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ABSTRACT. These are the lecture notes of a graduate course on ergodic
group theory given at Université Paris-Saclay, Orsay, during 2020-2022.
In this course, we introduce various tools from group theory, ergodic the-
ory and functional analysis to study the structure of discrete groups that
arise as lattices in locally compact groups. Topics include: locally com-
pact groups and their lattices; group actions on measure spaces; unitary
representations; induction; amenability; Howe—Moore property; Kazh-
dan’s property (T); stationary measures; Poisson boundaries; reduced
cohomology. The aim of the course is to prove Bader—Shalom’s normal
subgroup theorem for irreductible lattices in product groups that can
be regarded as an extension of Margulis’s celebrated normal subgroup
theorem for lattices in semisimple Lie groups.
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CHAPTER 1

Locally compact groups and lattices

In this chapter, we introduce basic properties of lo-
cally compact groups and their lattices. We show that
SL4(Z) is a lattice in SL4(R) for every d > 2.

1. Generalities on locally compact groups

DEFINITION 1.1. Let G be any group endowed with a Hausdorff topology.
We say that G is a topological group if the map G x G — G : (g, h) — gh™!is
continuous. We then say that G is locally compact if there exists a compact
neighborhood U C G of the identity element e € G.

Let G be any locally compact group. We say that G is

o first countable if there exists a countable neighborhood basis of
ecG.

e second countable if there exists a countable basis for the topology
on G.

e o-compact if there exists an increasing sequence of compact subsets
Qn C G such that G = {J,,cn @n-

o compactly generated if there exists a compact subset Q C G such
that e € Q@ and G = J,,», Q"

e totally disconnected if the connected component of e € G is equal
to {e}.

The identity element e € G has a neighborhood basis consisting of com-
pact subsets (see [DE14, Corollary A.8.2]). Any open subgroup H < G
is also closed since G\ H = |J gz 9H. Any compactly generated group
G is o-compact. Any locally compact group G has a compactly generated
open subgroup H < G. Indeed, choose a compact neighborhood U C G of
e € G. Then H = |J,~;(UUU )" is a compactly generated open sub-
group of G. In particular, any connected locally compact group is compactly
generated. A locally compact group G is second countable if and and only
it is first countable and o-compact (see [St73]). Any locally compact sec-
ond countable group G is metrizable with a proper left invariant metric (see
[St73, HP06)).

The class of locally compact groups is stable under taking closed sub-
groups, finite direct products and quotients with respect to closed normal
subgroups. More precisely, we record the following facts.

PROPOSITION 1.2. The following assertions hold:

5



6 1. LOCALLY COMPACT GROUPS AND LATTICES

(i) If G is a locally compact group and H < G is a closed subgroup,
then H endowed with the induced topology is locally compact.

(ii)) Ifd > 1 and G1, ..., G4 are locally compact groups, then the product
group G = G1 % - --x Gy endowed with the product topology is locally
compact.

(iii) If G is a locally compact group and N < G is a closed normal sub-
group, the quotient group G/N endowed with the quotient topology
18 locally compact.

(iv) If G is a locally compact group acting continuously on a locally com-
pact group H by continuous automorphisms, then the semi-direct
product group G X H endowed with the product topology is locally
compact.

The proof of Proposition 1.2 is left to the reader as an exercise.

ExaMPLES 1.3. Here are some examples of locally compact groups. Let
d>1.

(i) Any group G endowed with the discrete topology is locally compact.
In these notes, any countable group will always be endowed with
its discrete topology.

(ii) Any compact group K is locally compact. In particular, the fol-
lowing compact groups

Té — {(zl,...,zd) cClVI<i<d |z = 1}
SO4(R) == {A € SLy(R) | A*A = AA* =15}
U(d) = {A € GLy(C) | A"A = AA* = 1)

are locally compact.
(iii) Any (finite dimensional) real Lie group G is locally compact.

— The abelian group (R%, +) endowed with the usual topology is
locally compact.

— The general linear group GL4(R) can be regarded as the open
(dense) subset of invertible matrices in My(R) = R, En-
dowed with the topology coming from RdQ, the group GL4(R)
is locally compact.

— The special linear group SL4(R) = ker(det) is a closed sub-
group of GL4(R) and so SL;(R) is locally compact.

— The semi-direct product group SLy(R) xR? is locally compact.

(iv) Any (finite dimensional) p-adic Lie group G is totally disconnected
locally compact. In particular, for every prime p € P, the groups
GL4(Qp) and SL4(Q,) are totally disconnected locally compact.

(v) Let T = (V,E) be any locally finite tree and denote by Aut(T) the
automorphism group of T. Endowed with the topology of point-
wise convergence, the group Aut(T) is totally disconnected locally
compact.
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Let X be any locally compact space, meaning that every x € X has a
compact neighborhood. We denote by B(X) the o-algebra of Borel subsets
of X. We say that a Borel measure v on X, that is, a measure defined on
B(X) is regular if the following conditions are satisfied:

(i) For every Borel subset B C X, we have
v(B) =inf {v(V) |V is open and B C V'}.
(ii) For every open subset U C X, we have
v(U) =sup{v(K) | K is compact and K C U}.
(iii) For every compact subset K C X, we have v(K) < +oo.
When v is nonzero, define the support of v by

supp(v) = [ |{F | F C X is closed and »(X \ F) = 0}.

Observe that supp(v) is closed and v(X \ supp(v)) = 0.

If any open subset of X is o-compact, then any Borel measure on X that
satisfies condition (iii) is regular (see [Ru87, Theorem 2.18]). In particular,
using [DE14, Lemma A.8.1(i)], if X is a locally compact second countable
space, then any open subset of X is o-compact and thus any Borel measure
on X that satisfies condition (iii) is regular.

Denote by C.(X) the space of compactly supported continuous functions
on X. We say that a linear functional ® : C.(X) — C is positive if ®(f) > 0
for every f € C.(X)+. By Riesz’s representation theorem (see [Ru87,
Theorem 2.14]), for every positive linear functional ® : C.(X) — C, there
exists a unique regular Borel measure v on X such that

WGC&@,¢U%iéﬂ@®@)

In that case, we will simply write ® = v. Note that for every regular Borel
measure v on X and every p € [1,400), the space C.(X) is || - || ,-dense in the
Banach space IP(X, v) of all v-equivalence classes of p-integrable functions
on X.

THEOREM 1.4 (Haar). Let G be any locally compact group. Then there
exists a nonzero reqular Borel measure mg on G that is unique up to mul-
tiplicative constant and that satisfies one of the following equivalent condi-
tions:

(i) For every Borel subset B C G and every g € G, mg(gB) = mg(B).
(ii) For every f € C.(G) and every g € G,

| rtamamen) = [ g dme
We say that mq is a left invariant Haar measure on G.

For a proof of Theorem 1.4, we refer the reader to [HR79, Chapter 15].
The locally compact group G is o-compact if and only if the left invariant
Haar measure mg is o-finite.
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Theorem 1.4 also implies that there exists a nonzero regular Borel mea-
sure pug on G that is unique up to multiplicative constant and that satisfies
one of the following equivalent conditions:

(i) For every Borel subset B C G and every g € G, uc(Bg) = pa(B).
(ii) For every f € C.(G) and every g € G,

/ f(hg) duc(h) = / £(h) duc(h)
G G

We say that ug is a right invariant Haar measure on G. Indeed, any left
invariant Haar measure mg on G gives rise to a right invariant Haar measure
g on G by the formula

VB e B(G), pa(B)=ma(B™").

The next proposition shows that any left invariant Haar measure has
full support.

PROPOSITION 1.5. Let G be any locally compact group and mg any left
invariant Haar measure on G. Then supp(mg) = G. Moreover, for every
f € Cc(G) 4 such that f # 0, we have [, f(h)dmg(h) > 0.

PROOF. Since mg # 0, Conditions (ii) and (iii) in the definition of
regularity imply that there exists a compact subset K C G such that 0 <
ma(K) < +oo. Let U C G be any nonempty open subset. There exist
g1,---,9n € G such that K C (J;_; ¢;U. This implies that

0 <ma(K) <ma(| JaU) < ma(gl) =n-ma(U)
i=1 i=1
and so mg(U) > 0. Thus, supp(mg) = G.
Moreover, let f € C.(G)4+ such that f # 0. Then there exist ¢ > 0 and
an open subset U C G such that f(h) > e for every h € U. This implies
that

/ f(h)dmg(h) > / edmg(h) =€ -mg(U) > 0.
G U
This finishes the proof. ([

The next proposition gives a characterization of compact groups in terms
of the Haar measure.

PROPOSITION 1.6. Let G be any locally compact group and mqg any left
invariant Haar measure on G.
Then G is compact if and only if mg(G) < +oo.

ProOOF. Firstly, assume that G is compact. Then by regularity we have
mag(G) < +oo.

Secondly, assume that G is not compact. Take a compact neighborhood
K C G of e € G and set gy = e. We have mg(K) > 0 by Proposition 1.5.
Since K K~! is compact, there exists g; € G such that g1 € G\ KK~
This implies that gtK N K = (. By induction, define g, € G so that
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gn € G\ (KUg1KU---Ug, 1K)K~!. Tt follows that (¢, K ),cn are pairwise
disjoint. This implies that

ma(G) = ma(| J gnK) =D ma(gnK) = 400 - mg(K) = +o0.
neN neN

This finishes the proof. O

Let G be any locally compact group and mg any left invariant Haar
measure on (G. The measure mqg need not be right invariant. For every
g € G, define the nonzero regular Borel measure m{, on G by the formula
m¢(B) = mqg(Byg) for every B € B(G). Since m, is a left invariant Haar
measure, there exists a element Ag(g) € R% such that mf, = Ag(g) mg.
Then Ag : G — R% : g — Ag(g) is a group homomorphism and is called
the modular function on G. The modular function Ag does not depend on
the choice of the left invariant Haar measure mg on GG. Moreover, we have

(1.1) Vf € Cu(G), Vg € G, /Gf(hg_l)dm(;(h):Ag(g)/af(h)dmg(h).

The left invariant Haar measure mg is right invariant if and only if Ag = 1.
In that case, we say that G is unimodular. We then simply refer to m¢g as
a Haar measure on G.

PROPOSITION 1.7. Let G be any locally compact group and mg any left
invariant Haar measure on G. Then the modular function Ag : G — R is
continuous. Moreover, we have

Vf € Cu(G /f ) dme( )—/GAG(h_l)f(h)de(h).

PROOF. Choose ¢ € C.(G) such that x = [, p(h)dmg(h) # 0. Set
@ = supp(p). Then we have
Jawlhg™") dmg(h)
Jg (h) dme(h)

Choose a compact neighborhood K C G of e € G. Let ¢ > 0. Since ¢ is

uniformly continuous by Lemma 1.8, there exists a neighborhood U of e € G
such that U ¢ K, U~! = U and

Yu e U, Sup{|g0(hu*1)— e(h)| | he G} <

Vge G, Aqlg) =

(QK)
Then for every u € U, we have
1
Al =11 < - [ Jol™) = o(n)] dma(h)
1 ER
< ;mG(QK)m =€

This implies that Ag : G — R is continuous at the identity element e € G
and so Ag is continuous.
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Next, observe that both of the positive linear functionals

C.(G) > C: f»—>/f ) dme(h)

C(G) > T f s /G ARV (k) dma(h)

define a nonzero right invariant regular Borel measure on G. Thus, there
exists ¢ > 0 such that

Vf e CulG / £ dma () = | Mg () dma(h)

Define ¢ € C.(G) by the formula @(h) = <p(h 1) for every h € G. Then we
have

07 [ ety amo(n) = [ G0 dma(h

- / Ac(h™)@(h) dma(h)
= [ Aali et dma(h)
_ / Ac(h Y Ag(h)e(h) dme(h)
=c / o(h) dmg(h).
G
This implies that ¢ = 1. [l

In the proof of Proposition 1.7, we use the following technical result.
Denote by (Cy(G), || - ||so) the Banach space of all bounded continuous func-
tions on G endowed with the supremum norm. Denote by A : G ~ Cp(G)
(resp. p : G ~ Cp(@)) the left (resp. right) translation action defined by
(A(g)f)(h) = f(g~'h) (resp. (p(9)f)(h) = f(hg)) for all g,h € G and all
f € C(G).

LEMMA 1.8. Let G be any locally compact group and f € C.(G) any
compactly supported continuous function. Then for every e > 0, there exists
a symmetric neighborhood U C G of e € G such that

sup {[|A(u) f = fllcos llo(u) f = flloo [ u € U} <.

Then we say that f € C.(G) is uniformly continuous.

PrROOF. Let f € C.(G) and set @ = supp(f). Let ¢ > 0 and fix a
symmetric compact neighborhood V' C G of e € G. For every g € G,
there exists an open neighborhood W, C G of g € G such that for all
wi,wy € Wy, we have |f(wi) — f(we)| < €. For every g € G, choose an
open symmetric neighborhood U, C G of e € G such that gU,U, UU,Uyg C
Wy. Then for every g € G, gU, NUyg is an open neighborhood of g € G.
Since VQV is compact, there exist n > 1 and g¢i1,...,9, € G such that
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VQV C U;—y 9iUg, N Uy, gi. Define U =V N, U,, which is a symmetric
neighborhood of the identity e € G. Then for every u € U and every g € G,
we consider the following situations:

o If g € VQV, then there exists 1 < ¢ < n such that g € g;Uy, N
Ug,gi- Since u € U C Uy, we have gu € ¢;U,U, C W, and
ug € Uy Uggi C Wy, Tt follows that |f(gu) — f(g9)] < ¢ and

|f(gu) = f(g)| <e.
e If g ¢ VQV, then gu ¢ @ and ug ¢ Q. It follows that f(g) =

f(ug) = f(gu) = 0.
We have showed that for every u € U and every g € G, we have |f(gu) —
f(g)l < e and [f(gu) = f(g)| <e. O

Let (G,mg,Ag) and (H,mpg,An) be any locally compact groups with
their respective left invariant Haar measure and modular function. Let
o : G ~ H be any continuous action by continuous group automorphisms
and write G x H for the locally compact semi-direct product group. Recall
that the group law on G x H is given by

Vg1,92 € G,Yhi,hy € H,  (g1,h1) - (92, h2) = (g192,0,,' (h1)ha).

The next proposition provides an explicit calculation of the Haar measure
and the modular function on G x H.

PROPOSITION 1.9. The regular Borel measure maxm defined on G x H
by the formulae

(1.2) Vf € Co(G x H), /G (g. ) dmeuy (1)

= [ ([ a0 mato) ) amato
:/G(/Hf(g,h)de(h)> dmea(g)

is a left invariant Haar measure on G x H. Moreover, the modular function
Agwr : G x H — R satisfies

V(g,h) € Gx H, Agur(g,h) = p(g) Ac(g) A (h)
where p : G — RY is the continuous function defined by the formula

Vi € Co(H), Vg € G, /H F(o4(h)) dma(h) = p(g) /H F(h) dmg ().

PROOF. Fubini’s theorem implies that for every f € C.(G x H), we have

[ ([ sta.mamct) amu = [ ([ 0.0 amu)) dmeta)
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Denote by mgxg the unique regular Borel measure on G x H defined by
(1.2). For every f € C.(G x H) and every (g1,h1) € G x H, we have

/ (g1, 11) - (g2, b)) dm (g2, ha)
GxH

- /G F(9192, 0 (ha)ha) Az (g2, ho)
x H

:/G</H f(9192,h2)de(h2)> dme(g2)

:/H </Gf(92,h2)dmc(92)> dmp (ha)
—/G[XHf(gg,hz)dexH(g%hQ)'

This shows that max g is a left invariant Haar measure on G x H.
Consider the function p : G — R% as defined above. For every f €
Cc(G x H) and every (g2, h2) € G x H, we have

/ F((g1,hn) - (g2, ha) ™) dmerr (g1, )
Gx H
- / F(9195, 043 (h1h3 1)) dmuerr (g1, h)
GxH
~Auth) | ( / f<glgzl,o—g2<hl>>de<hl>) dmes(g1)
~ plaa) B(hz) | ( [ gt m) de<h1>) dmes(g1)
~ plg2) Do) Aua(he) [ ( /| f<gl,h1>dma<gl>> dmp(hn)

Zﬂ(g2)AG(92)AH(h2)/G Hf(gl,hl)dele(glahl)

and hence Agyw (g2, he) = p(g2) Ac(g2) Ag(he). O

ExaMPLES 1.10. Here are some examples of unimodular locally compact
groups. Let d > 1.

(i) Any group G endowed with the discrete topology is unimodular.
Indeed, in that case the counting measure m¢ is a nonzero regular
Borel measure on G that is clearly both left and right invariant.

(ii) Any compact group G is unimodular. Indeed, fix a left invariant
Haar measure mg on G. Then Ag(G) < RY is a compact sub-
group and so Ag(G) = {1}. This shows that Ag =1 and so G is
unimodular.

(iii) Any abelian locally compact group G is unimodular. The Lebesgue
measure dz; - - - dzg on R? is a Haar measure.
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(iv) Recall that the general linear group GL4(R) can be regarded as the
open (dense) subset of invertible matrices in My(R) =2 R%x - - - x R,
For every g € GL4(R), the Jacobian of the diffeomorphism

Lg : Md(R> — Md(R) : ('xla s 7xd) = (gxla s >gxd)

is equal to det(g)?. It follows that a left invariant Haar measure
ma on G = GLy(R) is given by

1
dme(g) = W H dgij, 9= (9ij)ij-

1<i,j<d
For every g € GL4(R), since the Jacobian of the diffeomorphism
Ry : Mg(R) = My(R) : 2 — xg

is also equal to det(g)?, it follows that m is right invariant and so
G = GL4(R) is unimodular.

(v) Recall that the special linear group SL4(R) < GL4(R) is defined
by SL4(R) = ker(det). It follows from Iwasawa’s theorem that the
only normal subgroups of SL4(R) are {1}, {£1} and SLg(R). This
implies that ker(Agr,,g)) = SLg(R) and so SLg(R) is unimodular.

(vi) For every d > 2, the strict upper triangular subgroup G = T4(R)
defined as the group of all matrices g = (g;5)i; such that g;; = 0

forall1 <j<i<dandg;=1forall 1 <i<dis homeomorphic
. d(d—1) .. . .
with R™2 . Under this identification, the Lebesgue measure on
d(d-1) | . . . .
2 gives rise to a left and right invariant Haar measure mg on

G defined as
dmg(n) = H dnij7 n = (n”)l]

1<i<j<d

Indeed, for all i > j and all g,n € Ty(R), we have (gn);; = gij +
Nij + 3 j<pei GikTkj- Endow the set {(4,7) [ 1 < j < < d} with
the lexicographical order. Then for every g € T4(R), the Jacobian
matrix of the diffeomorphism Ty(R) — T4(R) : n +— gn is upper
triangular with diagonal entries all equal to 1. This implies that
the Jacobian of the diffeomorphism Ty(R) — T4(R) : n +— gn is
equal to 1. The same argument shows that for every g € Ty(R),
the Jacobian of the diffeomorphism Ty(R) — T4(R) : n +— ng is
equal to 1. Thus, G = T4(R) is unimodular.

2. Lattices in locally compact groups

Let G be any locally compact group and I' < G any discrete subgroup.
We say that a Borel subset F C G is a Borel fundamental domain (for the
right translation action I' ~ G) if

Vi el, m#y = FnunNFyp=0 and U}-VZG-
~yel'
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Denote by G/T" = {gI" | g € G} the quotient space and by p: G — G/T" :
g — gI' the quotient map. Endow G/T" with the quotient topology.

PROPOSITION 1.11. Keep the same notation as above. The following
assertions hold:

(i) The quotient map p : G — G/T" is continuous and open and G/T’
is Hausdorff and locally compact. Moreover, the action map G X
G/T' = G/T': (g,x) — gz is continuous.

(ii) If G/T is compact, then there exists a Borel fundamental domain
F C G that is relatively compact in G.

(iii) If G is second countable, then G /T is second countable. Moreover,
there exists a Borel fundamental domain F C G such that for every
compact subset Y C G /T, the subset p~'(Y)NF C G is relatively
compact in G.

PRrROOF. (i) Endow the quotient space G/T' = {¢I" | ¢ € G} with the
quotient topology. By definition, a subset V' C G/T " is open if and only if
p~1(V) C G is open. Then the quotient topology is the finest topology on
G /T that makes the quotient map p : G — G/I" continuous. Let now U C G
be any open set. Then p~!(p(U)) = p '({hl' | h € U}) = U, er U7 is open
and so is p(U) C G/T" is open. This shows that p: G — G/T" is open.

Let x1,29 € G/T with x; # x9. Write 1 = ¢1I" and z92 = goI'. Note
that go ¢ ¢1I". Choose a compact neighborhood Uy C G (resp. Uy C G2)
of g1 € G (resp. g2 € G). Since U{lUl C G is compact and since I' < G
is discrete, the set A := {y € T' | Uy N Uyy # 0} is finite. For every v € A,
since g1 # go27, there exist neighborhoods U, of g1 € G and V, of g2y € G
such that U, NV, = 0. Set

Ur=Uin(\Uy and Tp=Usn () Viy "
YyEA veEA

Then for every v € T', we have U; N Uyy = ). Indeed, if v € T\ A,
then Uy NUsy = 0. If v € A, then U, N (Vo7 1)y = 0. Thus, we have
p(U1) Np(Us) = 0. This shows that G/T" is Hausdorff.

Let x = gI' € G/T be any element. Choose a compact neighborhood
K C G of e € G. Then gK is a compact neighborhood of ¢ € G and so
p(gK) is a compact neighborhood of z € G/T". This shows that G/I' is
locally compact.

Define the action map a : G x G/T' - G/T : (g,x) — gz. Recall
that the multiplication map m : G x G — G is continuous. Since the map
idgxp:GxG— GxG/T:(g,h) — (g,hT") is continuous and open, the
commutative diagram

GxG —2 @

lid xp lp

G x G/ —— G/T
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shows that the action map a : G x G/T" — G/I" is continuous.

(ii) Since I' < G is discrete, there exists an open neighborhood V- C G
of e € G such that VNT = {e}. Since the map G x G — G : (g,h) — g~ 'h
is continuous, there exists an open neighborhood U C G of e € GG such that
U~'U c V. Replacing U with U N K where K is a relatively compact open
neighborhood of e € G, we may assume that U C G is relatively compact.
Since G/I' is compact and since (p(gU)geq) is an open covering of G/T,
there exist g1,...,9, € G such that G/T' = |J_; p(¢;U). Define the Borel
subset

n
F=J|aU\JgUT

i=1 j<i
By construction, F C G is relatively compact. Then we have U’yEF Fry =
UL 6UT = p~ (UL, p(iU)) = p~(G/T) = G. Let 1,72 € T be any
elements such that Fy; N Fvye # (. Up to exchanging ~; and 7, there
exist ¢ > j and uy,uz € U such that g;u1y1 = gjuz2vye. By construction and
since g;u1 = g;u2y2y; Ve gUn g;UT", we necessarily have ¢ = j. Then
u1y1 = ugye and so u;lul = 'yg'yfl ce U 'UNT c VNI = {e}. This shows
that v1 = 72 and thus F C G is a Borel fundamental domain.

(iii) Choose a countable basis (U, )nen for the topology on G. Let V C
G/T be any open set. Then p~1(V) = U.er Vv C G is open and so there
exists a subfamily (U, )r such that p=2(V) = |J, Un,. Then we have
V =p(p (V) = U, p(Up,). This shows that (p(Uy,))nen is a countable
basis for the quotient topology on G/T" and so G/T is second countable. For
every n € N, choose g, € U,.

As before, there exist open neighborhoods U,V C G of e € G such that
U C G is relatively compact, U"'U C V and VNT = {e}. We claim that
G = U,en92U. Indeed, for every g € G, gU™! C G is an open set and
hence there exists n € N such that U, C gU~!. This implies that there
exists v € U such that g, = gu™! or equivalently ¢ = g,,u and thus g € g,U.
Define the Borel subset

F=J (gnU\ U gkUI‘> :

neN k<n

Then we have U'yGF Fy = Unen 9nUT = G. Let 71,72 € T' be any elements
such that Fy; N Fyy # 0. Up to exchanging 71 and s, there exist m > n
and ui,us € U such that gpuiy1 = gnuoys. By construction and since
gmlUa = gan’yQ’yl_l € gnU N g, UL, we necessarily have m = n. Then
u1y1 = ugye and so u;lul = 727{1 ceU'UNT c vNT = {e}. This
shows that v; = 72 and thus F C G is a Borel fundamental domain. Let
Y C G/T be any compact subset. Since (p(g,U))nen is an open covering of
Y, there exist n; < .-+ < ng such that ¥ C Ulep(gmU). Then we have
p Y (Y)NFcC Ui20(9;U \ U;<; 9:UT) and so p L (Y)NF C G is relatively
compact. O
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Observe that when G is a locally compact o-compact group, any discrete
subgroup I' < G is necessarily countable. Indeed, since G is o-compact,
the left invariant Haar measure mg is o-finite. We may then choose a
Borel probability measure p € Prob(G) such that p ~ mg. We may also
choose open neighborhoods U,V C G of e € G such that UU~! € V and
VNI = {e}. Then (YU) er is a family of pairwise disjoint open subsets.
Moreover, since mg(yU) = mg(U) > 0 for every v € T, it follows that
w(yU) > 0 for every v € I'. This implies that I" is necessarily countable.

