τ(T ) < G(k) is unbounded.
Then there exists a coset algebraic representation φG/H of T y X that is
nontrivial in the sense that H 6= G.

Proof. Choose a faithful irreducible k-representation ρ : G → GLn.
Note that since G is connected and simple, the adjoint k-representation
Ad : G → GL(Lie(G)) is faithful and irreducible. Then we may regard
G < GLn as a k-subgroup. Composing with the k-morphism GLn → PGLn,
we may further regard G < PGLn as a k-subgroup and V = Pn−1 as a k-
G-variety. Note that (Pn−1)G = ∅.

Set G = G(k). Since V = Pn−1(k) is compact and since T y (X, ν) is
amenable, Theorem 2.42 implies that there exists a T -equivariant measur-
able map β : X → Prob(V ). By Theorem 3.27, the action G y Prob(V )
is tame and the quotient Borel space G\Prob(V ) is standard. Denote by
p : Prob(V ) → G\Prob(V ) the quotient Borel map. Then the measur-
able map p ◦ β : X → G\Prob(V ) is T -invariant. Since T y (X, ν) is
ergodic, p ◦ β : X → G\Prob(V ) is ν-almost everywhere constant and so
there exists µ ∈ Prob(V ) such that β(X) is essentially contained in Gµ. Set
L = StabG(µ) < G. By Proposition 2.12, the orbit map G/L → Gµ is a
homeomorphism and so we may regard β : X → G/L as a T -equivariant
measurable map.

Denote by H the Zariski closure of L in G. Proposition 3.2 implies that
H is defined over k and we set H = H(k). By Theorem 3.23, there exists a
k-subgroup H0 < H < G such that H0 CH, the image of L is precompact
in (H/H0)(k) and µ is supported on (Pn−1)H0 ∩ V . Since (Pn−1)G = ∅, we
have H0 6= G. We prove the following claim.

Claim 4.5. We have that H0 6= {e}.
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Proof of Claim 4.5. By contradiction, assume that H0 = {e}. Then
L < H is a compact subgroup. Choose a compatible proper left invariant
metric dG on G (see [St73]). Denote by mL ∈ Prob(L) the Haar probability
measure on L. Upon replacing dG by the compatible right L-invariant metric

G×G→ R+ : (g1, g2) 7→
∫
L
dG(g1`, g2`) dmL(`),

we may assume that dG is also right L-invariant. Set Y = G/L and define

dY : Y × Y → R+ : (g1L, g2L) 7→ min
(`1,`2)∈L×L

dG(g1`1, g2`2).

Then dY is a compatible G-invariant metric on Y and (Y, dY ) is a separable
metric space. Since T y (X, ν) is metrically ergodic, it follows that β is
ν-almost everywhere constant and so there exists g ∈ G such that β =
gL ν-almost everywhere. Since τ(T ) < StabG(gL) = gLg−1, this further
implies that τ(T ) < G is bounded, a contradiction. Therefore, we have
H0 6= {e}. �

Since H0 6= G and H0 6= {e} by Claim 4.5, since H0CH and since G is
simple, we have H 6= G. Since L < H, we may consider the G-equivariant
factor map q : G/L → G/H. Regarding G/H ↪→ (G/H)(k), the map
φG/H = q ◦ β : X → (G/H)(k) is the desired nontrivial coset algebraic
representation. �

Fourthly, we observe that in the case when the action T y (X, ν) is pmp
and weakly mixing, the category of algebraic representations of T y (X, ν)
is essentially trivial (see [BF18b, Proposition 3.3]).

Proposition 4.6. Assume that the action T y (X, ν) is pmp and weakly
mixing. Then any algebraic representation φV of T y X is ν-almost every-
where constant. Moreover, letting H the Zariski closure of τ(T ) in G, the
essential image of φV is H-invariant.

Proof. Denote by L the closure of τ(T ) in G and by H the Zariski
closure of L in G. Set µ = φV∗ν ∈ Prob(V(k))L. By Theorem 3.23, there
exists a normal k-subgroup N CH such that the image of L in (H/N)(k)
is compact and such that µ is supported on VN ∩V(k). Denote by K the
closure of the image of L in (H/N)(k). Then K is a compact group and
the action K y (VN ∩ V(k), µ) is well-defined, pmp and weakly mixing.
Then a combination of Peter–Weyl theorem and Proposition 2.26 implies
that µ = δv for some point v ∈ VN ∩V(k). By equivariance, it follows that
v ∈ VN ∩V(k) is H-invariant. �

2. Algebraic representations of (S, T,Γ)

In this section, we follow the exposition given in [BF18b, Section 4]. In
order to prove Bader–Furman’s superrigidity theorem, we need to introduce
a more sophisticated category of algebraic representations. Let S be a locally
compact second countable group, Γ < S a lattice and T < S a closed
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subgroup. We endow S with its Haar measure mS . Let k be a local field
of characteristic zero and G an algebraic k-group. Set G = G(k) and fix
a group homomorphism ρ : Γ → G. The following notion is an extension
of the notion of algebraic representation from Definition 4.1 (see [BF18b,
Definition 4.1]).

Definition 4.7. An algebraic representation of (S, T,Γ) consists of the
following data:

• An algebraic k-group L;
• A k-(G×L)-algebraic variety V where the L-action is faithful. We

regard V as a left-G-right-L-space.
• A continuous group homomorphism τ : T → L(k) with Zariski

dense image.
• An algebraic representation φV : S → V(k) of Γ × T y S (in the

sense of Definition 4.1) where we regard S as a left-Γ-right-T -space.
For every γ ∈ Γ, every t ∈ T and mS-almost every s ∈ S, we have

φV(γst) = ρ(γ)φV(s)τ(t).