COROLLARY 1.12. Let G be any locally compact second countable group
and T' < G any discrete subgroup. Then there exists a Borel map o : G/T" —
G such that
o(G/T) = F is a Borel fundamental domain,

o(l') =e,

x = o(x)l for every x € G/T,

o(Y) C G is relatively compact for every compact subsetY C G/T.
We then simply say that o : G/T' — G is a Borel section.

ProoOF. Choose a Borel fundamental domain F C G as in Proposition
1.11(iii) such that e € F. Then p|r : F — G/I" is Borel and bijective. This
implies that the map o = (p|7)~! : G/T — G is Borel (see [Zi84, Theorem
A .4]) and satisfies all the required properties. O

DEFINITION 1.13. Let GG be any locally compact group and I' < G any
discrete subgroup. We say that I' < G is uniform or cocompact if G/T" is
compact.

We say that I' < G is a lattice if there exists a G-invariant regular Borel
probability measure v € Prob(G/T).

Define the linear mapping 7 : C.(G) — C.(G/T') : f — f by the formula
Vged, Fgh)=>_ flgv).

yerl’

We claim that 7 : C.(G) — C.(G/T) is surjective. Indeed, let ¢ € C.(G/T")
be any function and denote by @ = supp(y¢) C G/T" its compact support.
Choose a relatively compact open neighborhood V' C G of e € GG. Then there
exist g1,...,gn € Gsuch that @ C UL, p(g;V). Set K = p~1(Q)NU, ¢:V.
Then K C G is a compact subset such that p(K) = Q. By Urysohn’s lemma
(see e.g. [DE14, Lemma A.8.1(ii)]), we may choose fx € C.(G)+ such that

Define the function f : G — C by the formula f(g) = %JCK(Q)

if T(fx)(gl') # 0 and f(g) = 0 otherwise. Then supp(f) C supp(fx) is
compact and f is continuous on G since T (fx)(gI') > 0 on a neighborhood

of Q. Thus, f € C.(G) and we have T(f) = ¢.

ProproSITION 1.14. Let G be any locally compact group and I' < G any
uniform discrete subgroup. Then G is unimodular and I' < G is a lattice.
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If G is moreover compactly generated, then I' < G is finitely generated.

Proor. Fix a right invariant Haar measure pug on G. Consider the
positive linear functional

B:C(G/T) = C: Frs /G £(9) du(g).

In order to check that ® is well-defined, it suffices to show that if ¢ € C.(G)
is such that @ = 0, then we have chp )dua(g) = 0. Indeed, for every
¥ € C.(G), using Fubini’s theorem, we have

R duc) = 3 [ o) duch

~yel

- 1Y duc(h)
7; / e,

- /G H(hYD(hT) A (h).

Since the map C.(G) — C.(G/T) @ f — f is surjective, there exists 1) €
C.(G) such that ¢» = 1 on the compact subset supp(¢)I' C G/I'. Therefore,
we obtain

/ o(h) dug(h) = / (WD) dpg(h) = / S(IT)(h) dpa(h) = 0.
G G G

By Riesz’s representation theorem, there exists a unique regular Borel mea-
sure v on G/T" such that

Vi € Cu(@), /G £(h) du(h) = /G F(hT) du(hT).

Note that the above argument does not use the fact that I' < G is uniform.
However, since I' < G is uniform, G/T" is compact and we have 0 <

v(G/T') < +o00. Up to normalization, we may assume that v(G/I') = 1.
Define the left invariant Haar measure mg on G by the formula mg(B) =

pc(B™1) for every B € B(G). Then for every B € B(G) and every g € G,

we have

(g+11c)(B) = pa(g ' B) = ma(B™'g) = Aa(g) ma(B™") = Aq(g) na(B)

and so g.ug = Ag(g) e. By uniqueness in the previous construction, we
obtain g.v = Ag(g) v for every g € G. Since v € Prob(G/I) is a probability
measure, we obtain Ag(g) =1 and g.v = v for every g € G. Thus, Ag =1
and so G is unimodular. Moreover, v € Prob(G/I') is G-invariant and so
I' < G is a lattice.

Assume moreover that G is compactly generated. Choose a compact
subset @ C G such that e € Q and G = |J,,~», Q". Since G/I" is compact,
we may choose a compact subset K C G such that p(K) = G/T" (see the
proof of surjectivity of the map T : C.(G) — C.(G/I')). Up to replacing
Q by Q U K, we may further assume that ) -I' = G. Then Sy = Q@ N T is
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finite. Moreover, since Q2 is compact, there exists a finite subset S; C T
such that Q? C @S;. Indeed, otherwise we could find sequences (g )nen in
Q?, (hn)nen in Q and (Yn)nen in I' such that g, = hyn7y, for every n € N and
(¥n)nen are pairwise distinct. This would imply that v, = hy,'g, € @3 NT
for every n € N. Since Q3 is compact and I' < G is discrete, @3 N T must
be finite, a contradiction. Set S = Sy US; C I'. Then @ NI" C S and for
every n > 1, we have Q"' C QS™. We claim that S is a finite generating
set for I'. Indeed, by construction, we have Q NI" C S. Next, let n > 1 and
vy eQ"'NT c QS*"NTI. Then v = g7, where g € Q and ~, € S™. This
implies that yy,1 =g € QNI C S. Then v = gv, € SS" = " and
hence Q"' NT C S™*1. This implies that T' = |J,~, Q"N C |J,,~; S™ and
so I' is finitely generated. - - ]

PROPOSITION 1.15. Let G be any locally compact group that possesses
a lattice I' < G. Then G is unimodular. Moreover, there is a unique G-
invariant regular Borel probability measure v € Prob(G/T).

PROOF. Let v € Prob(G/T") be a G-invariant regular Borel probability
measure. We claim that there exists a unique left invariant Haar measure
m¢g on G such that

(13)  VreCUG). [ fdma(t) = [ FgT)dvlgD)
G G/T
Indeed, the well-defined positive linear functional
Ce(G) = C: f s f(gD) dv(gT)
G/T

is left invariant. By Riesz’s representation theorem, there exists a unique
left invariant Haar measure mq on G for which (1.3) holds.

Applying (1.1), for every f € C.(G) and every v € I, letting f, =
f(-471) € Cu(G), we have

Ac(v) /G £(h) dme (k) = /G £ (k) dme(h)

= [ Fy(hD)du(nT)
G/T

= f(hT) dv(hT)

- / f(h) dmg (h).
G

This implies that Ag(y) = 1 for every v € I'. Consider the well-defined con-
tinuous mapping A : G/I" — R% : gI' = Ag(g). Then n = A,v € Prob(R%)
is a Borel probability measure that is invariant under multiplication by
Ag(g) for every g € G. This implies that Ag = 1 and so G is unimod-
ular.
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Observe that (1.3) implies that there is a unique G-invariant regular
Borel probability measure v € Prob(G/T"). O

The next proposition provides a group-theoretic characterization of uni-
form lattices in locally compact groups.

PROPOSITION 1.16. Let G be any locally compact group and I' < G any
lattice. The following assertions are equivalent:
(i) I < G is uniform.
(ii) There exists a compact neighborhood U C G of e € G such that for
every g € G, we have gTg~ ' NU = {e}.

PROOF. (i) = (ii) Assume that I' < G is uniform. Since I' < G is
discrete, we may choose a compact neighborhood W C G of e € (G such that
I'nW = {e}. Next, we may choose a symmetric compact neighborhood
V C W of e € G such that VVV C W. Observe that for every h € V, we
have

ACA PNV c RN WVRA c AT W)R™! = {e}.
By compactness of G/T", there exist n > 1 and ¢1,...,9, € G such that
G/T = U, gip(V). Set U == N}_, 9:;Vg;*. Then for every g € G, there
exist 1 <7 <n and h € V such that gI" = g;hI' and hence

gTg ' NU = ghTh g ' nU C g;(hTA ' NV)g; = {e}.

(ii) = (i) Denote by v € Prob(G/T") the unique G-invariant regular Borel
probability measure and by mg the unique Haar measure on G such that
(1.3) holds. Assume that there exists such a compact neighborhood U C G
of e € GG. Choose a compact neighborhood V' C G of e € G such that
V=1V C U. Choose a nonnegative function ¢ € C.(G) such that 0 < ¢ < 1
and supp(p) C V. Set e :== [, ¢(h)dmg(h).

For every g € G, define ¢, := (- g71) € C.(G). Note that 0 < ¢, < 1
and supp(py) C Vg. Moreover, we have supp(@,) C VgI'. Since m is right
invariant, we have

- / o(h) dme (h)

G

— [ ey dme()
G

_ / P=(hT) dv(hT)
G/T

_ / P=(hT) dv(hT)
Vgl

- /V X eult) aviar).

vyel

We claim that for every h € VgI', there is at most one v € I' such that
hvy € Vg. Indeed, if 71,7 € I' are elements such that hy;, hye € Vg, then
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g'yflfyzg_l € V-V c U. Since gT'g ' NU = {e}, we have y; = 7. Since
0 < ¢4y < 1 and supp(py) C V4, it follows that

€= / > @g(hy) dv(hT) < / 1dy(hT) = v(Vgl).
Vgl ~el Vgl
We have showed that v(VgI') > ¢ for every g € G.
Let FF C G be any finite subset for which for every g, h € F such that
g # h, we have VgI' N VAI = (). Then we have

fF e < ZV(VQF) = Z/(U Vgl') <1
geF geF

and hence $F < ¢~!. We may then choose a maximal finite subset ' C G
with the aforementioned property. It follows that for every g € G, we have
VgI' N VFT # () and hence gI' € V-'VFI' ¢ UFT. Since UFT c G/T is
compact, it follows that G/T' = UFT is compact. U

When G is a locally compact second countable group, we prove a very
useful criterion to ensure that a discrete subgroup I' < G is a lattice.

THEOREM 1.17. Let G be any locally compact second countable group
and I' < G any discrete subgroup. The following assertions are equivalent:

(i) T' < G is a lattice.
(ii) G is unimodular and there is a Borel fundamental domain F C G
for the right translation action I' ~ G such that 0 < mg(F) < +o00.
(iii) G is unimodular and there is a Borel subset & C G such that
S-I'=G and 0 < mg(6) < +o0.

PROOF. Recall that since G is a locally compact second countable group,
the discrete subgroup I' < GG is necessarily countable.

(i) = (ii) We already know that G is unimodular by Proposition 1.15.
Denote by v € Prob(G/T") the unique G-invariant regular Borel probability
measure. Denote by m¢ the unique Haar measure on G satisfying (1.3).
Since G is locally compact second countable, (1.3) holds for every nonneg-
ative Borel function f : G — R,. In particular, for f = 17, we have f = 1
and so

me(F) = / FYdme(h) = | Fdu(hD) =1 < +o0.
e a/r

Since mg(G) > 0, G = U, cp Fy and ma(Fvy) = ma(F) for every v € T,
we also have mg(F) > 0.

(i) = (iii) Tt is trivial.

(iii) = (i) Following the proof of Proposition 1.14 and since m¢ is right
invariant, we may consider the well-defined nonzero left invariant linear func-
tional

D1 C(G/T) > C: s /G #(g) dmag).
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By Riesz’s representation theorem, there exists a unique nonzero G-invariant
regular Borel measure v on G/I' such that (1.3) holds. Since G is locally
compact second countable, (1.3) holds for every nonnegative Borel function
f:G — R,. In particular, for f = 1g, we have f > 1 and so

W(GJT) < /G | Favian) = /G F(B) dma(h) = ma() < +oc.

Then my € Prob(G/T") is a G-invariant regular Borel probability mea-

sure and so I' < G is a lattice. ([
Let us point out that when I' < G is a lattice then all Borel fundamental
domains for the right translation action I' ~ G have the same finite Haar

measure. Indeed, whenever Fi, Fo C G are Borel fundamental domains,
since the Haar measure m¢ on G is right invariant, we have

ma(F1) = ma(Fi N Fay)
~yel’

= Z m(;(fl’yfl N .7:2)
yel

= m(;(]:2>.

ExXAMPLES 1.18. Here are some examples of lattices in locally compact
groups.
(i) For every d > 1, the discrete subgroup Z¢ < R? is a uniform lattice.
(ii) More generally, any lattice I' < G in a locally compact second
countable abelian group G is necessarily uniform.
(iii) The discrete Heisenberg group H3(Z) < H3(R) is a uniform lattice
in the continuous Heisenberg group H3(R):

1 z 2

Hs(Z) = 01 y||zyz€Z
0 0 1
1 =z =

H3(R) := 01 y||zyzeR
0 0 1

(iv) More generally, any lattice I' < G in a locally compact second
countable nilpotent group G is necessarily uniform.

3. SL4(Z) is a lattice in SL4(R), d > 2
In this section, we prove the following theorem due to Minkowski.

THEOREM 1.19 (Minkowski). For every d > 2, the discrete subgroup
SL4(Z) < SL4(R) is a nonuniform lattice.

Before proving Theorem 1.19, we need to prove some preliminary results
that are also of independent interest.
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Let d > 1. Endow R? with its canonical euclidean structure. Denote by
K = S04(R) < SL4(R) the special orthogonal subgroup and observe that
K < SL4(R) is compact. Denote by A < SL4(R) the subgroup of diagonal
matrices with positive entries, that is,

A= {a:diag()\l,...,)\d)\Al,...,/\d>0, /\1~~~)\d:1}<SLd(R).

Denote by N := Ty4(R) < SLg(R) the strict upper triangular subgroup as in
Example 1.10(vi).

LEMMA 1.20 (Iwasawa decomposition). The map K x Ax N — SLg(R) :
(k,a,n) — kan is a homeomorphism. We simply write SLyj(R) = K -A-N.

PROOF. Denote by (ei,...,eq) the canonical basis of R?. The map
U: KxAxN — SLg(R) : (k,a,n) — kan is clearly continuous. Conversely,
let g € SLy(R) be any element and write v; = ge; € R? for every 1 <
1 < d. By Gram-Schmidt’s orthogonalization process, set w; = wv; and

Wit1 = Vit1 — Py, (vi41) where V; = Vect (v, ..., v;) for every 1 <i <d— 1.
Then (HZ’)—i”, ce HZ}“—ZH) is an orthonormal basis for R and we may find k €
O4(R) such that ke; = H;“”U—’H for every 1 < i < d. Then the matrix k™ g

is upper triangular and (k='g); = ||w;|| for every 1 < i < d. Tt follows
that det(k™!) = det(k~'g) = ||lwi|---|Jwg] > 0 and hence k € SO4(R).
Letting a = diag(||wi]],...,||lwd|]]) € A, we have ¢ = kan and the map
SLg(R) - K x Ax N : g — (k,a,n) is continuous. Since its inverse is
U, we have showed that ¥ : K x A x N — SLg(R) : (k,a,n) — kan is a
homeomorphism. O

LEMMA 1.21. Endow (K,dk), (A,da), (N, dn) with their respective Haar
measure. Then the pushforward measure of
Ai
x dk dadn

1<i<j<d "

under the map K x A x N — SL4(R) : (k,a,n) — kan is a Haar measure
on SL4(R).

PRrROOF. Consider the product map ¥ : K x AN — SL4(R) : (k,p) —
k~!p. Since SL4(R) is unimodular, the regular Borel measure (\P_l)*mSLd(R)
on K x AN is right invariant. Then (U~1),.mg;, 4(R) is a Tight invariant Haar
measure on the locally compact second countable group K x AN and hence
(ﬁ/*l)*mSLd(R) = ur @ pay where pg is a right invariant Haar measure on
K and papn is a right invariant Haar measure on AN. Since K is compact,
pk is also left invariant and hence we may assume that dux (k) = dk. It
remains to prove that [],;_ j<d i—; dadn is a right invariant Haar measure
on AN.

As explained in Examples 1.10(vi), we may assume that dmy(n) =
dn = ngiqu dn;;. Observe that N < AN is a normal subgroup and
define the conjugation action Ad : A ~ N by Ad(a)(n) = ana™! for a € A,
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n € N. Then AN = A x N and dadn is a left invariant measure on
AN by Proposition 1.9. A simple calculation shows that Ad(a).my =
(ITi<icj<a i—;)_l -my. Then Proposition 1.9 implies that [[;; ;<4 i—; dadn
is a right invariant Haar measure on AN. ([
For all ¢,u > 0, set
A = {a:diag()\l,...,Ad) cA | Vi<i<d-—1,); St)\i—i-l}
Nu ::{n:(nij)ij GN’V1§Z<]§d,‘nl]| §u}
615’“ =K. At . Nu

The Borel subset &, C G is called a Siegel domain. We now have all the
tools to prove Theorem 1.19.

2
show that SLg(R) = &¢,, - SLg(Z) and that &;,, has finite Haar measure.
By Theorem 1.17, this implies that SLy(Z) < SLg4(R) is a lattice. We divide

the proof into a series of claims.

ProoOF OF THEOREM 1.19. For every t > % and every u > i, we

Cram 1.22. For all t,u > 0, the Siegel domain &;, has finite Haar
measure.

Indeed, note that since K and N, are both compact in SLg(R), using
Lemma 1.21 it suffices to prove that

s
IitZ:/A H ﬁda<+m.
t1<i<j<d "7
Observe that the map

©: 4R diag(A1, ..., A\g) — (log)a,...,log Ad )
A Ad—1

is a topological group isomorphism. We may choose the Haar measure da
on A that is the pushforward of the Lebesgue measure on R%~! by ©71. We
then have

ko= [T emltoiot oot 5y toga ot dsacs

1<i<j<d
d-1  foo
= H/ exp(—k(d — k)sy) dsg < +o0.
k=1 —logt

CLAIM 1.23. For every u > 1, we have N = N, - (N N SLy(Z)).

Indeed, it suffices to prove Claim 1.23 for u = % We proceed by induc-
tion over d > 1. For d = 1, there is nothing to prove. Assume that the
result is true for d — 1 > 1 and let us prove it for d. Let n € N = T4(R) be
any element that we write

1 =
n:<0 no) where ng € Tyg_1(R).
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By induction hypothesis, there exists 79 € Tyq_1(R) N SLy_1(Z) such that
ny = noygl € Tg-1(R)1 /2. Write

1 0 . 1 =z d—1
n <0 ’y0_1> = <0 n1> where x € R,

Choose y € Z4~! such that z —y € [~1/2,1/2]%"1. Then
(1 =z 1 0
= 0 n1 0 Yo
(1 z—y 1 vy 1 0
—\0 ny 01 0 v

1 z—y 1 y 1 0
(0 n ) S N1/2 and <0 1) (0 70) € NmSLd(Z)

This shows the result is true for d and finishes the proof of Claim 1.23.
Cramm 1.24. For every t > %, we have SL4(R) = K- Ay - N - SL4(Z).
Indeed, it suffices to prove Claim 1.24 for t = % We proceed by

induction over d > 1. For d = 1, there is nothing to prove. Assume that the

result is true for d — 1 > 1 and let us prove it for d. Denote by (e, ..., eq)
the canonical basis of R%. Let g € SLg(R) be any element. Since A = gZ¢
is a lattice in RY, there must exist a vector v; € A\ {0} such that

[[o1]] = min {[jo]| | v € A\ {0}}.

By minimality of the norm of v; € A\ {0}, we may find v, ...,v5 € A\ {0}
such that (v1,...,v4) is a basis of A (see e.g. [CaT71, Corollary 1.3]). Up to
further replacing vy by —wv1, there exists v € SLy4(Z) such that ve; = g~ tv;
for every 1 < i < d. Note that gye; = v;.

Next, consider the Iwasawa decomposition gy = kan and write

where

)\d*l * *
an = < 0 /\_190> where A € R”, g € SLg—1(R).

By induction hypothesis, there exist kg € SO4—1(R) and 7 € SLgq_1(Z) such
that kzo_lgg'yo_l € (Ad,1)2/ﬁ - Tg—1(R). If we consider

1 0 1 1 0 -1 * >
h= 1)k 1) = 1. _1] € AN
(O kg 1> 7 (0 Y0 1> ( 0 At kg 190')’0 !

we obtain that the diagonal coefficients of h satisfy h;; < %hHMH for
every 2 <7 < d — 1. It remains to prove that h;; < %hgg. Observe that
for every w € Z%\ {0}, we have

1 0 1 0
el =t (g 21 ) eal = lveall = ol < i (24 ) wll = Do
0 Yo

v
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Using Claim 1.23, write h = diag(h11,...,hds)n1y1 where n1 € Ny and
1 € NN SLd(Z). Then he; = diag(hn, .. -,hdd)el = hj1e1 and with w =
7;162 e zd \ {O}, we have hw = diag(hn, RN hdd)n162 = hyiiniser + hases.
Then we obtain

1
hiy = ||h'91”2 < ||h7~UH2 = hiniy + h3, < Zh% + h3,

and so h?; < %h%Q. This finishes the proof of Claim 1.24.

A combination of Claims 1.22, 1.23, 1.24 and Theorem 1.17 implies that
SL4(Z) < SL4(R) is a lattice.

It remains to prove that SL4(Z) < SLg(R) is nonuniform. Indeed, regard
SLa(R) < SLg(R) as a subgroup in the top left corner and set

- ((1) i) € SLy(Z) < SLy(Z).

Then a simple calculation shows that

_ 1 n2 . n~l 0
g, = (0 1 ) —e with g, = ( 0 n) € SLa(R) < SL4(R).

Then Proposition 1.16 implies that SL4(Z) < SL4(R) is nonuniform. O

4. More examples of lattices

In this expository section, we provide more examples of lattices in lo-
cally compact groups. The main examples of lattices we discuss arise from
arithmetic subgroups of algebraic groups.

We first introduce some terminology. We say that a connected linear
algebraic group G < GL,(C) is defined over Q or is a Q-group if the
ideal 7(G) C Clg11,---,9ij,- - - » Gnn, I of all polynomials vanishing on G is
spanned by Jo(G) = J(G) N Q[g11,---,Yij,- - - Gnn, T] over C. Moreover,
we say that G is

o semisimple if its maximal connected algebraic solvable normal sub-
group is trivial.

e almost simple if the only proper algebraic normal subgroups are
finite.

We then say that G(Z) := G N GL4(Z) is an arithmetic group.

ExaMPLE 1.25. For every d > 2, the special linear group Sl is a con-
nected almost simple semisimple algebraic Q-group.

The next theorem is a particular case of a general result due to Borel-
Harish-Chandra showing that arithmetic groups are lattices.

THEOREM 1.26 (Borel-Harish-Chandra [BHC61]). Let G be any con-
nected semisimple algebraic Q-group. Then G(Z) < G(R) is a nonuniform
lattice.
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One can then view Theorem 1.26 as a generalization of Theorem 1.19.
We also mention that any noncompact connected semisimple Lie group con-
tains both uniform and nonuniform lattices (see e.g. [Ra72, Chapter XIV]).

In these lecture notes, we will be interested in discrete groups that arise
as lattices in product groups. In that respect, we introduce the following
terminology. Let r > 2 and (1, ..., G, be any locally compact groups. Set
G =G x-+-xG,. Forevery 1 <1¢ < r, denote by p; : G — G; the canonical
factor map.

DEFINITION 1.27. Let I' < G be any discrete subgroup. We say that
I' < G is irreducible if for every 1 < i < r, the image p;(T") is dense in G;.

Let us point out that Definition 1.27 is not really restrictive. Indeed,
whenever I' < G is a discrete subgroup, letting H; = p;(I") for every 1 <
1 < r, we may regard I" as a discrete and irreducible subgroup of the locally
compact group H = Hy x --- X H,.

ExaMpPLE 1.28. Here are some examples of discrete irreducible sub-
groups I' < G in locally compact groups.

(i) Let ¢ > 2 be any square-free integer. Define the field automorphism
o:Q(/q) — QL/Q) : v+ y/q— = —y\/q. For every d > 2, the
subgroup

I':={(9,97) | g € SLa(Z]\/q])} < SLa(R) x SL4(R)

is discrete and irreducible. Write SLq(Z[,/q]) < SLq(R) x SL4(R).
(ii) Let p € P be any prime. For every d > 2, the subgroup

T :={(9,9) | g € SLa(Z[p~'])} < SLa(R) x SL4(Qy)
is discrete and irreducible. Write SLgq(Z[p~!]) < SLgq(R) x SLa(Qp)-

Borel-Harish-Chandra’s results [BHCG61] provide many examples of lat-
tices in algebraic groups. We refer the reader to [Ma91, Chapter IX] and
[Be09, §2] for further details.

ExXAMPLES 1.29. Let d > 2.

(i) The discrete subgroup SL4(Z) < SLg(R) is a nonuniform lattice
(see Theorem 1.19).
(ii) For every square-free integer ¢ > 2, the discrete subgroup

SLa(Z[\/q)) < SLa(R) x SLq4(R)

is a nonuniform irreducible lattice.
(iii) For every prime p € P, the discrete subgroup

SL4(Z[p™']) < SLa(R) x SL4(Q,)

is a nonuniform irreducible lattice.
(iv) More generally, for every finite set of primes S = {p1,...,p,} C P,
the discrete subgroup

SLa(Z[S™']) < SLa(R) x SLa(Qp,) x -+ x SLa(Qp,)
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is a nonuniform irreducible lattice.

(v) For every prime p € P and every r > 1, set ¢ = p” and denote
by F,((t)) the field of formal power series in one variable ¢ over
the finite field F, and by Fy[t™!] C F4((t)) the polynomial ring
in one variable t~!. Then the discrete subgroup SLg(F,[t71]) <
SL,(F4((t))) is a nonuniform lattice.

(vi) Let d > 3 and p > ¢ > 1 such that p+ g = d. Define

J I 110 0
va=\0 _val,
I = {g € SLaZV2) | 9pa's = Jpa }

G = {9 € SLq(R) | gJpq'g = JM} :

Then I"' < G is a uniform lattice.






CHAPTER 2

Group unitary representation theory

In this chapter, we present an introduction to uni-
tary representation theory for locally compact groups.
We define and study the notions of amenability and
Kazhdan’s property (T). We prove that SLy(R) has
the Howe—Moore property for every d > 2. We also
prove that SL4(R) and its lattice SL4(Z) have Kazh-
dan’s property (T) for every d > 3.

1. Generalities on unitary representations

Let (H,(-,-)) be any (complex) Hilbert space. We always assume that
(-,-) is conjugate linear in the second variable. We denote by

UH) ={ueB(H) | uu=uu" =1y}

the group of unitary operators on H. We simply write 1 = 1. We endow
U(H) with the strong operator topology defined as the initial topology on
U(H) that makes the maps U(H) — H : u — u& continuous for all £ € H.
Then U(H) is a topological group but U(H) need not be locally compact.
When H is separable, U(H) is a Polish group.

DEFINITION 2.1. Let G be any locally compact group. We say that the
mapping 7 : G — U(Hr) is a strongly continuous unitary representation if
the following conditions hold:

(i) 7 : G = U(H) is a group homomorphism.

(ii) m: G — U(Hr) is strongly continuous, meaning that 7 is a continu-
ous map when U(H,) is endowed with the strong operator topology
as above.

When 7 : G — U(H,) only satisfies condition (i), we simply say that
7 is a unitary representation. When G is discrete, condition (ii) is trivially
satisfied.

The next result shows that in order to prove that the unitary represen-
tation 7 : G — U(H) is strongly continuous, it is enough to show that the
coefficients of 7 are measurable functions.

LEMMA 2.2. Let G be any locally compact group, Hr any separable
Hilbert space and m : G — U(Hr) any unitary representation. Assume
that for all §,m € Hx, the map ¢, : G — C: g (m(g9)&,n) is measurable.
Then 7 is strongly continuous.

29
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PROOF. Let £ € H, be any vector. It suffices to show that the map
G — Hy : g — 7(g)€ is continuous at e € G. Let Q C G be any symmetric
compact neighborhood of e € G. Consider the compactly generated open
subgroup H = (J,,»; @" < G. It further suffices to show that the map
H — Hy : g — w(g)€ is continuous at e € H. Thus, we may as well assume
that G is o-compact.

As usual, we denote by m¢g a left invariant Haar measure on G. Let
e>0andset B = {g € G| |n(9)§ —¢&|l < e/2}. Then B C G is a
measurable subset since B = {g € G | 2R((w(9)¢,€)) > 2||€||? — £2/4}.
Moreover, we have B~! = B and B2 = BB~' Cc {g € G | |7(g)¢ — ¢| < €}.
Since w(G)§ C H is separable, there exists a sequence (gp)nen in G such
that (m(gn)¢)nen is dense in m(G)E. This implies that | J, .y 928 = G and
so mg(B) > 0. Since G is o-compact, up to replacing B by BN K for a
suitable symmetric compact subset, we may further assume that B = B!,
B C K and 0 < mg(B) < 4+o00. Then 15 € L*(G,B(G),mg) and ¢ =
1p * 1 € C.(G). Since ¢(e) = mg(B) > 0, the subset U = ¢~ 1(0, +00) is
open,e ¢ Uand U C BBC {ge€ G| ||m(9)¢ —&| < e}. O

DEFINITION 2.3. Let G be any locally compact group and © : G —
U(H ) any strongly continuous unitary representation. We say that

e 71 has invariant vectors and we write 1¢ C m if the subspace of
7 (G)-invariant vectors

(Ha)¢ ={¢ € Ha |Vg € G, (9)6 =&}

is nonzero. Otherwise, we say that 7 is ergodic and we write 1¢ ¢ .

e 71 has almost invariant vectors and we write 1¢ < 7 if for every
€ > 0 and every compact subset () C G, there exists a unit vector
& € Hy such that

sup [[r(g)¢ — €] < e.
9geQ

Otherwise, we say that 7w has spectral gap and we write 1g 4 7.
It is clear that if 1¢ C 7, then 15 < 7.

For every i € {1,2}, let m; : G — U(H,,) be any strongly continuous
unitary representation. We say that w1 and my are unitarily equivalent if
there exists a unitary operator U : H,, — Hg, such that for every g € G,

we have ma(g) = Um1(g)U*. In this situation, we will identify m with ma.

1.1. Examples of unitary representations. Let G be any locally
compact group.

The left regular representation Ag. Let mg be any left invariant
Haar measure on G and simply denote by L?(G) = L*(G, B(G), mg) the
corresponding Hilbert space of L?-integrable functions on G. Define the left
reqular representation \g : G — U(L?(G)) by the formula

Vg € G,V¢ € LA(G), (Aa(9)€)(h) = &g~ h).
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The left regular representation Ag : G — U(L3(G)) is a strongly continuous
unitary representation. This follows from the well known facts that the
subspace C.(G) of compactly supported continuous functions on G is || - [|o-
dense in L?(G) and the left translation action A : G ~ Co(G) is || - [|oo-
continuous (see Lemma 1.8).

PROPOSITION 2.4. Keep the same notation as above. Then 1g C Ag if
and only if G is compact.

Proor. If G is compact, then the left invariant Haar measure mg is
finite. This implies that the constant function 1 belongs to L?(G) and
is Aq(G)-invariant. Conversely, assume that there exists a nonzero Ag(G)-
invariant vector ¢ € L2(G).

CLAIM 2.5. There exists a o-compact open subgroup H < G such that
§=1u¢.

Indeed, define the measurable subsets B := {h € G | £&(h) # 0} and
B, = {h € G | |£(h)| > n~1} for every n > 1. Then B = J,~; B, and
mq(By) < 400 for every n > 1. By regularity, for every n > 1, there exists
an open set U, C G such that B, C U, and mg(U,) < +oo. To prove
the claim, it suffices to show that every open set U C G with finite Haar
measure is contained in a o-compact open subgroup H < G.

Let U C G be any nonempty open set such that mg(U) < 4o00. Let
L < G be any o-compact open subgroup. Since mg(U) < +oo, the set
A :={gL € G/L | UngL # 0} is at most countable. Letting H < G be
the subgroup generated by L and A, we have that U € H and H < G is
o-compact and open. This finishes the proof of Claim 2.5.

Using Claim 2.5 and the assumption, for every g € GG, we have

1€ =& = Xc(9)€ = A\a(9)(AuE) = 1gné = 1angué.
Since £ # 0, we have mg(H NgH) > 0 for every g € G. It follows that
gH = H for every ¢ € G and hence H = G. This shows that G is o-
compact.

We may now apply Fubini’s theorem. Indeed, since for every g € GG and
mg-almost every h € G, we have (g~ 1h) = £(h), Fubini’s theorem implies
that there exists h € G such that for mg-almost every g € G, we have
€(g7'h) = &(h). This further implies that ¢ is essentially constant. If we
denote by ¢ > 0 the essential value of |¢]?, we obtain c-mg(G) = [|€]]? < 40
and so mg(G) < 400. Then G is compact by Proposition 1.6. O

The Koopman representation . Let G be any locally compact
second countable group and (X, B,v) any standard probability space. We
simply write (X,v) in what follows. We endow G with its o-algebra B(G)
of Borel subsets. Let G ~ (X,v) be any probability measure preserving
(pmp) action meaning that the action map G x X — X : (g,z) — gz is
measurable (where we endow G x X with the product o-algebra B(G) ® B)
and that g,v = v for every g € G. Denote by L?(X,v) the Hilbert space
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of L%integrable functions on X. Since (X,v) is a standard probability
space, L?(X,v) is separable (see e.g. [Zi84, Theorem A.11]). Define the
Koopman representation x : G — U(L*(X,v)) associated with the pmp
action G ~ (X, v) by the formula

Vg € G, V€ e LY(X,v),  (k(9)€)(x) = &(g ).

The Koopman representation « : G — U(L%(X,v)) is a strongly continuous
unitary representation. This follows from Lemma 2.2 after noticing that for
all ¢&,n € L3(X,v), the map

Pen G Cigmr k()& n) = /Xf(glw)n(x)dV(ﬂf)

is measurable thanks to Fubini’s theorem. The constant function 1x is
k(G)-invariant. For this reason, it is natural to consider the restriction of
the Koopman representation to the orthogonal complement L?(X,1)? =
L?(X,v) © Cly that we denote by ° : G — U(L*(X,v)?).

We say that a measurable subset Y C X is

e v-a.e. G-invariant if for every g € G, we have v(gY AY') = 0.
e strictly G-invariant if for every g € G, we have gY =Y.

The next lemma clarifies the difference between the two notions.

LEMMA 2.6. For any v-a.e. G-invariant measurable subset Y C X, there
is a strictly G-invariant measurable subset Z C X such that v(Y AZ) = 0.

Proor. Fix a left invariant Haar measure mg on G. By assumption
and using Fubini’s theorem, the measurable subset

Xo={reX|G—C:g— 1y(g 'z) is mg-a.e. constant}

is v-conull in X. For every x € X, denote by f(x) the unique essential value
of the measurable function G — C : g — 1y (g ). For every z € X \ X,
set f(x) = 0. Note that f(X) C {0,1}. Fubini’s theorem implies that the
function f : X — C is measurable and f(x) = 1y(z) for v-almost every
x € X. For every x € Xy and every h € G, the measurable function
G — C: g+ 1y(g-th~'z) is mg-a.e. constant, hence h~'z € X, and
f(h=1x) = f(x). This further implies that f is strictly G-invariant meaning
that f(g~'z) = f(x) for every g € G and every x € X. Set Z := {z € X |
f(z) = 1}. Then Z C X is a strictly G-invariant measurable subset such
that v(YAZ) = 0. O

From now on, we simply say that the measurable subset Y C X is G-
invariant if for every g € G, we have v(gY AY) = 0. We say that the pmp
action G ~ (X, v) is ergodic if every G-invariant measurable subset Y C X
is null or conull.

PROPOSITION 2.7. Keep the same notation as above. Then 1g C k° if
and only if the pmp action G ~ (X, v) is not ergodic.
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PROOF. If the pmp action G ~ (X, v) is not ergodic, then there exists
a G-invariant measurable subset Y C X such that 0 < v(Y') < 1. Then the
nonzero vector ¢ = 1y —v(Y)1x € L*(X, ) is k°(G)-invariant. Conversely,
assume that there exists a nonzero x°(G)-invariant vector ¢ € L2(X,v)°. Up
to taking the real or imaginary part of &£, we may assume that £ is real valued.
Next, up to taking £t = max(&,0) or &~ = max(—¢&,0), we may further
assume that ¢ € L2(X,v) is x(G)-invariant, nonnegative and ¢ ¢ Clx. For
every t > 0, define the G-invariant measurable subset X; = {z € X | {(x)? >
t}. Then the function RY — Ry : ¢t — v(X;) is measurable, non-increasing
and satisfies ||£]|2 = 0+°° v(X;)dt. We claim that there exists ¢ > 0 such
that 0 < v(X;) < 1. Indeed otherwise there would exist s > 0 such that
v(X:) =0 for every t > s and v(X;) = 1 for every ¢t < s. This would imply
that ¢ is v-almost everywhere constant equal to /s and thus £ € Cly, a
contradiction. Therefore, there exists ¢ > 0 such that 0 < v(X;) < 1. This
shows that the pmp action G ~ (X, v) is not ergodic. O

The quasi-regular representation Ag . Let G be any locally com-
pact second countable group and I' < G any lattice. We endow the locally
compact second countable space X = G/T" with its o-algebra B of Borel sub-
sets (see Proposition 1.11(iii)). We denote by v € Prob(X) the unique G-
invariant Borel probability measure (see Proposition 1.15). Then the action
G ~ (X,v) is pmp. In that case, we denote by Ag/r : G — ULA(G/T,v))
the Koopman representation and we call it the quasi-reqular representation.
Since G ~ X is transitive, Lemma 2.6 implies that G ~ (X,v) is ergodic
and Proposition 2.7 implies that )\OG/F : G — U(L*(G)T,v)?) is ergodic. We
can strengthen the above result when I' < G is a uniform lattice.

PROPOSITION 2.8. Assume that I' < G is a uniform lattice. Then )\%/F
has spectral gap.

PROOF. We may choose a Borel section o : X — G such that o(X)
is relatively compact in G (see Proposition 1.11 and Corollary 1.12). We
further choose the Haar measure mq on G such that o.v = mgls(x). Set
Q = o(X)o(X)™! € G. Observe that Q = Q™! is relatively compact in
G and so mg(Q) < +oo. Let ({,)nen be any bounded sequence of vectors
in L*(X,v)? such that lim, sup,cq [|AY r(9)én — &nll = 0. Using Fubini’s
theorem, we obtain

1
J @R avta) =3 [ ( Lo |§n<gx>—sn<x>|2dme<g>> ()

;/}((/Q Ién(gx)—fn(w)lzdme(g)) dv(z)
-3/ ([ tento) - ) (o)) ama(o)
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1
T2 /Q I /r (971 )én = €all* dma(g)
1

= §mG(Q) - sup ”)‘%’/F(g_l)gn - énH —0 as n— +oo.
9€Q

This implies that lim, ||£,|| = 0 and thus )\% s has spectral gap. O

The previous result justifies to introduce the following terminology.

DEFINITION 2.9. Let G be any locally compact second countable group.
We say that a lattice I' < G is weakly uniform if )\OG T has spectral gap.

Proposition 2.8 shows that any uniform lattice I' < G is weakly uniform.
In Section 3, we will provide examples of nonuniform weakly uniform lattices
r<gG.

1.2. Induction of unitary representations. Whenever I' < G is a
lattice, we explain how to naturally associate to any unitary representation
7 : ' — U(H,) astrongly continuous unitary representation 7 : G — U(Hz).
We then compute the induced representation 7 in several examples.

Let G be any locally compact second countable group and I' < G any
lattice. Set X = G/I'" and denote by v € Prob(X) the unique G-invariant
(regular) Borel probability measure on X. Choose a Borel sectiono : X — G
as in Corollary 1.12. Define the Borel map 7 : G x X — T' : (g,2) —
o(gx) tgo(x). Observe that for every g € G and every x € X, 7(g,z) € 'is
the unique element v € I' such that go(x) = o(gz) 7(g,z). The Borel map
7 satisfies the 1-cocycle relation

(2.1) Vgi,92 € G,Vx € X, 7(9192,%) = 7(g1, 927) (g2, x).

We present two different viewpoints to define the induction from I' to G
for unitary representations. Let m : I' — U(H ) by any unitary representa-
tion. Assume that H, is separable so that #, is a Polish space.

Induction I. Denote by L?(X, v, H,) the Hilbert space of v-equivalence
classes of all measurable functions n : X — H, that satisfy

s fX [n(2)]|? dv(z) < +oo.
Endowed with the sesquilinear form defined by

Vi € (X, 0, 1), (1) = /X (m1(2), 7o) (),

the space L?(X, v, H,) is indeed a Hilbert space. We may and will identify
L%(X, v, H.) with the tensor product Hilbert space L?(X, v) ® H,. We refer
the reader to [BHV 08, Appendix E] for further details.

DEFINITION 2.10. With this viewpoint, the induced representation 7 :
G — U(L*(X,v, H)) is defined by the formula

Vg € G,V e L*(X,v,1y), (Filg)n)(x) =7(7(g.9 " x))n(g " x).
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Simply write Hz = L?(X, v, H,). The induced representation 71 : G —
U(Hz) is a strongly continuous unitary representation. This follows from
Lemma 2.2 after noticing that for all n, 7m0 € Hz, the map

P G—=Cigr /X<7r(7(9,g‘lx))m(g‘lx),nz(w» dv ()

is measurable thanks to Fubini’s theorem.

Induction II. Denote by F = o(X) C G and recall that F C G is
a Borel fundamental domain for the right translation action I' ~ G and
so G = F -T'. Denote by mg the unique Haar measure on G such that
o« = mg|F. Denote by L?(G,H,)" the Hilbert space of mg-equivalence
classes of all measurable functions & : G — H, that satisfy

e For mg-almost every g € G and every v € T, (g7 1) = 7(7)&(g).
o [=lIE@)I? dma(g) < +oo.
Endowed with the sesquilinear form defined by

VEr 6 € LG ), (61.6) = /F (1(9), &2(9)) dma(g),

the space LQ(G, ’HW)F is indeed a Hilbert space.

DEFINITION 2.11. With this view point, the induced representation m :
G — U(L*(G,H,)") is defined by the formula

Vg € G,Vn € L*(G, Hr)",  (Fa(g)€)(h) = E(g™ " h).

Let us explain why this second view point is actually equivalent to the
first viewpoint. Define the mapping U : L*(G,H.)" — Hz by the formula
(U€)(z) = &(o(x)) for all € € L%(G,H,)'. Then it is plain to see that U is
a unitary operator such that U* : Hz — L%(G, H,)' is given by the formula
(U*n)(g) = n(r(g~1, gT"))n(gT) for all n € Hz. Moreover, for every g € G,
we have ma(g) = U*T1(g)U. Therefore, 71 and 7y are unitarily equivalent.

In what follows, it will be useful to switch from one viewpoint to the
other. We will simply denote by 7 : G — U(Hz) the induced representation
and we will emphasize (when necessary) the viewpoint we choose.

ExXAMPLES 2.12. Keep the same notation as above. The following veri-
fications are left as an exercise.

(i) Assume that m = 1r is the trivial representation. Then 7 = Ag/r
is the quasi-regular representation.
(ii) Assume that m = Ar is the left regular representation for I". Then
T = Aq is the left regular representation for G.
(iii) Let 7 : G — U(Hr) be any strongly continuous unitary represen-
tation and let p = 7|p : I' = U(H,) be the restriction. Then p and
T ® Agr are unitarily equivalent.

The following result will turn out to be useful later on.
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PROPOSITION 2.13. Let m : I' — U(H,) be any unitary representation
and denote by T : G — U(Hz) the induced representation. Then 1p C m if
and only if 1o C 7.

PrROOF. Choose the first viewpoint on induction. Keep the same nota-
tion as above. Firstly, assume that 1r C 7 and choose a m(I")-invariant unit
vector £ € Hy. Then n =1x ® £ € Hz is a 7(G)-invariant unit vector and
solg C 7.

Conversely, assume that 1¢ C 7 and choose a 7(G)-invariant unit vector
1 € Hz. Then for every g € G and v-almost every x € X, we have

m(r(g.9 " x))n(g  x) = n(x).

For every x € X, define the measurable function (, : G — H, : g —

m((g9, 97 2))n(g " x). Set

Y = {z € X | {, is mg-a.e. constant}.

For every x € Y, denote by ((z) € H, the unique essential value of the
function (. Fubini’s theorem implies that Y C X is conull, the function
¢:Y = Hy : x— ((x) is measurable and ((z) = n(z) for v-almost every
x €Y. Viewing ¢ € Hz, we have ( = 7.

CLAIM 2.14. For every # € Y and every h € G, we have h™'z € Y and
m(r(h,h~ 2))C(h ) = ((x).

Indeed, using the cocycle relation (2.1) and since z € Y, for mg-almost
every g € GG, we have

(r(h, k™ 2))* C(2) = m(7(h, k™ z)) n(r(hg, g h~ 2))n(g~ h™ )

(r(g,97'h ™ 2))m(g~"h ).

Since the left hand side does not depend on g € G, this implies that h 'z €
Y and 7(7(h,h~'z)){(h~tx) = ((x). This finishes the proof of Claim 2.14.

Claim 2.14 implies that Y C X is G-invariant and so Y = X = G/I.
Moreover, for every x € X and every h € G, we have 7(7(h, h~12))((h~ ) =
C(x). Set & = ((T') € Hr. We have £ # 0, otherwise we would have
C(h™IT) = 7(7(h, h~'T))*¢(T") = 0 for every h € G. This would imply that
n = ¢ = 0, a contradiction. Then £ # 0 and for every v € I', we have
7(7)¢ = 7(7(7,77D))¢(y 1) = ¢(T') = & Then & € H, is a nonzero
7(T")-invariant vector and so 1p C . O

=T
=T

2. Amenability

DEFINITION 2.15. Let G be any locally compact group. We say that G
is amenable if any affine continuous action G ~ C on a nonempty convex
compact subset of a Hausdorff locally convex topological vector space has a
G-fixed point.

We give a few examples of locally compact amenable groups.

PROPOSITION 2.16. Any compact group is amenable.
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PROOF. Denote by mg the (unique) Haar probability measure on G. Let
G ~ C be any affine continuous action on a nonempty convex compact subset
of a Hausdorff locally convex topological vector space. Define the convex
weak*-compact subset Prob(C) = {u € Cr(C)* | © > 0 and p(1¢) = 1} and
consider the affine weak*-continuous action G ~ Prob(C) defined by

Vg € G,Vf € Cr(C),Vu € Prob(C), (g:p)(f) = p(fog).

Define the barycenter map Bar : Prob(C) — C as the unique continuous map
satisfying f(Bar(u)) = u(f) for every real-valued continuous affine function
f € Agr(C). Since G ~ C is continuous affine, Bar : Prob(C) — C is G-
equivariant. Choose a point ¢ € C and define the G-equivariant continuous
orbital map ¢ : G — C : g — gc. We may define p = t,m¢g € Prob(C). Since
mg is a left invariant Borel measure, it follows that g,u = p for every g € G.
This further implies that Bar(u) € C is a G-fixed point. O

PROPOSITION 2.17. Any abelian locally compact group is amenable.

PrOOF. Let G ~ C be any continuous affine action on a nonempty con-
vex compact subset of a Hausdorff locally convex topological vector space.
Whenever F C G is a finite subset, denote by C7 the convex compact subset
of F-fixed points in C. Since G is abelian, G leaves C” globally invariant.
If we show that the compact subset C7 is nonempty for every finite subset
F C G, by finite intersection property, we will have that the compact sub-
set of G-fixed points C¢ = N{C” | F C G finite subset} is nonempty. It
remains to prove that C* is nonempty for every finite subset 7 C G. By in-
duction and since G is abelian, it suffices to prove that C9 = {c € C | gc = ¢}
is nonempty for every g € GG. This in turn follows from Markov-Kakutani’s
fixed point theorem. Choose ¢ € C and for every n € N, set

1
cn:n+1(c+gc+---+g”c)ec.

By compactness, denote by co, € C an accumulation point of the sequence

(¢n)nen- Since n_lﬂc + Z—i;gcn = ﬁ—iécn + %Hgnﬂc and since ¢ is a homeo-
morphism of C, it follows that gcso = ¢oo and so coo € CY. [l

We prove various permanence properties enjoyed by amenable locally
compact groups.

PRrROPOSITION 2.18. Let G, H be any locally compact groups. Assume
that G is amenable. The following assertions hold:

(i) If p : G — H is a continuous homomorphism with dense range,
then H is amenable.
(ii) If H 9 G is a closed normal subgroup, then G/H is amenable.

PrOOF. (i) Let H ~ C be any continuous affine action on a nonempty
convex compact subset of a Hausdorff locally convex topological vector
space. By composing with p : G — H, we obtain a continuous affine G-
action. Since G is amenable, the continuous affine G-action has a G-fixed
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point. This shows that the original continuous affine H-action has a p(G)-
fixed point. By continuity and density of p(G) in H, we obtain a H-fixed
point. Thus, H = p(G) is amenable.

(ii) It suffices to apply item (i) to the continuous homomorphism G —
G/H. O

Let now G be any locally compact o-compact group. As usual, we denote
by B(G) the o-algebra of Borel subsets of G and we fix a left invariant Haar
measure mg on G. Denote by Ag : G — R% the modular function. For
every p € [1,4o00], we simply write L?(G) = L?(G, B(G), mqg). Since G is
o-compact, mg is o-finite and hence we have L°(G) = L'(G)*. We denote
by A : G ~ LP(G) the left translation action defined by

Vg € G,YF € LP(G), (Mg)F)(h) = F(g~'h).

The left translation action A : G ~ LP(G) is isometric for every p € [1, 400]
and continuous for every p € [1,400). Since G ~ L*(G) need not be
continuous, we denote by UC,(G) C L*°(G) the subspace of left uniformly
continuous functions

UCy(G) ={F € L™(G) | |Mg)F — Flloc — 0 as g — €}.

Observe that UCy(G) C L*™°(G) is a A(G)-invariant || - ||s-closed subspace.
Letting Cy(G) be the space of bounded continuous functions on G, we have
the following inclusions UCy(G) C Cy(G) C L*°(G). Observe that when G
is discrete, we have UC/(G) = Cy(G) = £>°(G). Whenever F C L*(G) is a
|| - llco-closed subspace such that Clg C F, we say that an element m € F*
is a mean if m(F) > 0 for every F' € F4 and m(1g) = 1. If F C L*(G)
is moreover \(G)-invariant, we say that m € F* is a left invariant mean if
m(A(g)F) = m(F) for every g € G and every F € F.