We simply refer to φV as the algebraic representation of (S, T,Γ) denot-
ing the extra data by LV and τV : T → LV(k). A morphism between φU
and φV is the data of a (G × LU,V)-equivariant k-morphism π : U → V
such that φV = π ◦φU ν-almost everywhere, where LU,V < LU×LV is the
Zariski closure of the image of τU × τV : T → LU(k) × LV(k). Note that
LU,V naturally acts on U (resp. V) via its projection to LU (resp. LV).

Let H < G be a k-subgroup and denote by N = NG(H) < G the
normalizer of H in G, which is a k-subgroup by Proposition 3.15. Denote
by AutG(G/H) the group of all G-equivariant automorphisms of G/H. It
is easy to see that the homomorphism

N→ AutG(G/H) : n 7→
(
gH 7→ gn−1H

)
is surjective and its kernel is equal to H. Under the identification N/H ∼=
AutG(G/H), the group of k-points (N/H)(k) is identified with the group
of k-G-automorphisms of G/H.

We say that φV is a coset algebraic representation of (S, T,Γ) if V =
G/H where H < G is a k-subgroup and L < NG(H)/H is a k-subgroup
which acts on G/H as described above. Firstly, we prove the existence of
coset algebraic representations of (S, T,Γ). The next proposition should be
compared with Proposition 4.2 (see [BF18b, Lemma 4.4]).

Proposition 4.8. Assume that the pmp action T y S/Γ is weakly
mixing. Let φV be an algebraic representation of (S, T,Γ). Then there exists
a k-subgroup H < G, a coset algebraic representation φG/H of (S, T,Γ) and
an equivariant k-morphism β : G/H→ V such that φV = β ◦ φG/H almost
everywhere.

Proof. Since T y S/Γ is weakly mixing hence ergodic, it follows that
Γ × T y S is ergodic. By Proposition 4.2, there exists a k-subgroup M <
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G×L, a coset algebraic representation φ(G×L)/M of Γ×T y S and a (G×L)-
equivariant k-morphism π : (G×L)/M→ V such that φV = π ◦ φ(G×L)/M

almost everywhere. Thus, we may assume that V = (G× L)/M.
Denote by p2 : G×L→ L the projection map. Then p2(M) < L is a k-

subgroup. By composing the G-invariant-L-equivariant k-morphism V →
L/p2(M) with the algebraic representation φV : S → V(k), we obtain a
well-defined algebraic representation φ : S/Γ→ (L/p2(M))(k) of T y S/Γ.
Since T y S/Γ is pmp and weakly mixing and since τV(T ) is Zariski dense
in L, Proposition 4.6 implies that p2(M) = L.

Set H = p1(M ∩G× {e}). Then H < G is a k-subgroup and the map

β : G/H→ V : gH 7→ (g, e)M

is a G-equivariant k-isomorphism of k-G-varieties. We may endow G/H
with a faithful L-action by pulling back the faithful L-action on V using
β : G/H → V. Then φG/H = β−1 ◦ φV is the desired coset algebraic
representation of (S, T,Γ). �

Secondly, we prove that the category of algebraic representations of
(S, T,Γ) has an initial object. The next theorem should be compared with
Theorem 4.3 (see [BF18b, Theorem 4.3]).

Theorem 4.9. Assume that the pmp action T y S/Γ is weakly mixing.
Then the category of algebraic representations of (S, T,Γ) has an initial ob-
ject that is a coset algebraic representation.

Proof. Consider the set A consisting of all algebraic subgroups H < G
for which there exists g ∈ G such that gHg−1 < G is a k-subgroup and
such that there exists a coset algebraic representation φG/gHg−1 : S →
(G/gHg−1)(k) of (S, T,Γ). Note that G ∈ A and so A 6= ∅. Since the
ring K[G] is Noetherian, A contains a minimal element Hmin < G. Choose
h ∈ G such that H0 = hHminh

−1 < G is a k-subgroup and such that there
exists a coset algebraic representation φ0 : S → (G/H0)(k) of (S, T,Γ).
Denote by L0 < NG(H0)/H0 the corresponding algebraic k-subgroup and
by τ0 : T → L0(k) the corresponding homomorphism. We show that the
coset algebraic representation φ0 : S → (G/H0)(k) is the required initial
object.

Let φV : S → V(k) be an algebraic representation of (S, T,Γ). We need
to show that there exists a unique equivariant k-morphism β : G/H0 → V
such that φV = β ◦ φ0 almost everywhere. By transitivity of G y G/H0,
if such an equivariant k-morphism β : G/H0 → V exists, it is neces-
sarily unique. It remains to prove that such an equivariant k-morphism
β : G/H0 → V exists. To do this, we consider the product algebraic
representation W = V × G/H0 with φW = φV × φ0 almost everywhere,
τW = τV × τ0 and LW the Zariski closure of τW(T ) in LV × L0. By
Proposition 4.8, there exists a k-subgroup H < G, a coset algebraic repre-
sentation φG/H : S → (G/H)(k) of (S, T,Γ) and an equivariant k-morphism
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θ : G/H→W such that φW = θ ◦ φG/H almost everywhere. Arguing as in
the proof of Theorem 4.3, the G-equivariant k-morphism p2 ◦ θ : G/H →
G/H0 is a k-isomorphism. Then β = (p1 ◦ θ) ◦ (p2 ◦ θ)−1 : G/H0 → V
is the required equivariant k-morphism that satisfies φV = β ◦ φ0 almost
everywhere. �

Thirdly, we prove that an initial object in the category of algebraic
representations of (S, T,Γ) naturally extends to an algebraic representation
of (S,N,Γ) where N = NS(T ) is the normalizer of T in S (see [BF18b,
Theorem 4.6]).