Recall that the convolution product of two measurable functions Fy, F :
G — C, whenever it makes sense, is defined as

(Fy * Fy)(h) = /G Fi(g)Fa(g~'h) dma(g).

Set P(G) = {p € LYG) | p > 0 and ||u|[; = 1}. We will use the following
technical lemma whose proof is left to the reader.

LEMMA 2.19. The following assertions hold:
(i) If u € P(G) and F € L*™°(G), then px F € UCy(G).
(ii) If (1 )ier s a net in LY(G) such that lim; ||u;||1 = 0, then for every
F € L*®(G), we have lim; ||p; x F||oo = 0.
(iii) There exists a net (u;)ier in P(G) such that for every u € LY(G),
we have lim; [|p; * p— pl|1 = limy [[p % p; — pl|i = 0.
(iv) Ifg € G, u € P(G) and F € L*™(G), then (A(g)u)*F = X(g)(pxF).

The main result of this section is a functional analytic characterization
of amenability for locally compact groups.
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THEOREM 2.20. Let G be any locally compact o-compact group. The
following conditions are equivalent:

(i) 1 < Ag, that is, the left reqular representation A\ has almost
mvariant vectors.
(ii) There exists a left invariant mean m € L*°(G)*.
(iii) There exists a left invariant mean m € UC,(G)*.
(iv) G is amenable, that is, any affine continuous action G ~ C on
a nonempty conver compact subset of a Hausdorff locally convex
topological vector space has a G-fixed point.

PROOF. (i) = (ii) There exists a net (&)ie; of unit vectors in L%(G)
such that for every compact subset ) C G, we have
limsup [|Aq(9)& — &ill2 = 0.
togeq
Choose a nonprincipal ultrafilter & on I. Define the unital x-homomorphism
p: L®°(G) — B(L*(G)) by the formula p(F)¢ = F¢ for every F € L®(G)
and every ¢ € L2(G). Then we have Ag(g)p(F)Ag(9)* = p(A(g)F) for every
g € G and every F' € L*°(G). Define the mean m € L>°(G)* by the formula
VE € L¥(@), m(F) = lim (p(F)& &),
i—
Then for every g € G and every F € L*°(G), we have
m(A(g)F) = lim {p(A(9)F)&, &)
= }L%(AG(Q)P(F)AG(Q)*&, &)
= lim (p(F)Ac(9) & Aa(9)" &)
i—U
=m(F).

Thus, m € L*°(G)* is a left invariant mean.

(ii) = (iii) This is trivial.

(iii) = (iv) As in Proposition 2.16, define the convex weak*-compact
subset Prob(C) = {u € Cr(C)* | p > 0 and u(1¢) = 1} and consider the
affine weak*-continuous action G ~ Prob(C) defined by

Vg € G,Vf € Cr(C),Vu € Prob(C), (g:p)(f) = p(fog).

Recall that the barycenter map Bar : Prob(C) — C is the unique continuous
map satisfying f(Bar(u)) = wp(f) for every real-valued continuous affine
function f € Agr(C). Since G ~ C is continuous affine, Bar : Prob(C) —
C is G-equivariant. Choose a point ¢ € C and define the G-equivariant
continuous orbital map ¢ : G — C : g — ge. For every f € Cr(C), we have
foureUCy(G). We may define p1 € Prob(C) by the formula

VfeCr(C), u(f)=m(fou)

Since m € UC,(G)* is a left invariant mean, it follows that g, = u for every
g € G. This further implies that Bar(u) € C is a G-fixed point.
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(iv) = (iii) Endow E = UC,(G)* with the weak*-topology and consider
the nonempty convex weak*-compact subset C C UCy(G)* of all means on
UC((G). Since the action G ~ UC(G) is || - ||oc-continuous, the action
G ~ C is affine weak™-continuous. Thus, there exists a G-fixed point m € C
and so m € UCy(G)* is a left invariant mean.

(iii) = (i) We proceed in several intermediate steps. Let m € UCy(G)*
be a left invariant mean.

CrLAaM 2.21. For every p € P(G) and every F' € UCy(G), we have
m(px F) =m(F).

Indeed, let p € P(G) and F € UCy(G). Observe that using Lemma
2.19(ii), we may assume that u € P(G) is compactly supported. Then
denote by K = supp(u) C G the compact support of p € P(G). The G-
equivariant mapping ¢ : G — UCy(G) : g — A(g)F is continuous and thus
L(K) C UCy(G) is a compact subset. Then the closed convex hull C of ¢+(K)
is a convex compact subset of UC,(G) (see [Ru91, Theorem 3.20]). Set
v = 1y and regard v € Prob(C) by the formula

Vi e Cr(C), u(f) = /G w(9) f(M\(9) F) dma(g).

We claim that px F' = Bar(v) € C. Recall that f(Bar(v)) = v(f) for every
f € Ar(C). For every h € G, regarding the evaluation map ey, : UCy(G) —
C: f— f(h) as an element of Ag(C), we have

Bar(v)(h) = ex(Bar(v)) = v(ey) = /G i(g)en(M9)F) dm(g) = (1 F)(h).

Thus, we have Bar(v) = p* F. Since m € UC(G)* is a left invariant mean,
we can regard m € Ar(C) and we obtain

m(jux F) = m(Bar(v)) = /G u(g)m(A(g) F) dma(g) = m(F).

This finishes the proof of Claim 2.21.

CrLAIM 2.22. There exists a mean my € L>(G)* such that for every
w € P(G) and every F' € L>(G), we have mo(u * F') = mg(F).

Indeed, choose any po € P(G). Thanks to Lemma 2.19(i), we may
define the mean my € L°°(G)* by the formula mo(F') = m(uo * F) for every
F € L*(G). Choose a net as in Lemma 2.19(iii). Using Lemma 2.19(ii), for
every pu € P(G), we have

mo(p o+ F) = limmo(p * p; + F)
(]
= limm(po * p % i * F)
7
= limm(y; * F) by Claim 2.21
1

= limm(uo * p; * F') by Claim 2.21
(2
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=m(po * F)
= mo(F)

This finishes the proof of Claim 2.22.

Denote by M the nonempty convex weak*-compact subset of all means
on L*°(G). Hahn-Banach theorem implies that the map P(G) —
p — my, defined by the formula m,(F) = [, u(g)F(g)dma(g) for every
F € L*(G) has dense range. Thus, we can find a net (u;)ier in P(G)
such that m,, — mg for the weak*-topology. For every u € P(G), define
u°? € P(G) by the formula u°P(g) = Ag(g9) u(g~!). For every u € P(G)
and every F' € L°°(G), using Fubini’s theorem, we have

[ ) @F (o) dmale) = [ plhusn™g) Flg)dmP(g. )
G GxG
_ / 1i(h ™ g) j(h)F(g) dm (g, h)
GxG
— [ wilg) (W) (k) dm? (9. )
GxG
[ wlo pP ) F () o,
GxG

N / pi(g) (1 * F)(g) dme(g).
GxG

Then Claim 2.22 implies that for every p € P(G), p* p; — p; — 0 weakly
in L!(G). Denote by J the directed set of all pairs (¢, F) where ¢ > 0 and
F C P(G) is a finite subset endowed with the order (g1, F1) < (g2, F2) if and
only if e1 < g9 and Fo C Fy. Let j = (¢, F) € J and consider the Banach
space (Ej, || -) = @ME;(LI(G), | - [[1). The weak topology on E; is simply
the product of the weak topologies on L'(G). Then 0 belongs to the weak
closure in F; of the convex subset

Cj = {(,U * 1) — ¢)ue]~' ’ (LNS P(G)} C Ej.

Hahn-Banach theorem implies that 0 belongs to the strong closure in FE;
of C;. Then we may find ¢; € P(G) such that for every p € F, we have
| % ; — 1|l < e. Thus, we have found a net (¢j);cs in P(G) such that
for every pu € P(G), we have lim; || % ¢; — ;|1 = 0.

Note that for every nonempty || - ||;-compact subset K C P(G), we have
lim; ||pe % 5 — 9j][1 = 0 uniformly on K. Indeed, let ¢ > 0 and choose
U1y .-y iy € K such that for every p € K, there exists 1 < ¢ < n for which
|l — pill < e. Choose jo € J such that ||u; * ¥; — ;1 < e for every
1 <4 < nand every j > jo. Then for every p € K and every j > jo,
choosing 1 < i < n such that ||u — u;l| < e, we have

i x; — il < ([ — i) x5l + |l * 5 — sl
<= gl A (s * by — Y]
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< 2¢.

This shows that lim; || * ¢ — ;|1 = 0 uniformly on K.
Fix ¢ > 0 and Q C G any compact subset. Fix any p € P(G). The
orbital map G — P(G) : g — A(g)p is || - ||1-continuous and so ¢(Q) C P(G)

is || - [[1-compact. Lemma 2.19(iv) implies that
sup [|A(g) (1 1) — px i = sup [(A(g)p) * by — s+ jlln — 0.
9€Q 9€Q

We may find j € J large enough so that with ( = p xv¢; € P(G), we have
sup [|A(9)¢ — ¢l < €.
ge@

Set &€ = (/2 € L2(G), and observe that ||¢|| = 1. Moreover, we have

sup [Ac(9)€ — €]12 = sup / €(g™ 1) — £(0)]2 dma(h)
geQ geQ J @

— sup /G (g™ B) V2 — C() V2P dme(h)

9€@Q
<sup [ [olg™"h) = ()| dmas(h)
geQ J G
= sup [A(9)¢ — ¢l <%
9€eQ
This implies that 1 < Ag and finishes the proof of Theorem 2.20. (|

For countable discrete groups, we prove the following dynamical charac-
terization of amenability.

THEOREM 2.23. Let I' be any countable discrete group. The following
assertions are equivalent:

(i) T' is amenable.
(ii) For any action I' ~ X by homeomorphisms on a compact metriz-

able space, there exists a I'-invariant Borel probability measure v €
Prob(X).

PROOF. (i) = (ii) Denote by Prob(X) C C(X)* the convex weak*-
compact subset of all Borel probability measures on X and consider the
affine action I' ~ Prob(X). Since I' is amenable, there exists a I'-invariant
Borel probability measure v € Prob(X).

(ii) = (i) Denote by M the convex weak*-compact set of all means

on (*°(I"). As ¢>°(I') is not || - ||-separable, we cannot directly use the
assumption in item (ii). However, since I' is countable, there exists an
increasing net (F;);c; of I-invariant closed || - ||o-separable subspaces of

£>°(T') so that Clp C F; for every i € I and ¢*°(I') = (J;c; Fi. For every
i € I, denote by M; C (F;)* the weak*-compact convex subset of all means
on F; and by , : M — M; : m — m|r, the I-equivariant restriction

map. Then we have MT = .., 77 (ML), Note that M, is metrizable
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since F; is || - ||co-separable. By assumption, there exists a [-invariant Borel
probability measure p; € Prob(M;). Arguing as in the proof of Theorem
2.20 (iii) = (iv), we see that Bar(u;) € M} is a left [-invariant mean.

We have showed that for every ¢ € I, the compact subset /\/llF M
is nonempty. Moreover, for any finite subset F' C I, since [ is a directed
set, there exists j € I such that ¢ < j for every ¢ € F. This implies that
M; C Njep M} and so N;ep i H(MUL) is nonempty. Since M is compact,
it follows that MY = (,c; 7' (ML) is nonempty. This shows that ¢>°(T)
has a left invariant mean and thus I is amenable by Theorem 2.20. (]

We conclude this section by proving von Neumann’s result regarding
nonamenability of free groups.

THEOREM 2.24 (von Neumann). Denote by Fo = (a,b) the free group
on two generators. Then Fo is nonamenable.

PROOF. By contradiction, assume that Fg = (a, b) is amenable. Denote
by m € (*°(F3)* a left invariant mean. Define n : P(F3) — [0,1] : W —
m(1y ) and observe that n is a finitely additive left invariant probability mean
on Fy. Then we necessarily have n(F) = 0 for every finite subset F' C Fa.
In particular, we have n({e}) = 0.

Denote by W, C F4 the subset of reduced words whose first letter is a.
Likewise, consider the subsets W,-1, Wy, Wy—1 C Fa. Observe that Fo\{e} =
Wo U W,—1 U Wy U Wy—1. Since a - (Wy U Wy U Wy—1) C Wy, it follows that

n(Wo) + n(Wp) + n(Wy-1) = n(W, U W, U Wy-1)
=n(a- (W UW U Wy-1))

< n(W).
This implies that n(W;) = n(W,-1) = 0. Likewise, we have n(W,) =
n(W,-1) = 0. This further implies that n(F3) = 0, a contradiction. O

One can show that amenability is inherited by closed subgroups. Thus,
any locally compact group that contains Fo as a closed subgroup is nona-
menable.

3. Property (T)

DEFINITION 2.25 (Kazhdan [Ka67]). Let G be any locally compact
group. We say that G has property (T) if for every strongly continuous
unitary representation 7 : G — U(H) such that 1 < 7, we have 1 C 7.

First, we prove various permanence properties enjoyed by locally com-
pact groups with property (T).

PROPOSITION 2.26. Let G, H be any locally compact groups. Assume
that G has property (T). The following assertions hold:

(i) If p : G — H s a continuous homomorphism with dense range,
then H has property (T).
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(ii) If H <G is a closed normal subgroup , then G/H has property (T).

(iii) G is compactly generated. In particular, if G is discrete, then G is
finitely generated.

(iv) G is unimodular.

ProOF. (i) Let m# : H — U(H,) be any strongly continuous unitary
representation such that 1y < m. Then mop : G — U(H,) is a strongly
continuous unitary representation such that 1 < wop. Since G has property
(T), we have 1¢ C mo p and so 7 has a nonzero p(G)-invariant vector. By
continuity and density of p(G) in H, it follows that 15 C w. This shows
that H has property (T).

(ii) It suffices to apply item (i) to the continuous homomorphism G —
G/H.

(iii) Denote by O the set of all compactly generated open subgroups of
G. Since G is locally compact, we have O # () and G = ycpn H. For
every H € O, since H is open in G, the homogeneous space G/ H is discrete.
Denote by 7 : G — U(H,) the strongly continuous unitary representation
where Hr = @y (*(G/H) and such that

Vg,h € G,VH € O, W(g)(shH = (5th.

We claim that 1 < 7. Indeed, let Q C G be any compact subset. By
compactness, there exist Hy,...,Hr € O such that Q C Hy U --- U Hy.
Denote by H < G the subgroup generated by Hjy, ..., H; and observe that
H € O. For every g € @, since Q C H, we have 7(g)oy = . This
shows that 1 < 7. Since G has property (T), there exists a nonzero 7(G)-
invariant vector £ € H,. Then there exists H € O such that the orthogonal
projection £y € £2(G/H) of &€ € H, is nonzero. Since m(g)éy = &g for every
g € G and since £y # 0, it follows that G/H is finite. Since H < G is
compactly generated, it follows that G is compactly generated.

(iv) Denote by Ag : G — R% the modular function. Then Ag(G)

has property (T) by (iii). Since Ag(G) is abelian, Ag(G) is amenable by
Proposition 2.17 and so Ag(G) is compact (see Proposition 2.27 below). It
follows that Ag(G) = {1} and thus G is unimodular. O

Next, we observe that property (T) is completely opposite to amenabil-
ity. In particular, we obtain the following characterization of compact
groups.

PROPOSITION 2.27. Let G be any locally compact group. The following
assertions are equivalent:
(i) G is compact.
(ii) G is amenable and has property (T).

PROOF. (i) = (ii) Assume that G is compact. Then G is amenable
by Proposition 2.16. Let now w : G — U(H,) be any strongly continuous
unitary representation such that 15 < 7. There exists a unit vector & € H,
such that sup eq [|7(9)§ — &|| < 1/2. Denote by € Hy the circumcenter of
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the bounded set 7(G)&. Then 7 is 7(G)-invariant. Moreover, since 7 belongs
to the closure of the convex hull of 7(G)¢, it follows that ||n —&|| < 1/2 and
so 11 # 0. This shows that 1 C .

(ii) = (i) Since G has property (T), G is compactly generated by Propo-
sition 2.26(iii) and hence o-compact. Since G is amenable, we have 1¢ < Ag
by Theorem 2.20. Since G has property (T), we obtain 1 C Ag. Proposi-
tion 2.4 implies that G is compact. U

Next we show that property (T) is inherited by lattices.

PROPOSITION 2.28. Let G be any locally compact second countable group
and I' < G any lattice. If G has property (T), then so does I

PROOF. Let m : I' — U(H,) be any unitary representation such that
Ir < 7. Denote by 7 : G — U(Hz) the induced representation. We choose
the first viewpoint on induction. Set X = G/T". We may choose a Borel
section 0 : X — G as in Corollary 1.12 such that o(K) is relatively compact
in G for every compact subset K C X. As usual, denote by 7 : G x X —
I':(g,2) — o(g9x) tgo(x) the corresponding Borel 1-cocycle.

CLAIM 2.29. We have 15 < 7.

Indeed, let Q@ C G be any compact subset and € > 0. We may assume
that e € Q). Choose a compact subset K C X such that v(X \ K) < %.
Since the action map G x X — X : (g,x) — gx is continuous, the subset
Q'K is compact in X. This implies that the image of the map f: Qx K —
G : (g,7) — 7(g,9 ') is relatively compact in G. Since I is discrete in G,
this further implies that A = f(Q x K) N T is a finite subset of I'. Since
1p < m, there exists a unit vector £ € H, such that

max {||7(7)¢ — €] | v € A} < E

Set n =1x ® & € Hz. Then ||n|| =1 and for every g € @), we have
IF(ahn =l = [ lIn(r(g.g~ )¢ ~ €] dvla)

< / Iw(r(g, g7 0))€ — €2 du(x) + (X \ K)
K

< max{[[7(y)€ — £[* | v € A} + 4v(X \ K)
<&
This shows that 1¢ < 7 and finishes the proof of Claim 2.29.

Since G has property (T), we obtain 1¢ C 7. Proposition 2.13 further
implies that 1t C . O

We point out that the converse to Proposition 2.28 holds, namely if
I' < G is a lattice and if T has property (T), then G has property (T). We
will not prove this fact.
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COROLLARY 2.30. Let G be any locally compact second countable group
with property (T). Then any lattice T' < G is weakly uniform.

PRrOOF. The strongly continuous unitary representation )\OG o G —
UL2(G/T)0) is ergodic by Proposition 2.7. By property (T), )\OG/F has
spectral gap. This means that I' < G is weakly uniform. O

4. Property (T) for SL;(R), d > 3

4.1. Howe—Moore property for SL;(R), d > 2. Let H be any (com-
plex) Hilbert space and denote by B(?) the unital Banach *-algebra of all
bounded linear operators 7" : H — H. Besides the norm topology on B(#)
given by the supremum norm

VI'€B(H), |Tlloo = sup {|IT¢| | € € H, [I€] <1},

we can define two weaker locally convex topologies on B(H) as follows.

e The strong operator topology on B(H) is defined as the initial topol-
ogy on B(#) that makes the maps B(H) — H : T'— T¢ continuous
for all £ € H.

e The weak operator topology on B(H) is defined as the initial topol-
ogy on B(#H) that makes the maps B(H) — C : T — (T¢,n) con-
tinuous for all £,7 € H.

Note that we already defined the strong operator topology on U(H). As
a matter of fact, on U(H), strong and weak operator topologies coincide.
Observe that when H is separable, both strong and weak operator topologies
are metrizable on the unit ball of B(#H) denoted by Ball(B(#)). Moreover,
Ball(B(#)) is weakly compact.

Let G be any locally compact group and 7 : G — U(H,) any strongly
continuous unitary representation. We say that « is mizing if 7(g) — 0
weakly as g — co. Note that when G is noncompact, the left regular rep-
resentation \g : G — U(L?(G)) is mixing. Any mixing strongly continuous
unitary representation is ergodic. In that respect, we introduce the following
terminology.

DEFINITION 2.31. Let G be any noncompact locally compact group. We
say that G has the Howe-Moore property if any ergodic strongly continuous
unitary representation 7 : G — U(H) is mixing.

Observe that when GG has the Howe—Moore property, for every nontrivial
strongly continuous unitary representation m : G — U(H), the subrepre-
sentation 70 : G — U(Hr © (Hr)Y) is ergodic and hence mixing. Here are
some properties enjoyed by locally compact groups with the Howe-Moore

property.

PROPOSITION 2.32. Let G be any noncompact locally compact group with
the Howe—Moore property. The following assertions hold:
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(i) For every closed normal subgroup N < G, either N is compact or
N =G.
(ii) For every open subgroup H < G, either H is compact or H = G.
(iii) For every ergodic pmp action G ~ (X,v) and every noncompact
closed subgroup H < G, the action H ~ (X, v) is still ergodic.

PROOF. (i) Let N < G be any proper closed normal subgroup. Define
the quasi-regular representation 7 : G — U(L%*(G/N)) and note that = =
Ag/n ©p where p : G — G/N is the canonical factor map and Ag/y :
G/N — U(L?*(G/N)) is the left regular representation of the locally compact
group G/N. Since N # G, we have L*(G/N)¢ # L?*(G/N). By Howe-
Moore property, the subrepresentation 7° : G — U(L*(G/N) & L*(G/N)%)
is mixing. Since 7|y = 1, it follows that 7’|y = 1 and thus N is compact.

(ii) Let H < G be any proper open subgroup. Then the homogeneous
space G/H is discrete and nontrivial. Define the strongly continuous unitary
representation m : G — U(¢*(G/H)) by the formula

Vg,h € G, m(9)0nn = dgh-

Since H # G, the unit vector dy € ¢*(G/H) is not 7(G)-invariant and so
2(G/H)¢ # (?(G/H). By Howe Moore property, the subrepresentation
0 G — UP(G/H) © £2(G/H)%) is mixing. Since the nonzero vector
§ = 0u—Pprg/me(0n) € 2(G/H)o*(G/H)C is w(H)-invariant, it follows
that H is compact.

(iii) Let H < G be any noncompact closed subgroup and G ~ (X, v)
any ergodic pmp action. By Proposition 2.7, the Koopman representation
kY0 G — ULA(X,v)?) is ergodic. By Howe Moore property, ¥ : G —
U(L2(X,v)%) is mixing and hence 7|z : H — U(L*(X,v)) is ergodic. Then
Proposition 2.7 implies that H ~ (X, v) is ergodic. O

The main theorem of this subsection is the following well-known result
due to Howe—Moore.

THEOREM 2.33 (Howe-Moore [HMT77]). For every d > 2, SLy(R) has
the Howe—Moore property.

As a consequence of Theorem 2.33 and Proposition 2.32(iii), we obtain
the following ergodicity result due to Moore.

COROLLARY 2.34 (Moore [Mo65]). Let d > 2 and set G = SLg(R). Let
I' < G be any lattice and denote by v € Prob(G/I") the unique G-invariant
Borel probability measure. For every noncompact closed subgroup H < G,
the pmp action H ~ (G/T',v) is ergodic.

Before proving Theorem 2.33, we need to prove some preliminary results
that are also of independent interest.
Define the following subgroups of SLa(RR):

U+={<(1) f) IxeR}
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o ={(; ) 10er}
ANTARATIAY

Observe that SLy(R) is generated by UT U U ™.

LEMMA 2.35. Let 7 : SLo(R) — U(Hr) be any strongly continuous uni-
tary representation. Every w(U™)-invariant vector is w(SLa(R))-invariant.

PROOF. Let & € H, be any w(U™)-invariant unit vector. Define the
continuous function ¢ : G — C : g — (7(9)&,£). By assumption, ¢ is
U*-bi-invariant. For every n > 1, set

o = <? _0”) € SL(R).

n

A simple calculation shows that for every A > 0, we have

1 n L _ (A 0 (A 0
0 1/)%\0 1)7\L A 0 A1)

Since ¢ is continuous and U -bi-invariant, it follows that
Vae A, ¢la) =limp(gn) = (1) = 1.

This further implies that 7(a)¢ = £ for every a € A. It follows that ¢ is
A-bi-invariant.
Another simple calculation shows that for every = € R, we have

G EDGE DG -6

Since ¢ is continuous and A-bi-invariant, it follows that for every u € U™,
we have p(u) =1 and so 7(u)§ = &.

We have showed that £ is both 7(U™)-invariant and (U~ )-invariant.
Since SLy(R) is generated by Ut U U™, it follows that £ is w(SLa(R))-
invariant. U

Let d > 2. Forall1 <a # b <d and all x € R, denote by Eg(x) €
SL4(R) the elementary matrix defined by (Egp(x))i; = 1ifi = j, (Egp())ij =
zif i =aand j = b, (Eg(z));; = 0 otherwise. We leave as an exercise to
check that SLg4(R) is generated by {Eg(z) | 1 < a # b < d,x € R}. For
every 2 < k < d, regard SLi(R) < SL4(R) as the following subgroup:

~ A Od—k.k
SLy(R) = {<Ok,d—k 1d_k7d_k) |Ae SLk(R)} .

For all 1 < ¢; < {3 < d, denote by Hy, 4, < SLg(R) the (¢1,¢2)-copy of
SL2(R) in SLg(R) that consists in all matrices g € SLg(R) such that gg, ¢, =
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A, gpity = B? 9oty = 7 oty = 57 9ii = 1 for all ¢ 7& 617527 9ij = 0 for all
i # j and {i,j} # {f1, %2} and such that

(: ?) € SLy(R).

LEMMA 2.36. Let d > 2 and 7 : SLg(R) — U(Hr) be any strongly
continuous unitary representation. Let & € Hy be any w(Hy, ¢,)-invariant
vector for some 1 < £y < by < d. Then & is m(SLy(R))-invariant.

Proor. Up to permutation, we may assume that /1 = 1 and {5 = 2.
We proceed by induction over 2 < k < d. By assumption, & is 7(SLa(R))-
invariant. Assume that £ is m(SLg(R))-invariant for 2 < k < d — 1 and
let us show that £ is m(SLg41(R))-invariant. Let 1 < j < k and =z € R.
For every n > 1, denote by g, € SLi(R) < SLg+1(R) any diagonal ma-

trix such that (gn)ii = % if i = j. Then a simple computation shows

that g, Ejr11) ()9, " = Ejire1y (%) = 1 asn — oo and g, ' By (2)gn =
Ei41);(5) — 1 as n — oo. Since 7(g,)§ = £, we have

170 (B 41y ())& = €l = i [[7(Ejig41) (2))7(90) "€ = 7(gn) €]l
= lim [|7(gn Bj 41y ()9, )6 — €]l = 0

and so 7(Ej41)(2))§ = €. Likewise, we have 7(E11);(7))¢ = €. Since
SLi4+1(R) is generated by SLi(R) U {E;(+1)(7), Eggr);(z) |1 <j < k,z €
R}, it follows that & is 7(SLg41(R))-invariant. By induction over 2 < k < d,
it follows that & is m(SL4(R))-invariant. O

Let d > 2. Denote by K = SO4(R) < SL4(R) the special orthogonal
subgroup and observe that K < SL4(R) is compact. Define the subset
AT C SLyg(R) of diagonal matrices by

= {diag(A1, ..., Aa) [ A1 = -- = Ag >0, M-+ Mg = 1} C SLg(R)
and by A < SLg(R) the subgroup of diagonal matrices generated by A™.
LEMMA 2.37 (Cartan decomposition). We have SLy(R) = K - AT - K

PRrOOF. Let g € SLi(R) be any matrix. By polar decomposition, we may
write g = koh where kg € K and h € SLy(R) is symmetric positive definite.
By diagonalization, there exists ko € K such that kohky =4 e AT. Then
g = kiaky with k) = koky ' € K. O

We now have all the tools to prove Theorem 2.33.

PROOF OF THEOREM 2.33. Let d > 2 and 7 : SLg(R) — U(H,) be
any strongly continuous unitary representation. Assuming that 7 is not
mixing, we show that there exists a nonzero 7(SL4(R))-invariant vector.
Since SL4(R) is second countable, w(G)¢ is separable for every € € H, and
so we may assume assume that H, is separable. Since 7 is not mixing, there
exists a sequence (gp)nen in G such that g, — oo and 7(g,) 4 0 weakly. Up
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to taking a subsequence, we may assume that there exists 7' € B(H) such
that T' # 0 and 7(g,,) — T weakly. Using Lemma 2.37, there exist sequences
(k1n)nen and (k2n)nen in K and (an)nen in AT such that g, = k1 pankan
for every n € N. Up to taking another subsequence, we may assume that
kin — ki in K and kg, — ko in K. This implies that 7(k; ) — (k1) and
m(kayn) — m(ka) strongly. This further implies that m(ay) — 7(k1)*T'm(k2)*
weakly. Set S = 7(k1)*Tw(k2)* € B(#H) and observe that S # 0.

For every n € N, write a, = diag(Ain, ..., Agn) With A > - > Agp
i;‘" — 400. A simple

,n

and A1y, - - Agpn = 1. Since a,, — o0, it follows that
computation shows that for every x € R,

a Y Eg(z)a, = Big(Z2%z) — 1.

This implies that for every z € R, we have m(E14(x))S = S since
V2 € ey (m(Era(2)) S, m2) = i (m(Era(2))7(an)m, 12)
= lim(m(a;, ' Era(x)an)m, m(az " )ir2)
= (m, 5" nm2)
= (Sm1,m2)-
Choose n € H, so that £ := Sn # 0. Then £ € H, is a nonzero w(E14(R))-
invariant vector. Denote by Hiq < SLg4(R) the (1, d)-copy of SL2(R). By

Lemma 2.35, £ is w(Hi4)-invariant and by Lemma 2.36, £ is m(SLg(R))-
invariant. This finishes the proof of Theorem 2.33. O

4.2. Property (T) for SL4;(R), d > 3. The main theorem of this
subsection is the following celebrated result due to Kazhdan.

THEOREM 2.38 (Kazhdan [Ka67]). For every d > 3, SL4(R) has prop-
erty (T).

Before proving Theorem 2.38, we need to prove some preliminary results
that are also of independent interest.

E‘or any locally compact second countable abelian group N, we denote
by N the unitary dual of N

N = {x: N — T | x is a continuous group homomorphism}.

Endowed with the topology of uniform convergence on compact subsets, N
is a locally compact second countable abelian group. We refer to [BHV 08,

Section A.2] for further details. Denote by B(N) the o-algebra of Borel
subsets of N. For every regular Borel probability measure p € Prob(ﬁ ),
define the strongly continuous unitary representation m, : N — U (LQ(ZV )
by the formula

Ve € L3N, 1),V € N,  (mu(9)€)(x) = x(9) £(X)-
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The fact that 7, : N — U(L? (N, p)) is strongly continuous follows from
Lemma 2.2 after noticing that for all &, & € L?(N, ), the map

e N2> Cigr /ﬁx(g)&(x)&(x)du(x)

is continuous (hence measurable) thanks to Lebesgue’s dominated conver-
gence theorem.

We prove the following spectral theorem regarding strongly continuous
unitary representations of locally compact abelian groups.

THEOREM 2.39. Let N be any locally compact second countable abelian
group and ™ : N — U(Hr) be any strongly continuous unitary representa-

tion. Then there exists a unique mapping Ey : B(N) — B(Hx) that satisfies
the following properties.

(i) For every & € Hy, the mapping B(]/\}) — Ry : B — (Er(B)S&)
defines a finite reqular Borel measure jie on N such that

WheN, (x(h)E €)= /N x(h) dpe ().

(i) For every B € B(N), Ex(B) is an orthogonal projection in B(H.).
Moreover, Er({15}) is the orthogonal projection onto the closed
subspace (Hr )N of m(N)-invariant vectors.

We then say that E, : B(N) — B(H,) is the projection-valued spectral
measure associated with m: N — U(H ).

PROOF. (i) Using Bochner’s theorem (see [BHV08, Theorem D.2.2]),

for every £ € H, there exists a finite regular Borel measure p¢ on N such
that

VhE N, (x(h6.) = [ x(h)duel).

For all §,n € H, define the finite regular complex Borel measure ¢, on N
by the formula pi¢, = iZiZO iku§+ikn. Then we have

VhE N, (x(W.m = [ x(h)ducal).

Observe that for every £ € H, with ||£]| = 1, we have pu¢ € Prob(N) and

on the m(N)-invariant closed subspace H¢ = Vect{m(NN)¢}, the strongly
continuous unitary subrepresentation 7 : N — U(Hc) is unitarily equivalent

to the strongly continuous unitary representation m,, : N — U (L3(N, Le))-

Using Riesz’s representation theorem, for every B € B(]\Af ), denote by
E.(B) € B(#H,) the unique bounded operator that satisfies

(22)  VeneHn (E(B)En) = pen(B) = /NlB(X)dﬂg,n(X)-

By definition, we have p¢(B) = (Ex(B)§,§) for every B € B(N).
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(ii) For every £ € H, with ||£|| = 1, the bounded operator E(B)
leaves invariant the m(NN)-invariant closed subspace H¢ = Vect{m(N){}
and Er(B)l3, is unitarily equivalent to the bounded operator L%(N,p) —
L2(N,p) : € = 1p€. This implies that Br(B)|y, € B(He) is a selfadjoint
projection for every B € B(ﬁ ). By Zorn’s lemma, there exists a family of
unit vectors (&;)ier in Hnp such that H, = @,.; He,. This further implies
that E.(B) € B(H,) is a selfadjoint projection for every B € B(N). For
every { € H, such that ||£]| = 1, we have p¢ € Prob(N) and hence

(e M)Y & VheN, [r(h)E—¢P=0

& vhe N [ ) - 1P dpel) =0
N

& pe =01
& E({15H)¢=¢
Uniqueness of the map Ey : B(N) — B(H,) follows from item (i). O

A key step in the proof of Theorem 2.38 is the following intermediate
result.

THEOREM 2.40. Let 7 : SLa(R) x R? — U(H,) be any strongly contin-
uwous unitary representation that contains almost invariant vectors. Then
there exists a nonzero (R?)-invariant vector.

PROOF. Set G’ = SLy(R) x R? and N = R2. For every g € SL2(R) and
every x € R2, we simply denote by SLy(R) x R? — R? : (g,2) + g - x the
action by matrix multiplication. Note that for every g € SLo(R) and every
x € R?, we have ¢ - = = grg~! where G ~ N acts by conjugation. Denote
by (- | -) the canonical inner product on R%. We identify the unitary dual
of R? with R? via the following topological isomorphism

R?2 5 R2:z 37 = (y — exp(i(z | ).
For every g € SLy(R) and every z € R?, we then have g-2 = §- T where
g=(Cg9 "
Let m : G — U(Hr) be any strongly continuous unitary representation
such that 15 < 7. Then there exists a sequence (&,)nen of 7(G)-almost

invariant unit vectors in H,. Applying Theorem 2.39 to 7|r2, there exists a
sequence (pg, Jnen in Prob(R?) such that

Vn e N,Vz € R?,  (1(2)én,&n) = /RQ exp(i(z | y)) due, (y)-
Then for every g € SLa(R), every n € N and every = € R2, we have
[ explite | ) s, () = {m(@)m()6a. m(0)60)
= (m(97"29)én, n)
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< (g_l : x)gTh gn)

exp(i(g™" - = | y)) due, (y)

2

3

I
e

exp(i(z | g-v)) due, (y)

\%\

. exp(i(z | y)) d(Gupe, ) (y)-

By uniqueness, it follows that pir(g)e, = Gupte, for every g € G and every
n € N. For every g € SLy(R) and every B € B(R?), we have

e, (g - B) — e, (B)| = |(Gupte, ) (B) — pe,, (B)]
= |pir(g)en (B) — pie, (B)]
= [(Ex(B)7(9)én, 7(9)én) — (Ex(B)&n; &n)| — 0.

Choose a nonprincipal ultrafilter 4/ € B(N) \ N and define the map m :
B(R?) — R, by the formula

VB € B(R?), m(B):= lim ue,(B).
n—U
Then m(R?) = 1, m is finitely additive and the above reasoning shows that
m(g - B) = m(B) for every g € G and every B € B(R?).
Consider the following Borel partition of R?\ {(0,0)}. Set

Vi = {(t1,t2) € R? | [ta| < |t1] and 1t > 0}
Vo == {(t1,t2) € R? | [t1| < |t2| and t1¢5 > 0}
Vs = {(t1,t2) € R* | |t1] < |ta| and 185 < 0}
Vi = {(t1,t2) € R? | |ta| < |ta] and t1ta <0},

Observe that R%\ {(0,0)} = ViU Vo U V3 UV, Put g = <(1) }) Since

g- (V1 UVa) C Vi, we have
m(V) +m(Va) =m(ViuVs) =m(g- (V1 UVa)) <m(Vy)

and thus m(V2) = 0. Similarly, we have m(V;1) = m(V3) = m(V4) = 0. This
implies that m = §(gg). This further implies that

hHZ}{<E7r({(O>O)})£nafn> = il—nﬂlj 1 ({(0,0)}) = 1.

n—r

Therefore E,({(0,0)}) # 0 and so 7|g2 has nonzero invariant vectors.  [J

We now have all the tools to prove Theorem 2.38.
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PROOF OF THEOREM 2.38. Let d > 3. Regard SLa(R) x R? < SLy4(R)
as the following subgroup:
A 03,d—3
0 1
SLy(R) x R? = 1 | A € SLy(R), z € R?
04-33 K
1

Let 7 : SLy(R) — U(H ) be any strongly continuous unitary representation
such that 1gp,,g) < 7. Theorem 2.40 implies that lg> C m|ge. Since R? is
not compact, 7 is not mixing. By Theorem 2.33, we obtain 14 C . ([l

Combining Theorems 1.19, 2.38 and Proposition 2.28, we obtain the
following corollary.

COROLLARY 2.41 (Kazhdan [Ka67]). For everyd > 3, SL4(Z) has prop-
erty (T).

Let us point out that Corollary 2.30 and Theorem 2.38 imply that any
lattice I' < SL4(R), d > 3, is weakly uniform. More generally, it is proven
in [Be96] that any lattice I' < G in a semisimple Lie group G with finite
center and no compact factor is weakly uniform.



CHAPTER 3

Stationary measures and Poisson boundaries

In this chapter, we introduce and study the notion of
stationary measure. We construct the (G, u)-Poisson
boundary associated with any locally compact group G
endowed with an admissible Borel probability measure
w. We then investigate rigidity properties of the (G, u)-
Poisson boundary and its relationship with the notion
of amenability.

Introduction

In this chapter, the group G is always assumed to be locally compact
second countable. We endow G with its o-algebra B(G) of Borel subsets.
We fix a left invariant Haar measure mg on G. Let X be any standard
Borel space and denote by Prob(X) the standard Borel space of all Borel
probability measures on X. We say that the action G ~ X is Borel if the
action map ox : G x X — X : (g,z) — gz is Borel. Let v € Prob(X)
and assume that for every g € G, the measures v and g.,v are equivalent
on X. In that case, we say that the action G ~ (X,v) is nonsingular.
Recall that L®(X,v) = LY(X,v)* so that L°°(X,v) is also endowed with
the weak*-topology. By [Ru91, Theorem 3.10], we may identify L!(X,v)
with the space of all weak*-continuous linear functionals on L*°(X,v). Any
nonsingular action G ~ (X, v) gives rise to an action o : G ~ L™ (X, v)
defined by the formula

Vg € G,VF € L®(X,v), alg)(F)=Fog

The action map G x L*(X,v) — L™®(X,v) : (9, F) — a(g)(F) is separately
continuous when L™ (X, v) is endowed with the weak*-topology. This follows
from the fact that the action G ~ L'(X,v) is |- ||;-continuous. We will then
simply say that the action « : G ~ L (X, v) is weak*-continuous. We refer
the reader to [Ta03, Proposition XIII.1.2] for further details. For every
Borel probability measure n € Prob(X) such that 7 < v, me may regard n €
L'(X,v) and we simply denote by n : L°(X,v) — C: f — [y f(z)dn(z)
the corresponding weak*-continuous positive unital linear functional. When
the context is clear, we will often simply write L>°(X) = L>=(X, v).

55
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Recall that we always regard function spaces such as LP(X,v), for p €
[1,+00], over the field C of complex numbers. The algebra L>°(X) is en-

dowed with the anti-linear involution * defined by f*(z) = f(z) for every
f € L®(X) and v-almost every = € X.

DEFINITION 3.1. We say that A C L°°(X) is a von Neumann subalgebra
if A is a unital subalgebra of L°(X) that is stable under the involution
and closed with respect to the weak*-topology.

REMARK 3.2. More generally, one can define the notion of von Neumann
algebra as follows. Let H be any complex Hilbert space and consider the
unital Banach x-algebra B(#) of all bounded linear operators on H. We
say that M C B(H) is a von Neumann algebra if M is a unital x-subalgebra
of B(#H) that is equal to its own bicommutant M" inside B(#)!. By von
Neumann’s bicommutant theorem, M C B(#) is a von Neumann algebra if
and only if M is strongly closed (resp. weakly closed).

For instance, if we view L*°(X) C B(L?(X,v)) as a unital *-subalgebra,
then one can show that L>°(X)" = L*°(X). In that respect, L>(X) is an
abelian von Neumann algebra. Moreover, A C L°(X) is a von Neumann
subalgebra in the sense of Definition 3.1 if and only if A is equal to its
own bicommutant A” inside B(L%(X,v)). In these notes, we will only be
interested in von Neumann subalgebras A C L>(X).

When X is a compact metrizable space, we say that the action G ~ X
is continuous if the action map oy : G x X — X : (g,x) — gz is continu-
ous. The next well-known result shows that when dealing with nonsingular
actions G ~ (X, v), we may always assume that X is a compact metrizable
space and the action G ~ X is continuous.

PROPOSITION 3.3. Let G ~ (X, v) be any nonsingular action. Let A C
L>®(X,v) be any G-invariant von Neumann subalgebra.

Then there exist a compact metrizable space Z, a continuous action
G ~ Z, a measure ( € Prob(Z) and a G-equivariant measurable factor
map 7w : (X,v) — (Z,() so that the G-equivariant weak*-continuous unital
x-homomorphism ©* : L®(Z) — L*(X) : F — Fom satisfies von™* = ( and

T (L®(2)) = A.

For a proof, we refer the reader to [Ta03, Proposition XIII.1.2] and
[Zi84, Proposition B.5, Corollary B.6]. Note that by a G-equivariant mea-
surable factor map 7 : (X,v) — (Z, (), we mean that there exists a v-conull
G-invariant measurable subset Xy C X such that 7 : Xy — Z is measurable;
for every measurable subset W C Z, we have (W) = v(7—1(W)); and for
every g € G and every x € X, we have 7(gx) = gr(x).

Applying Proposition 3.3 in the case when A = L*>(X), we then say
that G ~ (Z,() is a compact model for the nonsingular action G ~ (X, v).

IThe commutant of a subset S C B(#) is defined as " = {T € B(H) | VS € S, ST =
TS}. The bicommutant of a subset S C B(H) is defined as S” = (S")".



1. STATIONARY MEASURES 57

In that case, using [Zi84, Corollary B.6], we can further choose Xy C X
so that Zy = m(Xy) C Z is a (-conull G-invariant measurable subset and
7 : Xo — Zy is bijective and 7! : Zy — Xj is also measurable. Thus, up
to passing to a compact model, we may assume that (Z,¢) = (X,v).

Let G ~ (X,v) and G ~ (Y,n) be any nonsingular actions and 7 :
(X,v) — (Y,n) any G-equivariant measurable factor map. We may re-
gard L(Y) € L°°(X) as a G-invariant von Neumann subalgebra with n =
V|iee(x) via the G-equivariant weak®-continuous unital *-homomorphism
™ L®(Y) - L*®(X) : FF — F o such that v o 7* = 7. Recall that
there exists a unique conditional expectation E : L°°(X) — L*(Y) such that
noE = v. Note that E : L>(X) — L*°(Y) is positive meaning that E(f) >0
for every f € L°°(X) such that f > 0. Moreover, E : L*(X) — L*°(Y) is

weak*-continuous.

DEFINITION 3.4. We say that the factor map 7 : (X,v) = (Y,n) is rela-
tively measure preserving if the unique conditional expectation E : L*°(X) —
L*(Y') such that n o E = v is G-equivariant.

1. Stationary measures

Let € Prob(G) be any admissible Borel probability measure on G,
meaning that p is equivalent to the Haar measure mg on G. Let G ~ X
be any Borel action on any standard Borel space. Denote by ox : G X
X — X : (g,z) — gz the Borel action map. Let v € Prob(X) and set
pxvi=ox,(p®@v) € Prob(X). We say that v € Prob(X) is u-stationary if
wxv=uv.

DEFINITION 3.5. Keep the same notation as above and assume that
v € Prob(X) is p-stationary. Then we simply say that (X,v) is a (G, p)-
space.

The first elementary result shows that any stationary measure gives rise
to a nonsingular action.

LEMMA 3.6. Let (X,v) be any (G, u)-space. Then the action G ~ (X, v)
s nonsingular.

PrOOF. Let Y C X be any measurable subset. Firstly, since the ac-
tion map G x X — X is measurable, the map G — C : h — v(h7Y) is

measurable. Secondly, since p is admissible, we may consider f = d%g €

LY(G,mg) with f > 0 and ||f||; = 1. Since the map G — LY(G,mg) :
h = X(h)f is || - ||1-continuous and since the measurable map G — C : h —
v(h=1Y) is bounded, Lebesgue’s dominated convergence theorem implies
that the map G — C : b+ v(h~'Y) is continuous because

Vhe G, v(h™Y)=(uxv)(h7Y)

:/Gy(g‘lh‘lY)f(g)de(g)
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- /G (g Y) (" g) dme(g)
- /G v(g V) MB) F)(9) dma ().

Assume that v(Y) = 0. Then we have
0=v(Y)=(uxv)(Y)= /GV(g‘lY) du(g).

Then for p-almost every g € G, we have v(g~'Y) = 0. Since the map
G — C: h+ v(h~'Y) is continuous and since u is equivalent to the Haar
measure mg on G, it follows that v(g~'Y) = 0 for every g € G. This shows
that the action G ~ (X, v) is nonsingular. O

The second elementary result shows that whenever X is a compact
metrizable space and the action G ~ X is continuous, there always exists
at least one p-stationary measure on X.

LEMMA 3.7. Let X by any compact metrizable G-space. Then there
always exists v € Prob(X) such that p*v = v.

PROOF. We define the weak*-continuous affine map P : Prob(X) —
Prob(X) on the convex weak*-compact space Prob(X) by the formula

Pv=pxv= / g«vdu(g).
G

By Markov—Kakutani’s fixed point theorem, P has a fixed point v € Prob(X)
which is then a p-stationary measure. Indeed, let n € Prob(X) be any mea-
sure and define the sequence of measures (7, )nen by the formula

1 n
Vn €N =——3 P,
nER T nt 1 "

Choose a nonprincipal ultrafilter ¢ € 5(N) \ N and define v = lim,,;;n, €
Prob(X) with respect to the weak*-topology. Then we have Pv = v and so
wxv=uv. (]

Let (X,v) be any (G, u)-space. By Lemma 3.6, the action G ~ (X, v)
is nonsingular and so we may consider the weak*-continuous action o : G ~
L*>(X). We collect functional analytic properties of the (G, u)-stationary
space (X,v). We refer to [BBHP20, Proposition 2.7] for a more general
result for arbitrary von Neumann algebras.

PROPOSITION 3.8. Let (X, v) be any (G, p)-space. Denote by L>°(X)¢ C
L*>®(X) the von Neumann subalgebra of G-invariant functions and by E :
L®(X) — L®(X)Y the unique conditional expectation such that voE = v.
The following assertions hold:

(i) For every f € L*™(X), E(f) belongs to the weak*-closure of the
convez hull of the set {o4(f) | g € G}.
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(ii) For every u-stationary Borel probability measure n € Prob(X) such
that n < v, we have no E = 1.

ProOOF. (i) Recall that L>°(X) = LY(X,v)* and define the mapping
T, : L*°(X) — L*(X) by the formula

v € LX), Ve € LN(X, ), wauﬁ»—/¢wg%ﬁnmw>

Since p * v = v, we have v(T,(f)) = v(f) for every f € L™(X). Observe
that since T}, is positive, this further implies that T}, : L°°(X) — L*(X) is
weak*-continuous. Choose a nonprincipal ultraﬁlter U € S(N)\ N. Denote
by E, : L%(X) — L*°(X) the mapping defined by the formula

VfeL®(X), Eu(f):=lim ~% (T,)°"(f)

where the above limit is taken with respect to the weak*-topology. For every
f € L*®(X), we have v(E,(f)) = v(f) and E,(f) € L®(X)®. Indeed, set
a=E,(f) € L°°(X). Then we have T,,(a) = a and so

/ la — o5 (a)l5 dp(g) = v(a*a) — 2R(v(aTu(a))) + v(T(a"a))
=v(a*a) — 2R(v(a*a)) + v(a*a)
=0.

This implies that a = ag_l(a) for p-almost every g € G. Since p is equivalent
to the Haar measure on G and since the map G — L™®(X) : g — Ug_l(a)

is weak*-continuous, it follows that o4(a) = a for every g € G. Thus,
E, : L®(X) — L(X)Y is the unique conditional expectation such that
voE, =v.

w

Denote by C € L*°(X) the weak*-closure of the convex hull of the set
{o4(f) | ¢ € G}. By construction and using Hahn-Banach theorem, for
every f € L*(X), we have T,,(f) € C. Indeed, otherwise using [Ru91,
Theorem 3.4(b)], there would exist 1 € L'(X,v) and « € R such that

Vge G, R(TL(U(f)) <a<R(Y(og-1(f))) -
This would imply that

RN = [ R (0o,

) dulg) = a>R(Tu(()),
a contradiction. Then for every f € L°°(X), we have T),(f) € C and hence
1 o
B (f) = w-* lim — S (1,)°H(f) e C.
(ii) Let n € Prob(X) be any p-stationary Borel probability measure

such that n < v and regard n € L1(X,v). Since 7 is p-stationary, we have
no T, =mn. This further implies that no E, = 7. ]
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The third elementary result deals with the equivalence between ex-
tremality of the stationary measure and ergodicity of the associated nonsin-
gular action. In that respect, we say that a compact metrizable (G, u)-space
(X,v) is extremal if v € Prob(X) is an extremal point in the convex weak*-
compact subset Prob,(X) of all u-stationary Borel probability measures in
Prob(X). We say that a nonsingular action G ~ (X, v) is ergodic if every
G-invariant measurable subset Y C X is null or conull. Observe that the
nonsingular action G ~ (X, v) is ergodic if and only if L>°(X)¥ = Clx (see
the proof of Proposition 2.7).