Theorem 4.10. Assume that the pmp action T y S/Γ is weakly mixing.
Let φ = φG/H be an initial object in the category of algebraic representations
of (S, T,Γ) with k-subgroup L < NG(H)/H and continuous homomorphism
τ : T → L(k). Set N = NS(T ).

Then there exist a continuous homomorphism τ : N → (NG(H)/H)(k)
satisfying τ |T = τ for which, letting L be the Zariski closure of τ(N) in
NG(H)/H, the data

φG/H : S → (G/H)(k), τ : N → L(k) < (NG(H)/H)(k)

forms an algebraic representation of (S,N,Γ).

Proof. Let n ∈ N . Consider τn : T → L(k) : t 7→ ntn−1 and φn : S →
(G/H)(k) : s 7→ φ(sn−1). For every γ ∈ Γ, every t ∈ T and almost every
s ∈ S, we have

φn(γst) = φ(γstn−1) = ρ(γ)φ(sn−1)τ(ntn−1) = ρ(γ)φn(s)τn(t).

It follows that φn : S → (G/H)(k) with τn : T → L(k) is an algebraic
representation of (S, T,Γ). Since φ is an initial object in the category of
algebraic representations of (S, T,Γ), there exists a unique equivariant k-
morphism τ(n) : G/H → G/H such that τ(n) ◦ φ = φn. We may regard
τ(n) ∈ (NG(H)/H)(k) and we have φ(sn−1) = φ(s)τ(n)−1 for almost every
s ∈ S. If n = t ∈ T , then we necessarily have τ(t) = τ(t). By uniqueness, we
obtain a group homomorphism τ : N → (NG(H)/H)(k) such that τ |T = τ .

Claim 4.11. τ : N → (NG(H)/H)(k) is continuous.

Proof of Claim 4.11. We follow the proof of [BF18a, Theorem 4.7].
For simplicity, set L = (NG(H)/H)(k), V = (G/H)(k) and V = L0(S, V ).
Endowed with the topology of convergence in measure, V is a Polish space.
Firstly, consider the action Ly V defined by (g ◦ψ)(s) = ψ(s)g−1 for every
g ∈ L and every ψ ∈ V . Then the action Ly V is free and continuous. By
Theorem 3.21, the action L y V has locally closed orbits. Then for every
ψ ∈ V , the map L → Lψ : g 7→ g ◦ ψ is a homeomorphism. In particular,
the map α : Lφ → L : gφ 7→ g is continuous. Secondly, consider the action
N y V defined by (nψ)(s) = ψ(sn) for every n ∈ N and every ψ ∈ V .
Then the action N y V is continuous. Indeed, this follows from the fact
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that for every measurable subset Y ⊂ S, the map N → R+ : n 7→ ν(Y n4Y )
is continuous. In particular, the map β : N → V : n 7→ φn is continuous.

By definition of τ : N → L, for every n ∈ N , we have τ(n) ◦ φ = φn and
so τ(n) = (α ◦ β)(n). Thus, τ : N → L is continuous. �

Denote by L the Zariski closure in NG(H)/H of τ(N). Observe that for
every γ ∈ Γ, every n ∈ N and almost every s ∈ S, we have

φ(γsn) = φn−1(γs) = φ(γs)τ(n) = ρ(γ)φ(s)τ(n).

Therefore, a combination of the above equation together with Claim 4.11
shows that φ : S → (G/H)(k) with τ : N → L(k) is an algebraic represen-
tation of (S,N,Γ). �

We infer the following useful consequence (see [BF18b, Corollary 4.7]).

Corollary 4.12. For every i ∈ {1, 2}, let Ti < S be a closed subgroup
such that the pmp action Ti y S/Γ is weakly mixing and denote by

φi : S → (G/Hi)(k), τi : Ti → Li(k) < (NG(H)/Hi)(k)

the initial object in the category of algebraic representations of (S, Ti,Γ).
If T2 normalizes T1, then there exists g ∈ G such that g−1H1g < G is

defined over k and H2 < g−1H1g.

Proof. Assume that T2 normalizes T1, that is, T2 < NS(T1). By The-
orem 4.10, we may regard φ1 : S → (G1/H1)(k) as an algebraic representa-
tion of (S, T2,Γ). Since φ2 : S → (G2/H2)(k) is an initial object in the cate-
gory of algebraic representations of (S, T2,Γ), there exists a G-equivariant k-
morphism π : G/H2 → G/H1 such that φ1 = π◦φ2 almost everywhere. This
implies that there exists g ∈ G such that g−1H1 = π(H2) ∈ (G/H1)(k).
This implies that g−1H1g < G is defined over k and H2 < g−1H1g. �

3. Bader–Furman’s superrigidity theorem

In order to state Bader–Furman’s superrigidity theorem, we introduce
the following adhoc terminology (see [BF18b]).

Definition 4.13. We say that a locally compact second countable group
S satisfies the higher rank condition if there exist finitely many closed non-
compact subgroups T0, . . . , Tn < S such that S is topologically generated by
{T0, . . . , Tn}, T0 is amenable, and in a cyclic order, for every i ∈ {0, . . . , n},
Ti+1 normalizes Ti inside S.

Example 4.14. Any connected simple real Lie groupH with finite center
and rkR(H) ≥ 2 satisfies the higher rank condition. For instance, when
H = SL3(R), we can use the following family of subgroups1 ∗ 0

0 1 0
0 0 1

 ,

1 0 ∗
0 1 0
0 0 1

 ,

1 0 0
0 1 ∗
0 0 1

 ,
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∗ 1 0
0 0 1

 ,

1 0 0
0 1 0
∗ 0 1

 ,

1 0 0
0 1 0
0 ∗ 1

 .