LEMMA 3.9. Let (X,v) be any compact metrizable (G, p)-space. The
following assertions are equivalent:
(i) The (G, p)-space (X,v) is extremal.
(ii) The nonsingular action G ~ (X, v) is ergodic.

PROOF. (i) = (ii) By contraposition, assume that the nonsingular ac-
tion G ~ (X,v) is not ergodic. Choose a G-invariant measurable subset
Y C X such that 0 < v(Y) < 1. Define v1 € Prob,(X) by 11 = ﬁl/‘y
and vo € Prob,(X) by vy = ﬁy\yc. Then v = avy + (1 — a)ve with
a =v(Y) > 0 and v # vi,vs. Therefore, the (G, u)-space (X,v) is not
extremal.

(ii) = (i) Since the nonsingular action G ~ (X, v) is ergodic, we have
L>(X)¥ = Cly. Proposition 3.8 implies that E,(f) = v(f)1x for every
f € L>®(X). Assume that v = av; + (1 — a)re with @ > 0 and v,1n €
Prob,(X). Since v1 < L, we have v; < v. Proposition 3.8(iii) implies
that v1(f) = i(Eu(f)) = ri(v(f)1x) = v(f) for every f € L°°(X) and so
v1 = v. Likewise, we have vy = v. This shows that the (G, p)-space (X,v)
is extremal. O

The fourth elementary result deals with stationary measures supported
on countable sets. Whenever X is a compact metrizable space G-space and
v € Prob(X), we denote by supp(v) C X the topological support of the
measure v. By definition, supp(v) is the intersection of all closed subsets
Y C X for which v(Y) = 1. Then supp(r) C X is closed and v(supp(v)) = 1.

LEMMA 3.10. Let (X,v) be any extremal compact metrizable (G, u)-
space. Assume that v has an atom. Then v is G-invariant and supp(v) C X
is a finite set.

PROOF. Choose x € supp(v) an atom of maximum mass. Since

v({z}) = /G gur({e}) dug) = /G v({g~'2}) du(g).

it follows that v({g~1x}) = v({z}) for p-almost every g € G. Since u €
Prob(G) is admissible, the map G — C : g — v({g~'z}) is continuous
(see the proof of Lemma 3.6) and hence we have v({g~'z}) = v({z}) for
every g € (G. Therefore, Gz is finite and ﬁng is a G-invariant finitely
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supported probability measure. Since v is assumed to be extremal among
p-stationary measures, it follows that v = @ch is G-invariant and
supported on Gzx. O

Denote by B(G) the unital x-algebra of all bounded Borel functions on
G. Define the Markov operator P, : B(G) — B(G) by

Vg€ G, Pu(P)o) = [ Flgh)an(h).

Observe that P, is a unital positive linear contraction. Following [Fu62a], a
function F' € B(G) is said to be (right) u-harmonic if P, (F) = F. We denote
by Har(G, ) = ker(P, — id) the space of all bounded (right) p-harmonic
functions. The next result shows that all bounded p-harmonic functions are
continuous.

LEMMA 3.11. We have Har(G, 1) C Cp(G).

PROOF. Since pu is admissible, we may consider f := d“ e LYG,mg)
with f > 0 and || f||1 = 1. Recall that the map G — LI(G,mg) che= Ah)f
is || - |[1-continuous. For every F' € Har(G, u), we have

F(g) = /G F(gh) dp(h)
= [ Pam ) ama(n

_ /G F(h)f(g~ ) dme(h)
- /G F(h)(A(g)£)(h) dma(h).

Since F' is uniformly bounded, Lebesgue’s dominated convergence theorem
implies that F is continuous. Thus, Har(G, pn) C Cy(G). O

Let (X,v) be any (G, u)-space. Denote by B(X) the unital x-algebra
of all bounded Borel functions on X. Define the Poisson transform @,
B(X) — Har(G, p) by the formula

VgeG, @,(f)(g) = /X f(g) dv(z)

The function F' = ®,(f) is indeed p-harmonic, since by Fubini’s theorem,

we have
/thdu /(/fghwdu > 1u(h)

/ flgox(h ) d(u® v)(h, )
GxX
/fgy (n*v)(y)



62 3. STATIONARY MEASURES AND POISSON BOUNDARIES
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Observe that ®,, is a G-equivariant unital positive linear contraction.

2. The limit probability measures

The main result of this section provides the existence of limit probability
measures associated with any stationary measure.

Let p € Prob(G) be any admissible Borel probability measure. Set
(Q, F,P) = (GN, B(G)®N, u®N). Define the forward shift S : Q — Q by the
formula

V(gn)nen € 2, S((gn)nen) = (gn+1)nen-
Observe that S,P = P and moreover S is P-ergodic. We simply write
W= (gn)neN € .
THEOREM 3.12 (Furstenberg [Fu62b)). Let (X,v) be a compact metriz-

able (G, u)-space. Then there exists a measurable map 2 — Prob(X) : w —
v, that satisfies the following properties:

(i) ForP-almost everyw = (gn)nen € 2, the sequence (go, - - * GnV)neN
converges to v, € Prob(X) with respect to the weak*-topology.

(ii) For P-almost every w = (gn)nen € 2 and for p-almost every g € G,
the sequence (goy - GnegsV)neN Still converges to v, € Prob(X)
with respect to the weak*-topology.

(iii) For P-almost every w = (gn)nen € 2, we have v, = go,Vs(.) and

v = /Q”“’ dP(w).

PROOF. (i) For every f € C(X), we have

(mwywwﬂzéﬂ%m%@®m=éﬁm%m%)

Define the uniformly bounded sequence F;,, € L>(£2, P) by the formula

Vw = (gn)nen € Q,  Fo(w) = @,(f)(g0 - gn)-
Define the increasing sequence of o-subalgebras F,, C F by the formula
Fn = 0(Xo,...,Xy) where X, : Q — G : w — g, is the projection onto
the n-th coordinate for all n € N. Observe that for every n € N, F,, €
L(Q, Fn, P) with || Fy[loo < [|f]lee and \/, ey Fro = F. A simple calculation

using p-harmonicity shows that

Vw = (gn)nen € 2, E [Fn—i-l | Fn] (w) = /G(I’u(f)(go o 'gng;H—l) dﬂ(gvlz-H)
=2,(f)(g0- " gn)
= F,(w).

It follows that (F),)nen is a uniformly bounded martingale, hence it converges
P-almost everywhere. Set F(w) = lim,, F},(w) for P-almost every w € €.
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Since X is a compact metrizable space, C(X) is separable with respect to
the uniform norm. Choose a uniformly dense countable subset A C C(X).
Let Q9 C Q be a Borel subset such that P(£29) = 1 and such that for every
W = (gn)nen € Qo, we have that (go, - - - gn.v)(f) is convergent for all f € A.
For every w = (gn)nen € Qo, define the bounded mapping

A= C: f e lim(go, - gn,v)(f).

This mapping extends uniquely to a positive norm one bounded linear func-
tional

CX)—=C:fr— lién(go* o gnaV)(f)-

Hence, by Riesz representation theorem, for every w = (gn)nen € Qo, there
is a unique Borel probability measure v,, € Prob(X) such that go, - - - gn.v —
v, with respect to the weak*-topology. We can then define a measurable
map  — Prob(X) : w — v, such that for P-almost every w € €, we have

Jos * - GV — VU, with respect to the weak*-topology.
(ii) Let f € C(X). For every g € G, define F € L*(Q,P) by Fjj(w) =
®,(f)(g0- - gng). For every n € N, let us define and compute

fi= [ [ 1) - )P au(s) aP (o)
= [ [ 1900 - 2100 autg) 0 1
GJG

= [1F@) - Frn(@)P aP()
Q
= HFn - Fn+1‘|i2(g7p)-
Since (F},)nen is a martingale, we have
I, = HFH-HH?}(QP) - ”FnHiQ(QI’)'

This implies that Y,y In < [|f[|% and hence

(mg) > S [Faw) - Fﬁ<w>\2) eLY(Qx G,P® p).

neN

In particular, for P-almost every w € ) and p-almost every g € G, we have
lim,,(F,,(w) — FJ(w)) = 0. This shows that for P-almost every w € Q and
p-almost every g € G, we have

lim(go,. - -~ gny¥)(f) = vo(f) = lm(go, - - gn.guv) (f)-

This implies that for P-almost every w € () and p-almost every g € G, we
have

liéng()}k C G iV = V.

(iii) For P-almost every w = (gn)nen € 2, we have

90+Vs(w) = M g0, 1.+~ GnyV = Vo
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with respect to the weak*-topology. Moreover, for every f € C(X), using
again p-harmonicity and Lebesgue’s dominated convergence theorem, we
have

[ vl aP ) = [ timg. g (1) dP()
Q Q

/ lm ®,(f)(g0 - gn) dP(w)

= hm/ .. gn) dP(w)

~ lim ()0
~ [ s v
X
This implies that v = [, v, dP(w). O

REMARK 3.13. Let (X, v) be any compact metrizable (G, u)-space. We
point out that the integral formula in Theorem 3.12(iii) can be upgraded
to hold for all bounded Borel functions on X. More precisely, for every
f € B(X), the map Q — C: w+— v,(f) is measurable and we have

1) = [ vuls) aP).
We refer to [NZ00, Lemma 2.2] for a proof of this fact.

Any G-invariant measure is necessarily p-stationary. The converse holds
when the group G is abelian.

THEOREM 3.14 (Choquet-Deny [CD60]). Let G be any abelian locally
compact secound countable group and (X,v) any compact metrizable (G, p)-
space. Then v is G-invariant.

ProoOF. Let Sy be the countable discrete group of finitely supported
permutations of N. Define the Borel pmp action So ~ (2, P) by

o - ((gn)nen) = (ga—l( ))neN‘

By the Hewitt—Savage zero-one law (see [HS53]), the action Soo ~ (Q2,P)
is ergodic. Since G is abelian, Theorem 3.12(i) implies that v, = v, for
every 0 € S and P-almost every w € 2. By ergodicity and since X is a
compact metrizable space, the measurable function € — Prob(X) : w — v,
is P-almost everywhere constant and hence equal to v by Theorem 3.12(iii).
Since G is abelian, Theorem 3.12(ii) implies that g, = v for u-almost every
g € G. Since G ~ X is continuous, the action G ~ Prob(X) is weak*-
continuous. Since p is equivalent to the Haar measure, we conclude that v
is G-invariant. ]
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3. The Poisson boundary

In this section, we construct the Poisson boundary associated with an
admissible measure p € Prob(G). As we will see, the Poisson boundary is
the (essentially) unique (G, u)-space (B, vg) for which the Poisson transform
®,, : L>°(B,vg) — Har(G, ) is surjective and isometric. We follow the
exposition given in [BS04, §2].

As in the previous section, set (Q,F,P) = (GV, B(G)®N, u®N). Define
the Borel action G ~ ) by the formula

Vg € G,Vw = (gn)neN € Qv g- (907917 .. ) = (9907gla s )

Observe that the action G ~ € is moreover nonsingular. Indeed, for every
g € G, we have ¢,P = g,u @ P* and P = 4 ® P* with P* = H§>1 . Since
u is equivalent to the Haar measure mg on G, we have g.u ~ p and so
g«P ~ P. This gives rise to a weak*-continuous action o : G ~ L*°(Q, P).
Likewise, define the nonsingular transformation 7' : (2,P) — (Q P) by
T(g0,91,---) = (9091, 92,...). Indeed, we have T,P = pu*? ® Hn>2,u and
w2 ~ pso that T,P ~ P. Moreover, we have T o g = go T for all g € G.
Set

L®(Q,P) ={FeL>®(Q,P)| FoT = F}.

Since the nonsingular transformation 7" and the nonsingular action of G ~
(2, P) commute, L>®(Q,P)T C L®(Q,P) is a G-invariant von Neumann
subalgebra. Then Proposition 3.3 implies that there exist a standard proba-
bility space (B, vg), a nonsingular action G ~ (B, vp) and a G-equivariant
measurable factor map 7 : (Q,P) — (B,vp) so that the mapping 7*
L>®(B) = L>®(Q)T : f = for is a G-equivariant weak*-continuous unital
x-isomorphism such that P o 7n* = vp.

CLAIM 3.15. The measure vg € Prob(B) is u-stationary.

Indeed, denote by 0 : G x Q2 — Q and op : G X B — B the Borel maps
given by the nonsingular actions G ~ Q and G ~ B. By definition of the
G-equivariant factor map m, we have 7 oT = 7 and mooq = op o (idg x7).
Moreover, we have T,P = 0q, (1 ® P). Therefore, we obtain

vg=mP = (n0oT),P=m(T.P)
=Tu(0au(p®P)) = (mo0q)i(p®P) =0p.(1®vp)
= u*rp.
From now on, we use the identification L>(Q, P)T = L>(B,vg) with
vp = P|LOO(Q)T. We will simply write w € B for the image of w € Q in
B. Claim 3.15 shows that (B,vg) is a (G, u)-space. We will prove that for

P-almost every w 6 Q, the sequence (Wp,(w))nen = (9o - - - gn)nen converges
“In a certain sense” towards the point w € B (see (3. 1))
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THEOREM 3.16 (Furstenberg [Fu62b]). The Poisson transform

®, : L>(B,vp) = Har(G, ) : f — <g — / f(gb) dVB(b))
B
is a G-equivariant unital positive surjective linear isometry.

Proor. We know that ®, : L°°(B,vp) — Har(G, p) is a G-equivariant
unital positive linear contraction. It remains to construct the inverse map
of ®,. Let F € Har(G, ;1) and define the sequence (ﬁn)neN in L>*(Q, F,P)
by the formula

Vw = (gn)nen € Q,  Fu(w) = F(go- - gn)-
Define the increasing sequence of o-subalgebras F,, C F by the formula
Fn = o(Xo,...,X,) where X, : Q@ - G : w — g, is the projection onto
the n-th coordinate for all n € N. Observe that for every n € N, ﬁn €
L>(Q, F, P) with [|Fy]so < |[Flleo and \/, oy Fn = F. A simple calculation
using p-harmonicity shows that

Vo = (gdaens B [Put | 7] @) = [ Plang-0.00) dnlaia)

= F(gog1 -+ gn)
= Fp(w).

Thus, (ﬁn)neN is a uniformly bounded martingale, hence it converges P-
almost everywhere. Set F'(w) = lim,, F},(w) for P-almost every w € Q. It
follows that F € L*°(Q,P) with || F||co < ||F||co.- Moreover, we have

(Fp o T)(g0,915---) = Fulgogn,---) = F(gog1 -~ gngn+1) = Fry1(w).

Therefore F o T = F and so F € L=(Q,P)T = L®(B, vp).

The map V¥, : Har(G,p) — L®(B,vB) : F — F is a G-equivariant
unital positive linear contraction. It remains to prove that ¥, is indeed an
inverse for ®,. If F' € Har(G, j1), using Lebesgue’s dominated convergence
theorem and regarding F € L™(B,vg) = L®(Q,P)7T, for every g € G, we
obtain
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Conversely, let f € L®(B,vg) = L>(Q,P)T. Then for every n € N and for
P-almost every w € §2, we have
E | 2,(f) | Fo (@) = @u(F), (@)
=®,(f)(g0 - gn)

— [ fla- 0. don@)
B
— [ oo+ gn- ) dPW)
Q
::/Qfo1m+%gm.n,%“wvdP«M>

z/Qf(go,---,gn,W’)dP(w')

=E[f | Fn] (w).
It follows that m = f. Therefore, the Poisson transform

®, : L*(B,vp) — Har(G, 1)
and the mapping
U, : Har(G, ) = L=(B,vB) : F — F
are inverse of one another. Moreover, for every f € Har(G,u), we have
1@ (F)lloo = [1.f lloo- O
DEFINITION 3.17. The (G, pu)-space (B, vp) is called the (G, u)-Poisson

boundary.

Even though we will not use it, we state a fundamental result due to
Furstenberg that provides an explicit description of the Poisson boundary
of semisimple Lie groups. We will only state it in the special case of G =
SLg(R), d > 2.

THEOREM 3.18 (Furstenberg [Fu62al). Let d > 2 and G := SL4(R). De-
note by P < G the cocompact closed subgroup of upper triangular matrices.
Then for every admissible measure p € Prob(G), there ezists a unique p-
stationary Borel probability measure v € Prob(G/P) and moreover (G/P,v)
is the (G, p)-Poisson boundary.

In what follows, we will identify the function space L*°(B,vpg) of the
(G, p)-Poisson boundary (B, vp) with the space of bounded harmonic func-
tions Har(G, u). We now investigate various qualitative and rigidity prop-
erties of the nonsingular action G ~ (B, vp).

COROLLARY 3.19. The nonsingular action G ~ (B,vp) is ergodic.

PRrROOF. Let Y C B be any G-invariant measurable subset. Then
®,(1y) =vp(Y)le = ®u(vp(Y)1p)
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is a constant harmonic function. By injectivity of ®,, we have 1y =
vp(Y)1p. This implies that Y C B is null or conull. Thus, G ~ (B,vp) is
ergodic. U

We say that a (G, u)-space (C,v¢) is a (G, p)-boundary if there exists a
G-equivariant measurable factor map 7 : (B,vg) — (C,vc). We character-
ize (G, pu)-boundaries in the next result.

THEOREM 3.20. Let (C,ve) be any (G, u)-space. The following asser-
tions are equivalent:
(i) (C,ve) is a (G, p)-boundary.
(ii) For every compact model of G ~ (C,v¢), the limit probability mea-
sures (Vc)w in Theorem 3.12 are Dirac masses for P-almost every
w e Q.
(iii) There exists a compact model of G ~ (C,v¢c) such that the limit
probability measures (vc), in Theorem 3.12 are Dirac masses for
P-almost every w € Q2.

PROOF. (i) = (ii) Abusing notation, we assume that (C,v¢) is already
a compact metrizable (G, pu)-boundary. Let 7 : (B,vp) — (C,v¢c) be any
G-equivariant measurable factor map.

CrLAM 3.21. For P-almost every w € 2, the limit probability measure
(vc)w arising in Theorem 3.12 satisfies (vo)w = dr(w)-

Indeed, the proof of Theorem 3.12 shows that for P-almost every w =
(gn)nen € 2, with respect to the weak*-topology, we have
(ve)w = lim go, - - gn,veo
= limgo,. - - gn. (mvB)
= limmego, -+~ gnuVB-

Combining with the proof of Theorem 3.16, this further implies that for
P-almost every w = (gn)nen € Q and every f € C(C), we have

(vo)o(f) = Tim(go, - - gn.vp)(f o 7)
=lim®,(fom)(go---gn)

= &u(fom)(w)
= (feom)(w)
= (fom)(@) = I (f)-
This finishes the proof of Claim 3.21.
(ii) = (iii) This implication follows from Proposition 3.3.
(iii) = (i) Abusing notation, we assume that (C,v¢) is already a com-
pact metrizable (G, p)-space for which the limit probability measures (v¢).
arising in Theorem 3.12 are Dirac masses for P-almost every w € 2. Define
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the G-equivariant measurable map w : B — C so that for P-almost every
w € €2, we have (v¢)y = 0r(z). Then

AV = /Q(Sw(w) dP(w) = /Q(Vc)w dP(w) = ve.

Then 7 : (B,vp) — (C,v¢) is a G-equivariant measurable factor map and
so (C,ve) is a (G, u)-boundary. O

Let us point out that for any (G, p)-boundary (C, v¢), Claim 3.21 shows
that there exists an essentially unique G-equivariant measurable factor map
¢ (B,vp) = (C,vc). Applying Theorem 3.20 to the case when (C,v¢) =
(B,vp), for every compact model of G ~ (B,vg) and for P-almost every
w € Q, we have

(3.1) (vB)w = liﬁngg* “ GnaVB = 0.

In the next result, we show that the Poisson boundary behaves well with
respect to factor groups. Let NV <1 G be any normal closed subgroup and let
p: G — G/N be the factor map. Denote by 7 = p.u € Prob(G/N) and
observe that @ € Prob(G/N) is admissible. Using Proposition 3.3, denote
by (B,vg) the (G/N,ni)-space that satisies L(B,vg) = L™(B,vg)V

PROPOSITION 3.22. Keep the same notation as above. Then (B,vg) is
the (G/N, )-Poisson boundary.

PROOF. Denote by Har(G, 1) C Har(G, u1) the G-invariant closed sub-
space of N-invariant bounded p-harmonic functions. In view of Theorem
3.16, it suffices to prove that the well-defined G-equivariant unital positive
linear contraction W : Har(G/N, i) — Har(G,u)V : F + F op is bijective.
Indeed, ¥ is clearly injective. Next, let F' € Har(G, u)N . For every h € N
and every g € G, we have F(g) = (A(h)F)(9) = F(h~'g) = F(gg~'h1g).
Thus we may define the bounded function F : G/N — C by the formula

F(gN) = F(g) for every g € G. Then F € Har(G/N,f) and F = F o p.
This shows that W is surjective and finishes the proof. ([

4. Furstenberg boundary map

The next fundamental result provides the existence and the uniqueness
of Furstenberg boundary maps. As usual, we fix an admissible measure
p € Prob(G) and we denote by (B,vg) the (G, u)-Poisson boundary. We
follow the exposition given in [BS04, §2].

THEOREM 3.23 (Furstenberg [Fu62b)). Let (X, v) be a compact metriz-
able (G, p)-space. Then there exists an essentially unique G-equivariant
measurable boundary map 5, : (B,vg) — Prob(X) : b+ £,(b) such that

V_/ﬁu )dvp(b
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PRrROOF. By Theorem 3.12, there is a measurable map Q — Prob(X) :
W = vy 80 that go,Vs(,) = v for P-almost every w = (gn)nen € 2 and
v = [oVwdP(w). Note that for every ¢ € G and P-almost every w =
(gn)nen € Q, with respect to the weak*-topology, we have

Vr(w) = hén(g()gl)* T GnglV = héng()*gl* o gnkV = Vo

and
GeVo = i g.g0, 91, - Gno¥ = H(9G0) w14 - - Gal = Vg
These properties imply that the G-equivariant measurable map 5, : B —

Prob(X) : b — (,(b) where 5,(b) == v, with b = w € B is well-defined.
Moreover, we have

u:/Qyde(w):/Bﬁl,(b)de(b).

This proves the existence of the boundary map S, : B — Prob(X).

Let now 5 : B — Prob(X) : b+ ((b) be any G-equivariant measurable
map such that v = [ 6(b) dvp(b). Then the (G, 1)-space (Prob(X), f.vp) is
a (G, n)-boundary. Recall that the barycenter map Bar : Prob(Prob(X)) —
Prob(X) is defined by the formula

Vi € Prob(Prob(X)), Bar(¢) ::/P b(X)ndzp(n).

Since G ~ Prob(X) is weak*-continuous affine, the barycenter map Bar :
Prob(Prob(X)) — Prob(X) is G-equivariant. By assumption, we have
Bar(f.vp) = [56(b)dvp = v. Theorem 3.20 implies that for P-almost
every w € ), with respect to the weak*-topology, we have

B(w) = Bar(dg()) = Bar (lirILngO*gl* . .QM(B*VB))
= lim Bar (90,91 - gn.(B+vB))
= lim go, g1, -+ - gn. Bar(B.vp)
= lim go,g1, -+~ gnyV
= v, = [, ().
This proves the uniqueness of the boundary map 3, : B — Prob(X). O

Recall that for any (G, u)-boundary (C,v¢), there exists an essentially
unique G-equivariant measurable factor map n¢ : (B,vg) — (C,ve). We
give the following functional analytic interpretation of the above result. As
before, we may regard L*°(C) C L*°(B) as a G-invariant von Neumann
subalgebra such that vo = vp |L°°(C) via the G-equivariant weak*-continuous
unital *-homomorphism 7, : L>(C') — L>(B) : f + f o mc that satisfies
VB O TH = V.
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COROLLARY 3.24. Let @ : L*°(C) — L*(B) be any G-equivariant weak* -
continuous unital positive map such that vg o ® = vo. Then for every
feL>®(C), we have ®(f) = f.

PRrOOF. Using Proposition 3.3, we may assume that (C, v¢) is a compact
metrizable (G, u)-space. Regard C(C') C L*°(C) and consider the restriction
®|c(ey : C(C) — L=(B). By duality, we obtain the G-equivariant measur-
able boundary map S, : B — Prob(C) such that vc = [ B, (b) dvp(b).
By Theorems 3.20 and 3.23 and Claim 3.21, we know that for P-almost
every w € €2, we have B, (W) = (V0c)w = Or(z). This implies that for ev-
ery f € C(C) and P-almost every w € Q, we have ®(f)(w) = By, (w)(f) =
Sre@) (f) = f(mc(@)) = f(w) and so ®(f) = f. Since ® is weak*-continuous
and since C(C) C L*(C) is weak*-dense, it follows that for every f €
L*>(C), we have ®(f) = f. O

The next corollary allows to identify conditional measures and limit
measures.

COROLLARY 3.25. Let (Y,n) be any compact metrizable (G, p)-space,
(C,ve) any (G, p)-boundary and 7 : (Y,n) — (C,vc) any relatively measure
preserving G-equivariant measurable factor map. Denote by mco : (B,vp) —
(C,ve) the essentially unique G-equivariant measurable factor map. Regard
L>*(C) c L*®(Y) as a G-invariant von Neumann algebra such that vo =
nlLe(c)-

Then the unique conditional expectation E : L=°(Y) — L*(C) such that
ve o E = n satisfies that for P-almost every w € Q and every f € C(Y), we

have E(f)(mc(@)) = nw(f).

Proor. Consider the restriction E|cy) : C(Y) — L*(C). By dual-
ity, we obtain the G-equivariant measurable map 5 : C' — Prob(Y’) such
that n = [, B8(c)dvc(c). Then fome : B — Prob(Y) is a G-equivariant
measurable map such that n = [5(8 o m¢)(b) dvp(b). By uniqueness in
Theorem 3.23, it follows that 8 o mc = ,. This implies that for P-almost
every w € Q, we have B(n¢(w)) = n,. By definition of S, this further
implies that for P-almost every w € Q and every f € C(Y), we have

E(f)(mc@)) = B(rc(@))(f) = nu(f)- U

The next corollary provides a useful criterion to deduce equality between
(G, p)-boundaries.

COROLLARY 3.26. For every i € {1,2}, let (Cs,vc,) be any (G, p)-
boundary and denote by w¢, : (B,vg) — (Ci,vc,) the essentially unique G-
equivariant measurable factor map. Assume that there exists a G-equivariant
measurable factor map w: (C1,ve,) — (Co,vey,).

If 7 : (Ch,ve,) — (Ca,vey,) is relatively measure preserving, then m :
(C1,ve,) = (Ca,vey) is an isomorphism.

PRrROOF. By essential uniqueness in Theorem 3.20, we necessarily have
o, = mome, . As before, regard L*°(Cs) C L*°(Cy) C L*°(B) as G-invariant
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von Neumann subalgebras. By assumption, the conditional expectation E :
L*>®(Cy) — L*(C%) is G-equivariant. Since L*°(Cs) C L*°(B), we may
regard E : L>°(Cy) — L*(B) as a G-equivariant weak*-continuous unital
positive map such that vp o E = v¢,. By Corollary 3.24, we have E(f) = f
for every f € L°(Cy). This implies that 7 : (C1,ve,) — (Ca,vc,) is an
isomorphism. O

As a straightforward consequence of Theorem 3.23 and Corollary 3.26,
we obtain that any (G, p)-boundary (C,v¢) for which the measure vo €
Prob(C) is G-invariant is necessarily trivial. In particular, we infer the
following characterization of triviality of the Poisson boundary.

COROLLARY 3.27. The following assertions are equivalent:

(i) The Poisson boundary (B,vg) is trivial.
(ii) For every compact metrizable (G, p)-space (X, v), the measure v is
G-invariant.

PROOF. (i) = (ii) By Theorem 3.23, since (B, vp) = ({*}, dy) is trivial,
for every compact metrizable (G, u)-space (X, v), the boundary map S, :
B — Prob(X) is essentially constant and its unique essential value is equal
to v, which is necessarily G-invariant.

(ii) = (i) We may assume that (B,vp) is already a compact metrizable
(G, p)-space. By assumption, the measure vp is G-invariant. Then the G-
equivariant map 7,y : (B,vB) — ({*}, d(,}) is relatively measure preserving.
Corollary 3.26 implies that (B,vp) = ({*},d(,) is trivial. O

The next corollary shows that the limit probability measures from The-
orem 3.12 behave well under equivariant measurable factor maps.

COROLLARY 3.28. Let (X,v) and (Y,n) be compact metrizable (G, p)-
spaces and w : (X,v) — (Y,n) any G-equivariant measurable factor map.
Then for P-almost every w € Q, we have Ty, = 1.

Proor. Up to modifying m on a v-conull measurable subset, we may
assume that 7 : X — Y is Borel. Denote by m, : Prob(X) — Prob(Y)
the corresponding Borel map. By [Zi84, Proposition B.5]), there exists a
v-conull G-invariant Borel subset Xo C X such that |y, : Xo — Y is
strictly G-equivariant. By Theorem 3.23, there exists an essentially unique
G-equivariant measurable boundary map (8, : B — Prob(X) : W — v,
(resp. B, : B — Prob(Y) : W — 1) so that v = Bar(8,,vp) (resp. n =
Bar(3,,vg)). Since v(X \ Xo) = 0, Remark 3.13 implies that for P-almost
every w € 2, we have v,(X \ Xo) = 0. Then we may consider the G-
equivariant measurable map m, o 3, : B — Prob(Y) : w + m.,. For every
f€C(Y), we have for € B(X) and Remark 3.13 implies that

/Q no(f) AP(w) = n(f) = (rur)(f) = v(f o )
:/zxw(fow)dP(w)
Q
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- / (o) () dP(w).
Q

/andP(w)Z/Qmude(w).

By uniqueness in Theorem 3.23, it follows that for P-almost every w € 2,
we have m.v, = 1. O

This implies that

The next corollary provides a strengthening of the ergodicity property
of the Poisson boundary obtained in Corollary 3.19.

COROLLARY 3.29. Let G ~ (X, v) be any ergodic pmp action. Then the
nonsingular action G ~ (B x X,vp Q v) is ergodic.

PROOF. We may assume that both (B,vp) and (X,v) are compact
metrizable (G, p)-spaces. Then (B x X,vp ® v) is a compact metrizable
(G, pu)-space. Denote by px : BxX — X and pp : BxX — B the canonical
G-equivariant factor maps. Let Z C B x X be any G-invariant measurable
subset such that (v ® v)(Z) > 0. Define n = m(ylg ® v)|z. Then
(B x X,n) is still a compact metrizable (G, p1)-space. Since G ~ (B,vp)
is ergodic, Lemma 3.9 implies that pp : (B x X,n) — (B,vp) is a G-
equivariant measurable factor map. Likewise, since G ~ (X,v) is er-
godic, px : (B x X,n) — (X,v) is a G-equivariant measurable factor
map. Then Corollary 3.28 implies that for P-almost every w € €0, we have
PBMw = (VB)w = &0z and px,nw = v, = v and so 7, = 0z ® v. This implies
that

n:/nde /5 ®@rvdP(w) =vp @ 1.

This further implies that (vp ® v)(Z) = 1 and so the nonsingular action
G ~ (B x X,vp ®@v) is ergodic. O

5. Amenability and the Poisson boundary

For every p € [1,+o0], we simply denote by LP(G) = LP(G, B(G), mq)
and by A : G ~ LP(G) the left translation action. Let G ~ (X, v) be any
nonsingular action and denote by o : G ~ L*°(X) the corresponding weak*-
continuous action. Simply write L°°(G x X)) = L*°(G x X, mg ®v). Denote
by A® 0 : G ~ L®(G x X) the weak*-continuous action arising from the
diagonal nonsingular action G ~ (G x X, mg @ v).

DEFINITION 3.30. We say that a nonsingular action G ~ (X,v) is
amenable if there exists a unital positive linear contractive mapping @ :

L>®(G x X) — L*(X) such that
e For every f € L>(X), we have ®(15a ® f) = f.
e For every g € G and every F' € L*™°(G x X), we have
(A 0)(9)F) = a(g)2(F).
We simply say that ¢ : L®(G x X) — L*(X) is a G-equivariant projection.
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Recall that P(G) = {u € LYG) | p > 0 and ||u||y = 1}. For every
p € LY(G) and every F € L®(G x X), we denote by (u®idx)(F) € L®(X)
the unique element that satisfies

v € LY(X,v), ((p@idx)(F)) = (p @ ¢)(F).

If p € P(G), then p®idx : L®(G x X) — L°°(X) is a unital positive linear
contractive mapping. If (u;)icr is a net in L}(G) such that lim; |1 = 0,
then for every F' € L>(G x X), we have (u; ® idx)(F) — 0 with respect to
the weak*-topology.

ProproSITION 3.31. The following assertions hold:

(i) The nonsingular translation action G ~ (G, mq) is amenable.
(ii) If G is amenable, then every nonsingular action G ~ (X,v) is
amenable.
(iii) For every amenable nonsingular action G ~ (X,v) and every lat-
tice T' < G, the nonsingular action T' ~ (X, v) is amenable.

PrOOF. (i) Fix p € P(G). Define the unital positive linear contractive
mapping ¥ = p®idg : L(G x G) — L>®(G). Then the following properties
hold:

e For every f € L™(G), we have V(1¢ ® f) = pu(1a) f = f.
e For every g € G and every F' € L®(G x G), we have
U((ide @A) (9)F) = (1 ® A(9))(F) = Mg) ¥ (F).

Next consider the nonsingular automorphism 6 : G x G — G x G : (h, k) —
(kh, k) and define the unital positive linear contractive mapping ® : L>(G x
G) — L*>(G) by the formula ®(F') = U(Fof). Then the following properties
hold:

e For every f € L°°(G), we have
P(1e@ f) =V((1e® f) o) =V(1e® f) = f.
e For every g € G and every F' € L™°(G x G), we have

((A@N)(9)F) =T (Fo(g- @g )ob)
=U(Fofo(idg®g™"))
U ((idg @A)(g)(F 0 0))
(9)U(F 0 0)
(9)®(F).
Thus, ® : L(G x G) — L*(G) is a G-equivariant projection and so the
nonsingular translation action G ~ (G, m¢) is amenable.
(ii) Since G is amenable, there exists a net of elements (u;)icr in P(G)

such that [|A(g)p: — pilli — 0 uniformly on compact sets (see the proof of
Theorem 2.20(iii) = (i)). Choose a nonprincipal ultrafilter & on I. Define

A
A
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the unital positive linear contractive mapping ® : L°(G x X) — L*°(X) by
the formula

VF € L%(G x X),  ®(F) = lim (4; ® idx)(F)
e

where the above limit is taken with respect to the weak*-topology in L*>°(X).
e For every f € L*°(X), we have

®(1c® f) = lim (; ®idx)(1e ® f) = lim pi(le) f = f.
e For every g € G and every F' € L™(G x X), we have
(A ®o)(9)F) = lim(p; @idx)((A ® 0)(9))F)
= lim (\(g™")ps ® 0 (9))(F)

= lim (4 © 0(9))(F)

~ olg) (i s i) )
i—U
= 0(9)®(F)
where in the third line we used the fact that [|A(g™!)u; — uil|1 — 0.
Thus, ® : L®(G x X) — L*°(X) is a G-equivariant projection and so the
nonsingular action G ~ (X, v) is amenable.

(iii) Denote by @ : L*°(G x X) — L*°(X) the G-equivariant projection
witnessing amenability of the nonsingular action G ~ (X,v). Choose a
Borel fundamental domain F C G so that G = F-T. Then F~! C G is a
Borel fundamental domain for the left translation action I' ~ G. We may
assume that mg(F~!) = 1 so that n :== mg|r-1 € Prob(F~!). Then 6 :
(Tx F~Ymren) — (G,mg) : (7,y) = 7y is a measure space isomorphism.
Moreover, for all 7,s € " and all y € F, we have 6(ys,y) = v6(s,y). This
implies that the canonical inclusion L®(T' x X) € L®(I' x F~1 x X) =
L*>(G x X) is I'-equivariant. Thus ¥ := ®|p ey x) : L(I x X) — L*(X)
is a I'-equivariant projection. This shows that the nonsingular action I' ~
(X,v) is amenable. O

As usual, let i € Prob(G) be any admissible measure. Denote by (B, vg)
the (G, u)-Poisson boundary. The following theorem and its corollary will
be very useful in Section 5.

THEOREM 3.32 (Zimmer [Zi76]). The nonsingular action G ~ (B,vp)
is amenable.

PROOF. Recall the construction of the Poisson boundary. We have
(Q, F,P) = (GN,B(G)*N, u®N) and the nonsingular action G ~ (Q,P) is
given by g - (gn)nen = (990, g1, - - .) for every g € G and every (gn)nen € (L.
By Proposition 3.31(i) and since p is admissible, it follows that the nonsin-
gular action G ~ (€2, P) is amenable. Denote by ® : L™ (G x Q) — L*()
a (G-equivariant projection.
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Next, the nonsingular transformation 7' : (Q,P) — (Q,P) is given by
T((gn)nen) = (gog1,...) for every (gn)neny € 2. Note that the nonsin-
gular action G ~ (,P) commutes with the nonsingular transformation
T:(Q,P) — (2,P). By construction, we have a G-equivariant measurable
factor map (Q,P) — (B,vp) : w — w such that L®(B,vg) = L=(Q,P)7.
Choose a nonprincipal ultrafilter & € S(N)\ N and define the unital positive
linear mapping E : L*(Q, P) — L*°(Q, P) by the formula

1 n

0 — 1; k

VF € L®(Q,P), E(F):= Jim kZOFoT
where the above limit is taken with respect to the weak*-topology. Since
the action G ~ L*°(Q) is weak*-continuous and commutes with 7" : Q@ — €,
it follows that E : L>®°(Q,P) — L>°(Q,P)T is a G-equivariant projection.
Define ¥ : L*°(G x B) — L*°(B) by the formula ¥(F) = E(®(F)) for
every F' € L°(G x B) C L*(G x Q). Then ¥ : L*°(G x B) — L*°(B) is
a G-equivariant projection and so the nonsingular action G ~ (B,vp) is
amenable. O

COROLLARY 3.33. For every lattice I' < G, the nonsingular action I' ~
(B,vg) is amenable.

PROOF. The proof is simply a combinination of Proposition 3.31(iii) and
Theorem 3.32. O

We conclude this section by stating an important characterization of
amenable groups involving the Poisson boundary.

THEOREM 3.34 (Kaimanovich—Vershik [K'V82], Rosenblatt [Ro81]).
Let G be any locally compact second countable group. Then G is amenable
if and only if there exists an admissible measure p € Prob(G) for which the
Poisson boundary (B,vp) is trivial.

PROOF. Assume that there exists an admissible measure p € Prob(G)
for which the Poisson boundary (B,vp) = {*} is trivial. Then L>(B,vp) =
L>*({*}) = C. Since G ~ (B,vp) is amenable by Theorem 3.32, there
exists a G-equivariant projection m : L*°(G x {*}) — C. In other words,
m: L®(G) — C is a left invariant mean. By Theorem 2.20, G is amenable.
For the converse implication, we refer the reader to [KV82] and [Ro81]. O



CHAPTER 4

Reduced 1-cohomology and applications

We introduce 1-cohomology theory for unitary repre-
sentations. We explain the relationship between re-
duced 1-cohomology and harmonic cocycles. We prove
Shalom’s characterization of property (T) in terms of
reduced 1-cohomology. We show that induction is in-
jective in both usual and reduced 1-cohomology.

1. 1-cohomology theory for unitary representations

DEFINITION 4.1. Let m : G — U(H ) be any strongly continuous unitary
representation. We say the a map b : G — Hy is a 1-cocycle for 7 if b is
continuous and satisfies the 1-cocycle relation

(4.1) Vg,h € Hr, b(gh) =b(g) + 7(g)b(h).

We denote by Z!(G,7) the space of all 1-cocycles for . We say that a
map b : G — H, is a 1-coboundary for 7 if there exists & € H, such that
b(g) = m(g9)€ — & for every g € G. We denote by BY(G,7) the space of all
1-coboundaries for .

It is clear from the definition that any 1-coboundary for 7 is a 1-cocycle
for 7 and so BY(G, ) € Z'(G, 7). We denote by

HY(G,n) = 7G,7)/BYG,x)

the 1-cohomology space for . In what follows, since we will be mainly
interested in 1-cohomology theory, we will simply use the terminology cocycle
(resp. coboundary, cohomology) instead of 1-cocycle (resp. 1-coboundary, 1-
cohomology).

Observe that whenever b : G — H, is a map that satisfies the cocycle
relation (4.1) and that is continuous at e € G, then b is continuous on G
and so b € ZY(G, 7). The next result provides a useful criterion for a map
b: G — Hr to be a cocycle.

LEMMA 4.2. Let m : G — U(Hx) be any strongly continuous unitary
representation. Let b : G — Hyp be any map that satisfies the following
conditions:

e The map b satisfies the cocycle relation (4.1).
o The function G — C: g — ||b(g)|| is measurable.
e The subset b(G) C Hy is separable.

77
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Then b € ZY(G, ).

PROOF. The proof is somewhat similar to the one of Lemma 2.2. It
suffices to show that the map b : G — H, : g — b(g) is continuous at e € G.
Let @ C G be any symmetric compact neighborhood of e € G. Consider the
compactly generated open subgroup H = J,~; Q" < G. It further suffices
to show that the map by : H — H. : g — b(g) is continuous at e € H.
Thus, we may as well assume that G is o-compact.

As usual, we denote by m¢g a left invariant Haar measure on G. Fix
e > 0 and define the measurable subset B := {g € G | ||b(9)|| < €/2}. By
the cocycle relation (4.1), we have B~! = B and B2 C {g € G | ||b(g)| < ¢}-
Take a sequence (gn)nen in G such that {b(g,) | n € N} is dense in b(G).
For every g € G, there exists n € N such that ||b(g) — b(g,)|| < /2 and so

1b(g 9| = lI7(9n)b(g ")l = 1Ib(g) — blgn) | < £/2.
This implies that G' = |J,,cy 9n B and hence mg(B) > 0. Arguing as in the
proof of Lemma 2.2, this further implies that B? contains an open neigh-
borhood of e € G and so does {g € G | ||b(g)|| < €}. This implies that
be ZYG, 7). O

Observe that when G is o-compact and b € Z!(G, 7), the subset b(G) C
Hr is separable. Indeed, write G = |J,,cy @n With @, C G a compact subset
for every n € N. Then b(G) = J,,cn b(@n). Since b : G — H is continuous,
b(Qy) is a compact subset of the metric space H, and so b(Q,) C Hr is
separable. This implies that b(G) C H, is separable.

We will often use the following elementary result.

LEMMA 4.3. Let m : G — U(Hx) be any strongly continuous unitary
representation and b € ZY(G, ) any cocycle. If b is bounded, then b €
BY(G, ).

PRrROOF. Since the subset b(G) C H, is bounded, we may consider its
circumcenter £ € H,. By uniqueness of the circumcenter, using G-invariance
and the cocycle relation (4.1), we obtain & = b(g) 4+ m(g)& for every g € G.
Thus, we have b € BY(G, 7). O

There is a useful geometric interpretation of cocycles that goes as follows.
Regard H, as an affine Hilbert space and denote by Aff(H,) the group of
continuous affine transformations. Define the continuous map arp : G —
Aff(H.) by the formula a,;(9)(§) = 7(9)€ + b(g). The cocycle relation
(4.1) implies that a,p : G — Aff(H,) is a continuous group homomorphism
and hence defines a continuous affine isometric action of G on H,. Then 7
corresponds to the linear part of ar; and b corresponds to the translation
part of a . It is straightforward to see that b is a coboundary if and only
if arp admits a fixed point.

Endowed with the topology of uniform convergence on compact subsets
of G, the space Z'(G, ) is a Hausdorff locally convex topological vector
space.
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e Assume moreover that G is o-compact and choose an increasing
sequence of compact subsets @, C G such that G = |J,,cyy @n- The
family of seminorms pg, : Z'(G,7) — Ry defined by pg, (b) =
sup {||b(g)|| | g € Qn} is separating. Moreover, the metric d defined
on Z'(G,7) by the formula

I pq,(b—c)
on+l1 4 DQn (b —0)

Vb, c € ZY(G,m), d(bc) =
neN
is complete. Thus, Z' (G, ) is a Fréchet space.

e Assume moreover that G is compactly generated and choose a com-
pact subset () C G such that e € Q and G = Un21 Q". Then pg is

a complete norm on Z'(G, 7) and so Z'(G, 7) is a Banach space.
The subspace BY(G, 7) € Z' (G, 7) need not be closed. In that respect,
we introduce the reduced cohomology space for m by
o' (G, ) = Z4G, ) /B (G, 7).
The following result clarifies when BY(G,7) C Z'(G,n) is closed.
PROPOSITION 4.4 (Guichardet [Gu72]). Let 7 : G — U(H,) be any
strongly continuous unitary representation.
(i) If  does not have almost invariant vectors, then B(G, ) is closed
in ZY (G, m). In that case, we have HY(G,7) = ﬁl(G, ).
(ii) Assume that G is o-compact and that 7 is ergodic. If BY(G, ) is

closed in Z' (G, ), then m does not have almost invariant vectors.

PROOF. Define the continuous linear mapping
0: He = BYG,m) : € (g m(g)€ — &)

(i) Since 7 does not have almost invariant vectors, there exists a compact
subset Q C G and ¢ > 0 such that

(4.2) VE € Hr, pQ(O€) > el€ll.

Let b € ZY(G, n) and (&)ies be a net in H, such that 9¢ — b in Z1(G, 7).
There exists igp € I such that for every i > i, we have pg(9¢; —b) < 1. Then
(4.2) implies that

(@3)  Vizio (6] < (@ — 1)+ pe()) < Z(1+pa(t) =~

For every compact subset C' C G, we may choose i¢c > i so that pc (9, —
b) < 1. Combining with (4.3), we obtain

pc(b) < pc(b—0&.) +pc(9&i.) <1+ 2k.

Since b is bounded on G, it follows that b € B'(G, ) by Lemma 4.3. This
shows that BY(G,n) C Z(G, ) is closed.

(ii) Since 7 is ergodic, the linear mapping 0 : H, — BY(G, 7) is bijective.
Since G is o-compact and since BY(G, 7) ¢ Z}(G, 7) is closed, B(G,7) is a

1
€
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Fréchet space. By the open mapping theorem (see [Ru91, Corollaries 2.12]),
the inverse linear mapping 0~' : BY(G, 1) — H, is continuous. Assume by
contradiction that 7 has almost invariant vectors. Choose an increasing
sequence of compact subsets ), C G such that G = J,,cy @n- Then for
every n € N, there exists a unit vector &, € H, such that pg, (0¢,) < 27".
This implies that d(9¢,,0) < 2-=1 — 0 (where d is the complete metric
defined using (Qn)nen). Thus, we have &, = 971(9¢,) — 0, which is a
contradiction. O

In the next result, we obtain a characterization of property (T) in terms
of 1-cohomology theory.

THEOREM 4.5 (Delorme—Guichardet [De76, Gu72]). The following as-
sertions hold:

(i) If G has property (T), then for every strongly continuous unitary
representation T, we have H' (G, w) = 0.

(ii) Assume that G is o-compact. If HY(G,m) = 0 for every strongly
continuous unitary representation m, then G has property (T).

PROOF. (i) Let m# : G — U(H,) be any strongly continuous unitary
representation and b € Z! (G, ) any cocycle such that b ¢ BY(G, 7). We will
show that G does not have property (T). Then b is not bounded on G (see
Lemma 4.3). Set HE® = CQ with ||©2|| = 1 and

exp(Hr) = EBHS?" and V& € Hy, exp(§) == Z \/%g@m € exp(Hx).
neN neN
Note that Q = exp(0). Denote by K the closure in exp(#,) of the linear
span of {exp(&) | £ € Hr}. For every t > 0, define the strongly continuous
unitary representation p; : G — U(K) by the formula

2
(4.4) pi(g)exp(§) = eXD(-%Hb(g)H2 — R(m(g)€,tb(g))) exp(m(9)¢ + tb(g))

for every g € G and every £ € H,. One easily checks that for every g € G,
the mapping p;(g) : Vect {exp(§) | £ € Hr} — K extends to a well-defined
unitary operator p;(g) € U(K). Moreover, p : G — U(K) is a group homo-
morphism using the cocycle relation (4.1). Finally, p : G — U(K) is strongly
continuous by (4.4) and by density of Vect {exp(¢) | £ € H,} in K. Then for
every g € (G, we have

(45) exp(~ 5 [6(9)I?) = (pr(9), D)

Denote by K; the closure in K of the linear span of p(G)S2. We still denote
by pt : G — U(K;) the strongly continuous unitary representation defined
on the p;(G)-invariant subspace Ky C K. Since b is not bounded on G, there
exists a sequence (gn)nen in G such that limy, |b(g,)|| = +o00. Then (4.1)
and (4.5) imply that for every g € G, we have

(pe(9n) 2, pe(9)2) = (pe(g™ " 9n) 2, Q)
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t2
= exp(—g””(g)b(g_lgn)HQ)
2
= exp(—%”b(g) - b(gn)||2) — 0.

This implies that p¢(g,)2 — 0 weakly in ;. This further implies that p;
is ergodic. Indeed, let ¢ € (IC;)¥ be any p;(G)-invariant vector. Then for
every g € (G, we have

(€ pe(9)) = (pe(gng ) pe(gng ) pe(9)) = (C, pe(gn)) — 0.

It follows that ¢ = 0 and so p; is ergodic.

Define K, = @,,~1 K1/, and p == D, p1/n- Note that pis still ergodic.
Define ), € K, the unit vector whose n-th component is equal to 2 € Ky /,.
Then (4.5) implies that (£2,,),>1 is a sequence of almost invariant vectors
for p and so 1 < p. This implies that G does not have property (T).