The main result of this section is Bader–Furman’s superrigidity theorem
(see [BF18b, Theorem 1.3]).

Theorem 4.15 (Bader–Furman [BF18b]). Let S be a locally compact
second countable group that satisfies the dynamical dichotomy for isometric
actions and the higher rank condition. Let Γ < S be a lattice.

Let k be a local field of characteristic zero, G a connected simple algebraic
k-group and set G = G(k). Let ρ : Γ → G be a homomorphism such that
ρ(Γ) < G is Zariski dense and unbounded.

Then there exists a unique continuous homomorphism ρ : S → G such
that ρ|Γ = ρ.

In particular, for every n ≥ 3, S = SLn(R) satisfies the dynamical di-
chotomy for isometric actions by Theorem 2.5 and the higher rank condition
by Example 4.14. Note that in case H is a simple algebraic R-group with
rkR(H) ≥ 2, Theorem 4.15 applied to S = H(R) implies Margulis’ super-
rigidity therorem.

The uniqueness part in Theorem 4.15 is a consequence of the following
general result (see [BF18a, Lemma 6.1]).

Lemma 4.16. Let S be a locally compact second countable group and
Γ < S a lattice. Let k be a local field of characteristic zero and G a con-
nected simple algebraic k-group. Let ρ1, ρ2 : S → G(k) be continuous ho-
momorphisms. Assume that ρ1(S) < G(k) is Zariski dense and unbounded
and that ρ1|Γ = ρ2|Γ. Then ρ1 = ρ2.

Proof. We start by proving the following claim.

Claim 4.17. We have that ρ1(Γ) = ρ2(Γ) is Zariski dense in G.

Indeed, denote by L1 < G(k) the closure of ρ1(S) in G(k). By assump-
tion, L1 is Zariski dense in G. By Theorem 3.23, there exists a normal
k-subgroup N1 CG such that the image of L1 in (G/N1)(k) is precompact
and such that for every algebraic k-G-variety V, we have Prob(V(k))L1 =
Prob(VN1 ∩V(k)). Since G is simple, either N1 = {e} or N1 = G. Since
L1 < G(k) is unbounded, we necessarily have N1 = G. Denote by H1 < G
the Zariski closure of ρ1(Γ) in G. Then H1 < G is a k-subgroup by Propo-
sition 3.2 and V1 = G/H1 is a k-G-variety. The continuous homomorphism
ρ1 : S → G(k) gives rise to an S-equivariant measurable map S/Γ→ V1(k).
Pushing forward the S-invariant Borel probability measure on S/Γ, we ob-
tain an L1-invariant Borel probability measure on V1(k) which is necessarily
supported on VG

1 ∩V1(k). Then VG
1 6= ∅ and so H1 = G. This shows that

ρ1(Γ) = ρ2(Γ) is Zariski dense in G.
Assume by contradiction that ρ1 6= ρ2. Choose s0 ∈ S such that ρ1(s0) 6=

ρ2(s0). Consider the diagonal homomorphism ρ = ρ1 × ρ2 : S → G(k) ×
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G(k). Denote by L the closure of ρ(S) in G(k) × G(k) and by L the
Zariski closure of L in G ×G. Since ρ1|Γ = ρ2|Γ, Claim 4.17 implies that
the Zariski closure of ρ(Γ) in G × G is equal to the diagonal subgroup
∆G < G×G. In particular, we have ∆G < L. We show that L = G×G.
Indeed, we have (ρ1(s0), ρ2(s0)) ∈ L(k) and (ρ2(s0), ρ2(s0)) ∈ L(k) and
thus (e, e) 6= (ρ1(s0)ρ2(s0)−1, e) ∈ L ∩ (G × {e}). Then L ∩ (G × {e}) is a
nontrivial normal k-subgroup of G × {e}. Since G is simple, we conclude
that G× {e} < L. Likewise, we have {e} ×G < L and so L = G×G.

Finally, we apply again Theorem 3.23 to the algebraic k-group G ×G
and the Zariski dense closed subgroup L < G(k)×G(k). Then there exists a
normal k-subgroup NCG×G such that the image of L in ((G×G)/N)(k) is
precompact and such that for every algebraic k-(G×G)-variety V, we have
Prob(V(k))L = Prob(VN ∩ V(k)). Consider the k-(G × G)-variety V =
(G×G)/∆G. The continuous homomorphism ρ : S → G(k)×G(k) gives rise
to an S-equivariant measurable map S/Γ→ V(k). Pushing forward the S-
invariant Borel probability measure on S/Γ, we obtain an L-invariant Borel
probability measure on V(k) which is necessarily supported on VN ∩V(k).
Note that the nontrivial normal k-subgroups G×G, G×{e}, {e}×G have
no fixed points on V. Thus, we have N = {e} and so L < G(k) × G(k)
is compact, which contradicts that ρ1(S) is unbounded in G(k). Therefore,
we have ρ1 = ρ2. �

Before proving Theorem 4.15, we need the following technical result that
allows us to assemble continuous homomorphisms τi : Ti → G to obtain a
continuous homomorphism τ : S → G (see [BF18b, Lemma 5.1]).

Lemma 4.18. Let S,G be locally compact second countable groups, (X, ν)
a standard probability space and S y (X, ν) a nonsingular action. Let
(Ti)i∈N be a countable family of closed subgroups of S that topologically gen-
erate S.

Let ϕ : X → G be a measurable map. For every i ∈ N, let τi : Ti → G
be a continuous homomorphism. Assume that for every i ∈ N, every t ∈ Ti
and ν-almost every x ∈ X, we have ϕ(tx) = ϕ(x)τi(t)

−1.
Then there exists a continuous homomorphism τ : S → G such that for

every i ∈ N, we have τ |Ti = τi and for every s ∈ S and ν-almost every
x ∈ X, we have ϕ(sx) = ϕ(x)τ(s)−1.

Proof. Consider the group G = L0(X,G) endowed with the topology
of convergence in measure. Then G is a Polish group.

Firstly, consider the action G y G defined by (gψ)(x) = ψ(x)g−1 for
every g ∈ G and every ψ ∈ G . Then the actionGy G is free and continuous.
Moreover, for every ψ ∈ G , the G-orbit Gψ ⊂ G is closed and the map
G→ Gψ : g 7→ gψ is a homeomorphism. Indeed, let (gn)n be a sequence in
G, ψ, φ ∈ G such that gnψ → φ in G . Up to extracting a subsequence, we
may assume that ψ(x)g−1

n → φ(x) for ν-almost every x ∈ X. This implies
that g = limn gn exists in G and φ = gψ.
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Secondly, consider the action S y G defined by (sψ)(x) = ψ(s−1x) for
every s ∈ S and every ψ ∈ G . Then the action S y G is continuous. Indeed,
this follows from the fact that for every measurable subset Y ⊂ S, the map
S → R+ : s 7→ ν(sY4Y ) is continuous.

By assumption, the Ti-orbit of ϕ ∈ G is contained in the G-orbit of
ϕ ∈ G . Since the G-orbit Gϕ ⊂ G is closed and since S is topologically
generated by the family (Ti)i∈N, it follows that the S-orbit of ϕ ∈ G is
contained in the G-orbit of ϕ ∈ G . Thus, for every s ∈ S, there exists a
unique τ(s) ∈ G such that ϕ(sx) = ϕ(x)τ(s)−1 for ν-almost every x ∈ X.
Then the map τ : S → G is a continuous group homomorphism such that
τ |Ti = τi for every i ∈ N. �

We are now ready to prove Theorem 4.15.

Proof of Theorem 4.15. The uniqueness part follows from Lemma
4.16. It remains to prove the existence part. We identify {0, . . . , n} =
Z/(n+ 1)Z.

Let i ∈ Z/(n+1)Z. Since S satisfies the dynamical dichotomy for isomet-
ric actions and since Ti < S is a noncompact closed subgroup, Proposition
2.31 implies that the pmp action Ti y S/Γ is weakly mixing. By Theo-
rem 4.9, the category of algebraic representations of (S, Ti,Γ) has an initial
object that is a coset algebraic representation and that we denote by

φi : S → (G/Hi)(k), τi : Ti → Li(k) < (NG(Hi)/Hi)(k).

Since S satisfies the dynamical dichotomy for isometric actions and since
T0 < S is an amenable noncompact closed subgroup, a combination of
Proposition 2.19 and Theorem 2.44 shows that the action S y S/T0 is
amenable and metrically ergodic. Since Γ < S is a lattice, a combination
of Propositions 2.20 and 2.45 shows that the action Γ y S/T0 is amenable
and metrically ergodic. By Theorems 4.3 and 4.4, the category of algebraic
representations of Γ y S/T0 has a nontrivial initial object that is a coset
algebraic representation and that we denote by φ : S/T0 → (G/H)(k) where
H < G is a proper k-subgroup. Letting L = {e} < NG(H)/H be the trivial
subgroup and τ : T0 → L(k) be the trivial homomorphism, we may regard
φ : S → (G/H)(k) as a coset algebraic representation of (S, T0,Γ). Since
H < G is a proper k-subgroup and since φ0 : S → (G/H0)(k) is an initial
object in the category of algebraic representations of (S, T0,Γ), it follows
that H0 < G is a proper k-subgroup.

Applying Corollary 4.12, for every i ∈ Z/(n+1)Z, there exists gi ∈ G for
which the map πi : G/Hi+1 → G/Hi : gHi+1 7→ gg−1

i Hi is a G-equivariant
k-morphism such that πi ◦ φi+1 = φi almost everywhere. In particular, for
every i ∈ Z/(n+1)Z, we have that g−1

i Higi < G is a k-subgroup and Hi+1 <

g−1
i Higi. This implies that (g1 · · · gn+1)H0(g1 · · · gn+1)−1 < H0 and by the

descending chain condition, we obtain (g1 · · · gn+1)H0(g1 · · · gn+1)−1 = H0.
This further implies that for every i ∈ Z/(n+ 1)Z, we have Hi+1 = g−1

i Higi
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and πi : G/Hi+1 → G/Hi : gHi+1 7→ gg−1
i Hi is a G-equivariant k-

isomorphism. Therefore, for every i ∈ {0, . . . , n − 1}, up to replacing φi+1

by πi ◦ φi+1 = φi, we may assume that all the k-subgroups Hi are equal to
H0 and that all the equivariant measurable maps φi : S → (G/Hi)(k) are
equal to φ0 : S → (G/H0)(k) almost everywhere.

For notational convenience, we simply write H = H0 and φ = φ0 :
S → (G/H)(k). Denote by N = NG(H) < G the normalizer of H in
G, which is a k-subgroup by Proposition 3.15. Denote by L < N/H the
algebraic subgroup generated by L0, . . . ,Ln. Then Proposition 3.1 implies
that L < N/H is a k-subgroup. Denote by π : N → N/H the quotient

k-morphism and by L̂ = π−1(L) < N, which is a k-subgroup. Then we have

H < L̂ < N. The quotient k-morphism q : G/H → G/L̂ is Li-invariant
for every i ∈ {0, . . . , n}. This further implies that the measurable map

q ◦ φ : S → (G/L̂)(k) is Ti-invariant for every i ∈ {1, . . . , n}. Since S is

topologically generated by T0, . . . , Tn, it follows that q◦φ : S → (G/L̂)(k) is
S-invariant hence constant almost everywhere. The unique essential value
of q ◦ φ is then ρ(Γ)-invariant. Since ρ(Γ) is Zariski dense in G, it follows
that the unique essential value of q ◦ φ is G-invariant. This implies that

L̂ = G. Since L̂ < N < G = L̂, it follows that N = G. Then H CG is
a normal k-subgroup. Since G is simple and since H 6= G, it follows that
H = {e}.

We have a measurable map φ : S → G(k) and continuous homomor-
phisms τi : Ti → G(k) for every i ∈ {0, . . . , n} that satisfy

(4.1) φ(γst) = ρ(γ)φ(s)τi(t)

for every γ ∈ Γ, every t ∈ Ti and almost every s ∈ S. Considering γ = 1 and
applying Lemma 4.18, there exists a continuous homomorphism τ : S →
G(k) such that τ |Ti = τi for every i ∈ {0, . . . , n} and φ(st) = φ(s)τ(t) for
every t ∈ S and almost every s ∈ S. Since S is topologically generated by
T0, . . . , Tn, Equation (4.1) can be upgraded to

(4.2) φ(γst) = ρ(γ)φ(s)τ(t)

for every γ ∈ Γ, every t ∈ S and almost every s ∈ S. Since S y S is
transitive, Lemma 2.17 implies that up to modifying φ : S → G(k) on a
null set, we may assume that Equation (4.2) holds for every γ ∈ Γ, every
t ∈ S and every s ∈ S. Set g = φ(e) = φ(s)τ(s−1) for every s ∈ S. Then for
every s ∈ S, we have φ(s) = gτ(s). Applying Equation (4.2) to γ ∈ Γ and
s = t = e, we have

gτ(γ) = φ(γ) = ρ(γ)φ(e) = ρ(γ)g.

Define the continuous homomorphism ρ : S → G(k) by the formula ρ(s) =
gτ(s)g−1 for every s ∈ S. Then ρ|Γ = ρ. This finishes the proof of the
theorem. �



CHAPTER 5

Applications

We apply the superrigidity theorem to prove Mostow–
Margulis’ rigidity theorem. We also state Margulis’
arithmeticity theorem.

1. Mostow–Margulis’ rigidity theorem

In this section, we use Margulis’superrigidity theorem to prove Mostow–
Margulis’ rigidity theorem for lattices in higher rank simple Lie groups

Mostow–Margulis’ rigidity theorem. For every i ∈ {1, 2}, let Gi
be a connected simple real Lie group with trivial center and rkR(Gi) ≥ 2,
and Γi < Gi a lattice. Then any isomorphism ρ : Γ1 → Γ2 extends to a Lie
group isomorphism ρ : G1 → G2.

Before proving the above theorem, we need the following well-known
result showing that connected semisimple Lie groups with trivial center are
quasi-algebraic (see e.g. [Zi84, Proposition 3]).

Proposition 5.1. Let G be a connected semisimple (resp. simple) Lie
group with trivial center. Then there exist n ≥ 1 and a connected semisimple
(resp. simple) R-subgroup G < GLn with trivial center such that G and
G(R)0 are isomorphic as Lie groups.

Proof. Denote by g = Lie(G)C the complexified Lie algebra of G and
consider the complexified adjoint representation AdC : G → GL(g). Then
G = Aut(g)0 is a Zariski connected algebraic group defined over R and
with trivial center. Moreover, we have AdC(G) < Aut(g)0 = G. If G is a
semisimple (resp. simple) Lie group, then g is a semisimple (resp. simple)
complex Lie algebra and so G is a semisimple (resp. simple) algebraic group.
Moreover, by Lie theory, we have AdC(G) = G(R)0. Therefore, G and
G(R)0 are isomorphic as Lie groups. �

We are now ready to prove Mostow–Margulis’ rigidity theorem.

Proof. Let ρ : Γ1 → Γ2 be an isomorphism. For every i ∈ {1, 2}, us-
ing Proposition 5.1, we may choose a connected simple algebraic R-group
Gi such that Gi = Gi(R)0 as Lie groups. Since G1 satisfies the dynam-
ical dichotomy for isometric actions by Theorem 2.5 and the higher rank
condition and since ρ(Γ1) = Γ2 < G2(R) is Zariski dense by Corollary
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3.26, Theorem 4.15 implies that there exists a unique continuous homo-
morphism ρ : G1 → G2(R) such that ρ|Γ1 = ρ. Since G1 is connected,
we necessarily have ρ(G1) < G2(R)0 = G2. Set θ = ρ−1 : Γ2 → Γ1.
The same reasoning as above implies that there exists a unique continuous
homomorphism θ : G2 → G1 such that θ|Γ2 = θ = ρ−1. Observe that
ϕ = θ ◦ ρ : G1 → G1 < G1(R) is a continuous group homomorphism such
that ϕ(Γ1) = Γ1 < G1(R) is Zariski dense. Then Lemma 4.16 implies that
θ ◦ ρ = ϕ = idG1 . Likewise, we have ρ ◦ θ = idG2 . This implies that
ρ : G1 → G2 is a topological group isomorphism and so ρ : G1 → G2 is a
Lie group isomorphism. �

2. Margulis’ arithmeticity theorem

The following fundamental theorem is a particular case of a general result
due to Borel–Harish-Chandra.

Theorem 5.2 (Borel–Harish-Chandra [BHC61]). Let G be a connected
semisimple algebraic Q-group. Then G(Z) < G(R) is a nonuniform lattice.

One can then view Theorem 5.2 as a generalization of Theorem 1.19. We
also mention that any noncompact connected semisimple Lie group contains
both uniform and nonuniform lattices (see e.g. [Ra72, Chapter XIV]).

Let G be a locally compact second countable group and H1, H2 < G
closed subgroups. We say that H1 and H2 are commensurable if H1 ∩ H2

has finite index in both H1 and H2. If Γ1,Γ2 < G are commensurable
discrete subgroups, then Γ1 < G is a lattice if and only if Γ2 < G is a
lattice.

Lemma 5.3. Let G be a locally compact second countable group, Γ < G
a lattice and ϕ : G → H a surjective continuous group homomophism with
compact kernel. Then ϕ(Γ) < H is a lattice.

Proof. Firstly, we show that ϕ(Γ) < H is discrete. Set N = ker(ϕ)CG
and denote by ϕ : G/N → H : gN 7→ ϕ(g) the corresponding continuous
group isomorphism. Let (γn)n be a sequence in Γ such that ϕ(γn) → e in
H. Then γnN → N in G/N and so there exists a sequence (hn)n in N such
that γnhn → e in G. Upon extracting a subsequence, we may assume that
hn → h in N . Then γn → h−1 in G. Since Γ < G is discrete, it follows that
γn = h−1 ∈ Γ ∩N eventually. This shows that ϕ(γn) = e eventually. Thus,
ϕ(Γ) < H is discrete.

Secondly, consider the surjective continuous map Φ : G/Γ→ H/ϕ(Γ) =
gΓ 7→ ϕ(gΓ). Denote by ν ∈ Prob(G/Γ) the unique G-invariant Borel
probablility measure. Then Φ∗ν ∈ Prob(H/ϕ(Γ)) is a H-invariant Borel
probability measure. Therefore, ϕ(Γ) < H is a lattice. �

We introduce the following important terminology.

Definition 5.4. Let H be a connected semisimple Lie group with trivial
center and no compact factor and Γ < H a lattice. We say that Γ < H is
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arithmetic if there exists a Zariski connected semisimple algebraic Q-group
G and a surjective continuous group homomorphism ϕ : G(R)0 → H with
compact kernel such that ϕ(G(Z) ∩G(R)0) and Γ are commensurable.

Finally, we state Margulis’ celebrated arithmeticity theorem.

Margulis’arithmeticity theorem. Let G be a connected semisimple
Lie group with trivial center, no compact factor and such that rkR(G) ≥ 2.
Let Γ < G be an irreducible lattice. Then Γ < G is arithmetic.

The proof relies on Margulis’ superrigidity theorem. We refer the reader
to [Ma91, Chapter 8], [Zi84, Chapter 6] or [Be08, Chapter 11] for further
details.





APPENDIX A

Appendix

1. Tame actions

A Borel space Z is a space endowed with a σ-algebra Z of Borel subsets.
A topological space X is naturally a Borel space endowed with the σ-algebra
X generated by open sets. A Borel space Z is countably separated if there
exists a countable family (Un)n∈N of Borel subsets of Z that separates the
points in Z in the following sense: for all z1, z2 ∈ Z such that z1 6= z2, there
exists n ∈ N such that z1 ∈ Un and z2 /∈ Un or z1 /∈ Un and z2 ∈ Un. In that
case, for every z ∈ Z, the singleton {z} ⊂ Z is a Borel subset. A Borel space
Z is standard if Z is Borel isomorphic to a Borel subset of a Polish space. A
standard Borel space is either finite, countable or Borel isomorphic to the
segment [0, 1].

Let G be a locally compact second countable group, Z a standard Borel
space andGy Z a Borel action in the sense that the action mapG×Z → Z :
(g, z) 7→ gz is Borel. We denote by G\Z the quotient Borel space endowed
with the quotient Borel structure and by p : Z → G\Z the quotient Borel
map. By Varadarajan’s theorem (see e.g. [Zi84, Theorem 2.19]), there
exist a compact metrizable space X, a continuous action G y X and a
G-equivariant injective Borel map ι : Z → X. This implies that for every
z ∈ Z, the orbit Gz ⊂ Z is a Borel subset and the stabilizer StabG(z) < G
is a closed subgroup.

We say that the Borel action Gy Z is tame if the quotient Borel space
G\Z is countably separated. Firstly, we recall the following useful result
due to Kallman (see e.g. [Zi84, Theorem A.7]).

Theorem A.1. Let G be a locally compact second countable group, Z a
standard Borel space and G y Z a tame Borel action. Then the quotient
G\Z is a standard Borel space and there exists a Borel section ι : G\Z → Z
for the Borel projection p : Z → G\Z.

We derive the following useful consequence.

Corollary A.2. Let G be a locally compact second countable group and
H < G a closed subgroup. Then there exists a Borel section ι : G/H → G
for the factor map p : G→ G/H.

We record some useful properties of tame actions. Firstly, we observe
that Borel actions of compact second countable groups are always tame.
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Proposition A.3. Let K be a compact second countable group. Then
any Borel action K y Z on a standard Borel space is tame.

Proof. Let Z be a standard Borel space and K y Z a Borel action. By
Varadarajan’s theorem (see e.g. [Zi84, Theorem 2.19]), there exist a com-
pact metrizable space X, a continuous action K y X and a K-equivariant
injective Borel map ι : Z → X. By compactness and continuity, all K-orbits
in X are compact hence locally closed. Proposition 2.1 implies that the ac-
tion K y X is tame, that is, K\X is countably separated. Considering
the injective Borel map ι : K\Z → K\X and pulling back the countable
separating family of Borel subsets in K\X, it follows that K\Z is countably
separated, that is, K y Z is tame. �

Secondly, we investigate tameness for induced actions. Let G be a lo-
cally compact second countable group and H < G a closed subgroup. By
Corollary A.2, we may choose a Borel section ι : G/H → G for the factor
map p : G → G/H such that ι(H) = e. Let Z be a standard Borel space
and H y Z a Borel action. Define the Borel map τ : G × G/H → H :
(g, c) 7→ ι(gc)−1gι(c) which satisfies the 1-cocycle relation:

∀g1, g2 ∈ G,∀c ∈ G/H, τ(g1g2, c) = τ(g1, g2c)τ(g2, c).

Set IndGH(Z) = G/H ×Z and define the induced Borel action Gy IndGH(Z)
by the formula

∀g ∈ G,∀(c, z) ∈ IndGH(Z), g · (c, z) = (gc, τ(g, c)z).

Assume that the Borel action H y Z is the restriction of a Borel action
G y Z. Consider the Borel space G/H × Z endowed with the diagonal
Borel action Gy G/H × Z. Define the Borel isomorphism

Θ : G/H × Z → IndGH(Z) : (c, z) 7→ (c, ι(c)−1z).

Then it is easy to check that Θ : G/H × Z → IndGH(Z) is G-equivariant. In
this case, we may and will identify the diagonal action Gy G/H × Z with
the induced action Gy IndGH(Z).

Proposition A.4. Let G be a locally compact second countable group
and H < G a closed subgroup. Let Z be a standard Borel space and H y Z
a Borel action. Then H y Z is tame if and only if Gy IndGH(Z) is tame.

In particular, let H1, H2 < G be closed subgroups. Then H1 y G/H2 is
tame if and only if H2 y G/H1 is tame.

Proof. We prove the first assertion. Define the Borel map ϕ : Z →
IndGH(Z) : z 7→ (H, z). Since for every h ∈ H and every z ∈ Z, we have

h · ϕ(z) = h · (H, z) = (hH, c(h,H)z) = (H,hz) = ϕ(hz),

it follows that ϕ : H\Z → G\ IndGH(Z) : Hz 7→ G · ϕ(z) is a well-defined
Borel map. Next, define the Borel map ψ : IndGH(Z)→ Z : (c, z) 7→ z. Since
for every g ∈ G, every c ∈ G/H and every z ∈ Z, we have

ψ(g · (c, z)) = ψ(gc, τ(g, c)z) = τ(g, c)z = τ(g, c)ψ(c, z),
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it follows that ψ : G\ IndGH(Z) → H\Z : G · (c, z) 7→ Hψ(c, z) is a well-
defined Borel map. It is straightforward to see that ϕ and ψ are inverse
of one another. This further implies that H y Z is tame if and only if
Gy IndGH(Z) is tame.

Next, we prove the second assertion. Using the first assertion and since
G/H2 is a G-space, we have that H1 y G/H2 is tame if and only if G y
IndGH1

(G/H2) is tame if and only if G y G/H1 × G/H2 is tame. Likewise,
we have that H2 y G/H1 is tame if and only if Gy G/H2×G/H1 is tame.
Therefore, H1 y G/H2 is tame if and only if H2 y G/H1 is tame �

2. Disintegration of measures

Recall that for any standard Borel space X, the space Prob(X) of Borel
probability measures on X is again a standard Borel space.

Theorem A.5 (Rohlin’s disintegration theorem). Let X,Y be standard
Borel spaces and p : X → Y a Borel map. Let ν ∈ Prob(X) be a Borel
probability measure and set ν = p∗ν ∈ Prob(Y ). Then there exists a ν-
essentially unique Borel map Y → Prob(X) : y 7→ νy that satisfies the
following two properties:

(i) For ν-almost every y ∈ Y , we have νy(p
−1({y})) = 1.

(ii) For every Borel subset U ⊂ X, we have

ν(U) =

∫
Y
νy(U) dν(y).

The ν-essential uniqueness in Theorem A.5 means that for any Borel
map Y → Prob(X) : y 7→ ηy that satisfies items (i) and (ii), we have
νy = ηy for ν-almost every y ∈ Y . For item (ii), we usually simply write
ν =

∫
Y νy dν(y).

Corollary A.6. Let G be a locally compact second countable group,
X a standard Borel space and G y X a tame Borel action. Let H < G
be a closed subgroup and ν ∈ Prob(X) an H-invariant Borel probability
measure. Then there exists x ∈ X and an H-invariant Borel probability
measure η ∈ Prob(Gx).

Proof. Since G y X is tame, the quotient space Y = G\X is a stan-
dard Borel space. Consider the Borel projection map p : X → Y and set
ν = p∗ν. By Theorem A.5, there exists a ν-essentially unique Borel map
Y → Prob(X) : y 7→ νy that satisfies items (i) and (ii) in Theorem A.5.

Let h ∈ G and consider h∗ν ∈ Prob(X). The Borel map Y → Prob(X) :
y 7→ h∗νy satisfies (h∗νy)(p

−1({y})) = 1 for ν-almost every y ∈ Y and h∗ν =∫
Y h∗νy dν(y). By essential uniqueness, it follows that (h∗ν)y = h∗νy for ν-

almost every y ∈ Y . This implies that for every h ∈ H and ν-almost every
y ∈ Y , we have h∗νy = (h∗ν)y = νy. Since Y and Prob(X) are standard
Borel spaces, Lemma 2.17 implies that there exists a ν-conull strictly G-
invariant measurable subset Y0 ⊂ Y and a strictly G-equivariant measurable
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map Y0 → Prob(X) : y 7→ ηy such that ηy = νy for ν-almost every y ∈ Y0.
Then we may choose y = Gx ∈ Y0 such that η = ηy = νy ∈ Prob(X) is
H-invariant and satisfies η(Gx) = 1. �
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