(ii) If G does not have property (T), then there exists an ergodic strongly
continuous unitary representation 7 that has almost invariant vectors. Then

Proposition 4.4(ii) implies that BY(G, ) # B*(G, 7). In particular, we have
BY(G, ) # ZY(G, r) and so H}(G,7) # 0. O

2. Reduced cohomology and harmonic cocycles

From now on and for the rest of this chapter, we will assume that the
locally compact second countable group G is compactly generated. More
precisely, we use the following setup.

TERMINOLOGY 4.6. Let G be any compactly generated lcsc group. Fix a
symmetric compact neighborhood Q C G of e € G such that G = Un21 Q".
Define the word length /g : G — N on G associated with @ by the formula

Vge G, {g(9) =min{neN|geQ"}.

We say that a symmetric Borel probability measure p € Prob(G) is coho-
mologically adapted if

(i) p is absolutely continuous with respect to the Haar measure on G.
(ii) The support supp(p) generates G as a semigroup, that is, G =

Un21 supp(u)"™.
(iii) p has a finite second moment, that is, [, €g(g)? du(g) < +oo.

Let m: G — U(Hr) be any strongly continuous unitary representation.
We do not assume that H, is separable. Let b € Z'(G,7) be any cocycle.
Then for every g € G, we have ||b(g)|| < lg(g)pg(b). It follows that the
continuous function G — Ry : g +— |b(g)|| belongs to L*(G, ) and hence
we may consider the element b(u) € H, defined by the formula

VEE Ha  (b(1),E) = /G (b(1). €) dpa(h).
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We will simply write b(u fG . We say that b is p-harmonic if
b(u) = 0. Using the cocycle relatlon (4 1) b is p-harmonic if and only if

Vge G, blg) = /G b(gh) dpu(P).

Denote by Har,(G,7) C Z'(G,7) the closed subspace of all y-harmonic
cocycles.

Recall that (Z'(G,7),pg) is a Banach space. We may also endow the
space Z'(G, ) with the sesquilinear form (-, ), defined by the formula

Vho€ Z(Gum), (bueh = [ (A, clh) duh).
G
Since G = |, supp(p)", it is easy to see that || - ||, is a norm on Z!(G, ).
More generally, we prove the following useful result.

THEOREM 4.7. The space ZI(G,TF) endowed with the sesquilinear form
(-, )u is a Hilbert space. For every compact subset K C G such that Q C K,
there exists a constant k > 0 such that

o <1l <
Moreover, we have the following orthogonal decomposition
(4.6) 7M(G, ) = BY(G, ) & Har,, (G, 7).
We may and will identify ﬁl(G 7) = Har, (G, 7).

PROOF. Firstly, we prove that Z'(G, ) is a Hilbert space. Let (by,), be
any ||-||,-Cauchy sequence in Z'(G, 7). We want to show that (b, ), admits a
limit in Z'(G, 7) with respect to || -||,. Up to taking a subsequence, we may
assume that ||by11—by ||, < 27+ for every n € N. Using Cauchy-Schwarz
inequality, we have

/Zubnﬂ ) — bu(h) du(h Z/nbnﬂ ) — ba(h)] du(h)

nEN neN

<5 lbnss — bull,

neN
<1

Since H, is complete, it follows that lim, b,(g) exists in H, for p-almost
every g € G. Observe that for every ¢ € Z!(G, ), we have

lel2., = /G lelgh) ) ()
- / le(g) + 7(g)e(h)]? dulg)du(h)
GxG

< 2[elli, + 2llell = 4llell:.
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More generally, for every k > 1 and every ¢ € Z*(G, ), we have
2 20 112
el < E7[lell5-

The exact same reasoning as before shows that for every k > 1, lim,, b,(g)
exists in H, for p**-almost every g € G.
Next, set

A= {g € G| limby(g) exists in ”Hﬂ} .
CrAam 4.8. We have A = G.

Indeed, the previous reasoning shows that the Borel subset A C G is
not empty and p**(G '\ A) = 0 for every k > 1. Moreover, the cocycle rela-
tion (4.1) implies that A C G is a subgroup. By contradiction, assume that
A # G. Then there exists g € G such that gA C G\ A. Since for every k > 1,
we have supp(u)® C supp(p**) and since G = |, supp(p)*, there exists
¢ > 1 such that g € supp(p*%). Since u is absolutely continuous with respect
to mq, we may consider f = diTHG € LY(G,mg) with f > 0 and ||f]j; = 1.
Since the map G — LY(G) : h — A(Rh)f is || - ||1-continuous and since the
measurable map G — Ry : z + u(z'gA) is bounded, Lebesgue’s domi-
nated convergence theorem implies that the map G — Ry : b+ pu*?(h=1gA)
is continuous because

VheG, p?(hgh) = (uxp)(h~'gA)
z/u(:rlhlgA) dp(x)
G
— /Gﬂ(x‘lh‘lgA)f(x) dmg(z)
:/M(ar_lg/\)f(h_lx)dme(ﬂf)
G
— /Gu(x‘lgA)(A(h)f)(m) dmg(z).

Since p*tO(G\ A) = 0 and gA € G \ A, we have p*?+9(gA) = 0. This
further implies that

/GM*Q(h‘lgA) du*t(h) = 9 (gA) = 0.

Then for p*-almost every h € G, we have p*?(h~'gA) = 0. By continuity,
we infer that p*2(h~1gA) = 0 for every h € supp(p*). In particular, for h =
g € supp(p*’), we infer that p*?(g~'gA) = p*?(A) = 0. Since p*2(G\A) = 0,
we obtain p*?(G) = u(A) + u(G \ A) = 0, which is absurd. Therefore, we
have A = G, which means that lim,, b, (g) exists in H, for every g € G. This
finishes the proof of Claim 4.8.

Set b(g) = lim,, b,(g) € H, for every g € G. We now prove that b €
7Y (G, 7). Tt is clear that the map b : G — H, satisfies the cocycle relation
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(4.1). The function G — R4 : g — [|b(g)]| is measurable as pointwise limit
of the continuous functions G — Ry : g — ||b,(g)||. Since for every n € N,
b, (G) is separable and since b(G) C |J,,cnbn(G), it follows that b(G) is
separable. Then Lemma 4.2 implies that b € Z(G, 7).

For every p > n, we have

p—1 p—1
||bp - bn“u < Z [[br41 — bk”u < Z 2~ (k+1) <27
k=n k=n

Fatou’s lemma further implies that

16— ball?, = /G 15(9) — ba(9)* duto)
- / liminf [[b,(g) — ba(9)]12 dya(g)

G p
<timyint [ [1(9) = ba(9) a0
= lim inf |[b, — by,||

iminf b, — bl

< (27™)%

Therefore lim,, ||[b — by, ||, = 0. This shows that the norm || - ||, is complete
on Z'(G,7) and so (Z'(G,7),(-,-),) is indeed a Hilbert space.

Let now K C G be any compact subset such that @ C K. Then we have
G =U,>; K™ and hence pg is a complete norm on ZI(G 7). Since Q C K,

we have pg < pg. Observe that for every b € 71 (G, ), we have

Ib]2 = /G 1)1 duh) / (o (h)? dpu(h)-po(b / Lo (k) dyu(h)-prc (b).

In particular, we have || - ||, < k1 px where k1 = ([ lo(h )2du(h))'/?. This
further implies that the identity linear mapping

v (ZNG, ), prc) — (ZHG, ), || - ||) b b

is continuous and bijective. Since both (Z'(G, ), pr) are (Z(G,7), || - [|,.)
are Banach spaces, the open mapping theorem (see [Ru91, Corollaries 2.12])
implies that +~! is continuous. This further implies that there exists a
constant ko > 0 such that px < ko || - ||,

Secondly, we prove the orthogonal decomposition (4.6). Indeed,

be (BYG,n))" & V€ My, (b,06), =0
<~ Vf € Hnr, G<b(h)’ W(h)é - 5) dM(h) =0
& VE € My, G<7T(h)*b(h> = b(h), &) dp(h) =0

S VEE Hr, [ (=b(h™) —b(h),&) du(h) =0
G
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g \vlg € Hﬂa <_2 b(lu’)’£> =0
< b(p) =0
& b e Har, (G, ).
Then (B(G, 7))t = Har, (G, 7). a

REMARK 4.9. The proof of Theorem 4.7 actually shows the following
more general result. Let u € Prob(G) be any symmetric Borel proba-
bility measure on G that satisfies conditions (i) and (ii) in Terminology
4.6. Assume that for every b € Z'(G,7), we have ||b]|, < +oo. Then
(Z(G,7),(-,-),) is a Hilbert space.

3. Shalom’s characterization of property (T)

The main result of this section is the following characterization of prop-
erty (T) for compactly generated lcsc groups due to Shalom [Sh99] (see also
[Mo095, KS96] for the case of finitely generated discrete groups).

THEOREM 4.10 (Shalom [Sh99]). Let G be any compactly generated lcsc
group. If G does not have property (T), then there exists a strongly contin-

uous unitary representation w: G — U(Hr) such that ﬁl(G, ) # 0.

Before proving Theorem 4.10, we discuss the ultraproduct construction in
the setting of strongly continuous unitary representations. Let & € 5(N)\ N
be any nonprincipal ultrafilter and 7 : G — U(H ) any strongly continuous
unitary representation. Set

Ty = {(@Jn € (N, Ha) | lim [I&nl] = 0}

Su = (N, ) [T

For every (&,)n € ¢>°(N,H,), we simply denote by (&,)y its image in $.
Endowed with the sesquilinear form ((&,)u, (n)u) s, = limp—2(&n, M), the
vector space )y is a Hilbert space. We call $;; the ultraproduct Hilbert
space.

When G is discrete, it is straightforward to define the ultraproduct uni-
tary representation my : G — U($y) by the formula

Vg € G,V(&n)u € Du,  Tu(9)(En)u = (1(9)n)u-

When G is not discrete, the above formula still makes sense but m; need
not be continuous on ;. We will now define a my-invariant closed subspace
HNux C Hy on which the unitary representation my is strongly continuous.

We say that a sequence (&), € £°(N,Hr) is (U, m)-equicontinuous if
for every € > 0, there exists a neighborhood O C G of e € G such that
{neN|VheO,|r(h)é — & <e} eU. Set

Cur =1{&)n € (N, Hx) | ({n)n is (U, 7)-equicontinuous}
D = Cux/Iu.
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Observe that £/ » C $/ is a closed subspace.

LEMMA 4.11. For every g € G and every (&p)n € €yx, (1(9)én)n €
Cu.x. Then the closed subspace iy C Hy is my-invariant and the unitary
representation my : G — U (ﬁu,w) is strongly continuous.

PRrROOF. Let g € G and (&,)n € €y . For every € > 0, there exists a
neighborhood O C G of e € G such that {n € N |Vh € O,||n(h)&, — &, <
e} €U. Set O, = gOg~' and observe that O, C G is still a neighborhood
of e € G. We have

{n € N[Vh € Oy, |Im(h) m(g)&n — m(9)énll < €}
={n e N[Vh € Oy, [r(g)"m(h)m(9)én — &nll < €}
={neN|[VheO,[r(h)é — &l <e} €U,

This shows that (7(¢9)én)n € €y . This further implies that my : G —
U(Hux) is a well-defined unitary representation.

Secondly, we prove that my : G — U(Hy ) is strongly continuous. Let
(&n)n € €y and set & = (&n)u € Hux. For every € > 0, there exists a
neighborhood O C G of e € G such that {n € N | Vh € O,||n(h)&, — &,|| <
e} € U. This implies that for every h € O, we have

Im(R)€ = £ll = lim 7 (R)&n — &l < e

This shows that my : G — U(Hy ~) is strongly continuous at e € G and so
mu : G — U(Hy, ) is strongly continuous. O

We are now ready to prove Theorem 4.10.

ProoF OoF THEOREM 4.10. We follow the lines of the proof given by
Erschler-Ozawa [EO16, Section 4]. Fix a cohomologically adapted sym-
metric Borel probability measure p € Prob(G) as in Terminology 4.6. We
moreover assume that p is compactly supported, pu = g * pg for some sym-
metric Borel probability measure pg € Prob(G) and e € supp(u). Using
Theorem 4.7, it suffices to show that there exists a nonzero p-harmonic
cocycle for some strongly continuous unitary representation.

Since G does not have property (T), there exists a strongly continuous
unitary representation 7 : G — U(H) that is ergodic and that has almost
invariant vectors. Since G is compactly generated, we may assume that H,
is separable. Consider the bounded operator 7(u) € B(H,) defined by the
formula

(4.7) Ve € Heo  (m(u)Esm) = /G (r(9)E,m) dulg).

We will simply write 7(u) = [, 7(g) du(g). Since pig is symmetric and since

W= po * fro, we have () = m(po)m(1o) = 7(po)*m(1o). It follows that ()
is a positive selfadjoint bounded operator such that ||7(u)|| < 1. Then its
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spectrum satisfies o(7(p)) C [0, 1]. Since 7 is ergodic, 1 is not an eigenvalue
for w(u). Indeed, if n € H, satisfies w(u)n = n, then (4.7) implies that

‘AHMWU—WPQNWZQ—Q%WWWJDIQ

This implies that 7(g)n = n for p-almost every g € G. Since 7 is strongly
continuous, we obtain w(g)n = n for every g € supp(p). Since G =
U,,>1 supp(p)™, it follows that m(g)n = n for every g € G and so n = 0.
Since 7 has almost invariant vectors, (4.7) and Lebesgue’s dominated con-
vergence theorem imply that 1 € o(w(u)). More precisely, we have the
following useful result.

CrLAM 4.12. Set T" = m(p). Then there exists a unit vector £ € Hn

and a Borel probability measure v € Prob([0,1]) such that 1 € supp(v),
v({1}) =0, and

1
(48) erwam,LAfamwwzaﬂna@.

Indeed, using the assumptions, for every n > 1, the spectral projec-
tion p, = 1;;_1/n,1)(T) is nonzero. Then for every n > 1, pir(Hy) is
a proper closed subspace with empty interior. Baire’s theorem implies
that (J,;>, pir(Hy) is a proper subspace of H,. Choose a unit vector £ €
He \ U, Pr(Hr). Then we have p,& # 0 for every n > 1. Denote
by v € Prob([0,1]) the unique Borel probability measure satisfying (4.8).
Then v([1 — 1/n,1]) = (P&, &) = ||[pné]|> # 0 and so 1 € supp(v). Since
1(13(T) = 0, we have v({1}) = 0. This finishes the proof of Claim 4.12.

Next, for every n € N, consider the coboundary ¢, : G — H, : g —
T7/2¢ — 7(g)T™/2€. We have

\MﬁZLWﬂWW@@)
= 2 (IT/2¢|? — (Tm/2g, T )
= 2T"(1 - T)E.£)

1
= 2/ t"(1 —t)dv(t) == 2~(n).
0
We will need the following elementary technical result.

CrAamM 4.13. The following assertions hold:

(i) The sequence (y(n)), is decreasing and lim,, y(n) = 0.

(ii) The sequence (%)n is increasing and lim,, 7(&:)1) =1.

Indeed, item (i) follows from Lebesgue’s dominated convergence theo-
rem. For item (ii), first note that for every n € N, y(n) > 0. Indeed,



88 4. REDUCED 1-COHOMOLOGY AND APPLICATIONS

otherwise v would be supported on {0, 1}, which is absurd by construction.
Next, Cauchy—Schwarz’s inequality implies

1
y(n+1) :/ 21— )2 D21 — ) 2 du(t) < y()V2 4 (n+2)Y/?
0

and so the sequence (%)n is increasing. Denote by £ = lim,, 7({2:)1). By

contradiction, assume that ¢ < 1. Then every n € N, we have v(n) < ("
and the monotone convergence theorem implies that

1 > 1
t"du(t) = vy(k) < —— ™.
| v IRCE e

This implies that v(]¢,1]) = 0, which contradicts the assumption that 1 €
supp(v). This finishes the proof of Claim 4.13.

Next, for every n € N, consider the normalized coboundary b, : G —
Hr:g— mcn(g). We would like to define the map by : G — 2 g —
(bn(9))u and show that it is a cocycle for the ultraproduct representation 7.
When G is discrete, this is straightforward and the reader can skip Claims
4.14 and 4.15. When G is arbitrary, we need to show that by, is well-defined,
namely that (b,(g))n € €y for every g € G, and that by : G — $Hyr is
continuous. As an intermediate step, we prove the following equicontinuity
result for the family (b, ).

CrAM 4.14. For every compact subset C' C G such that @@ C C, there

exists a continuous function d¢ : G — Ry, that is bounded on C, such that
d(e) = 0 and for which

vneN,Vg e C, |bulg)] < dc(g)-
Indeed, set f = 2 ¢ LY(G,mg) with f > 0 and | f|; = 1. Observe

mag

that for every n > 2 and every g € G, we have

- /G (f(h) = F(g™"h)) caa(h) dme(h)
= —/ Cn_g(h) du(h)+/ Cn—?(gh) dlu’(h)
el G

:=U—w@D[;mem”V%dmm

=Cn (g)
Set K = C'-supp(u) and observe that K C G is a compact subset such that
Q) C K. By Theorem 4.7, there exists £ > 0 such that px(c) < k||, for
every ¢ € Z'(G, m). Then for n > 2 and every g € Q, we have

Ioa(g)l] = M@ prclenza) 1wy gy

||Cn||u N ||Cn”u

< s llenzlle ey oy,

— lenlly
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o o)\ 1/2
iy (W) I = M) Fll.

1/2
Claim 4.13 implies that the sequence ((7%;)2 )> )n is bounded. Moreover,

the left translation action A : G ~ L(Q) is continuous. This finishes the
proof of Claim 4.14.

CrAamM 4.15. The following assertions hold:

(i) For every g € G, (bn(9))n € €y .n-
(ii) The well-defined map by : G —= $Hux = g — (bn(g))u is continuous
and is a cocycle for the ultraproduct representation 7.

Indeed, for item (i), let g € G be any element and € > 0. Claim 4.14
implies that (b,(g))n € ¢*°(N,H,) and that there exists a compact neigh-
boorhood O C G of e € G such that

sup {[|bn(R)|| + [|ba(g " hg)|| | n € N,h € O} <.
For every n € N and every h € O, we have
|7 (h)bn(9) = br(g)]l = l1bn(hg) — bu(h) — bu(g)|l
= [[bn(g 9™ hg) — bu(h) = ba(9)|
= an(gg_lhg) —bn(h) = bu(9)||
= ||7(9)ba(g™" hg) — ba(h)|
< [1ba(g™ hg) || + [ (R)] < e.

This implies that (b,(9))n € € x-

For item (ii), it is clear that by satisfies the 1-cocycle relation (4.1) for
my. Moreover, Claim 4.14 implies that by is continuous at e € G. Thus, by
is continuous and is a cocycle for the ultraproduct representation ;. This
finishes the proof of Claim 4.15.

CrLAmM 4.16. The cocycle by : G — $y,x is nonzero and p-harmonic.

Indeed, applying Claim 4.14 to C' := @ - supp(u), we have
I = | )P

=/ tim [ ()] da(h)

= hm/ 16, (R)||2dp(R)  (by Claim 4.14)

This shows that by, is nonzero. Moreover, using Claim 4.13, we have

I b P = sl [ ) )P
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= g 1T~ T g
Z’in) / 2
90—yt 1)

= 2 (n) — 0.

Then for every (&,)n € €y x, applying Claim 4.14 to C' := @ - supp(p), we
obtain

< /G bua(h) du(h), (En)us) = /G (bua (), (€n)er) dpa(B)
=/Ghm< o (). £) dp(h)

n—U

= lim [ (bn(h),&,) du(h) (by Claim 4.14)
n—U Ja

= lin( /G ba(h) du(h), Ex) = 0

T

This shows that b, is py-harmonic and finishes the proof of Claim 4.16.

Combining Theorem 4.7 and Claim 4.16, we obtain o (G,my) # 0. This
finishes the proof of Theorem 4.10. U

4. Induction and reduced cohomology

Let G be any compactly generated lcsc group and I' < G any lattice.
Set X := G/I' and denote by v € Prob(X) the unique G-invariant Borel
probability measure on X. For every Borel fundamental domain F C G, we
may choose a Borel section ¢ : X — F as in Corollary 1.12. For every g € G
and every x € G/T", denote by 7(g,x) € T' the unique element in I" such that
go(z) = o(gz)T7(g9,x). The map 7 : G x X — T is Borel and satisfies the
1-cocycle relation (2.1). Denote by m¢ the unique Haar measure on G such
that o, = mg|r.

From now on, we assume that the lattice I' < G is finitely generated.
This is always the case when I' < G is uniform (see Proposition 1.14) or
when G has property (T) (see Propositions 2.26 and 2.28). Fix a finite
symmetric generating set S C I' and define the word length /g : I' — N on
I" associated with S by the formula

VyeTl, /lg(y)=min{n e N|~vye S"}

DEFINITION 4.17 (Shalom [Sh99]). We say that the lattice I' < G is L%-
integrable if there exists a Borel fundamental domain F C G for which the
associated 1-cocycle 7 : G x X — T satisfies the L?-integrability condition:

(4.9) Vg € G, /X ls(1(g, g )2 dv(z) < +oo.
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Any uniform lattice I' < G is L%-integrable. Indeed, in that case, using
Proposition 1.11(ii) we may choose a relatively compact Borel fundamental
domain F C G. Then for every g € G, the subset F~1gF is relatively
compact in G and so 7(g, X) C F 1gF NT is finite. Then (4.9) is satisfied.

The next theorem due to Shalom provides examples of nonuniform L2-
integrable lattices in locally compact groups.

THEOREM 4.18 (Shalom [Sh99]). The following examples of nonuniform
lattices are L%-integrable:
(i) For every d > 3, SL4(Z) < SL4(R).
(ii) For every d > 2 and every square-free integer q > 2,

SLa4(Z[\/q]) < SLa(R) x SLq(R).
(iii) For every d > 2 and every prime p € P,
SLa(Z[p™']) < SLg(R) x SL4(Qy).

More generally, it is proven in [Sh99, §2] that irreducible lattices in
higher rank semisimple algebraic groups are L2-integrable.

PROOF. We only explain the proof of item (i). We refer to [Sh99, §2] for
the proof in the general case of irreducible lattices in higher rank semisimple
algebraic groups that covers items (ii) and (iii).

Let d > 3 and set I' := SL4(Z) < SL4(R) := G and X = G/I'. Following
Theorem 1.19, choose t > % and u > % so that G = &, -1 where &;,, C G
is a Siegel domain of finite Haar measure. Then we may choose a Borel
fundamental domain F C &;,, C G (see [Zi84, Corollary A.6]).

Denote by S C I' the finite symmetric set of all elementary matrices
defined as follows

Si={Eij(x1)]|1<i#j<d}.

Note that S is a generating set for I'. Consider the length function ¢g : I" —
N on I associated with S. On R?, consider the canonical L?-norm || - ||z and
define

Vg e G, gl = sup{Hgng |ve Rd, lv]l2 < 1}.

Using the Cartan decomposition G = K - AT - K from Lemma 2.37, we have
lgll > 1 and [lg~*]] < [|g]| """ for every g € G.

The main result of [LIMR96] implies that the lengths g and log(]|||) are
coarse Lipschitz equivalent on I'. In particular, there are constants a,b > 0
such that £g(v) < alog(||v]|) + b for every v € I'. Then for every g € G and
every x € X, we have

ls(r(g,97")) < alog(||m(g, g™ 2)[l) +b

< alog([lo(z)~"||) + alog(llgll) +log(lo (g~ x)I|) + b
< a(d — 1) log(|lo(x)]|) + alog(|lgll) +log(lo(g~ =)||) +b.
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Next observe that for every g € G, we have

/ log([lo(g~"2)|)? dv(z) = / log([lo(2)])?* dv(z) = / log([lyl))* dma(y).
X X F

In order to prove that I' < G is L2-integrable, it suffices to prove that

/ log(|lyl)? dma(y) < +oo.
f

For this, recall that 7 C &;, and that &;, = K - A; - N,, where ¢t > % and

u > 4. Since K and N, are both compact in SLq(R) and since for every
a = diag(A1,...,\g) € Ay, we have 1 < ||a| < t971)y, using Lemma 1.21, it
suffices to prove that

/ (log A\g)* H A da < +oo0.
Ay LA
1<i<j<d

Observe that the map

A A
@:A—>Rd1:diag()\1,...,)\d)b—><log2,...,log d )
A1 Ad—1

is a topological group isomorphism. We may choose the Haar measure da
on A that is the pushforward of the Lebesgue measure on R4 by ©~!. For
every a = diag(\q, ..., \g) € Ay, letting

Ao Ad
log —....,log—— | = _
<og IV , 108 )\d1> (81, » Sd 1)

we have

1 A A\
(10gAd)2=2(10g)\d+---+log 4 )
1

W= 2
k=1
d—1

S d2 Zk Sk
k=1

A simple calculation as in Claim 1.22 shows that for every 1 < k < d — 1,
we have

/Rdl 3% H exp(—(si +eee ijl))]-{sh...,sd,lZ—logt} dsy---dsqgq

1<i<j<d

+00 +o0
= / s2 exp(—k(d — k)sg) dsy, - H/ exp(—j(d — j)s;) dsj < +o0.
—logt j#k —logt

Altogether, this implies that [, log(||y||)? dmg(y) < +oo and hence I' < G
is L2-integrable. O
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REMARK 4.19. We point out that the assumption that d > 3 in Theorem
4.18(i) is necessary. Indeed, when d = 2, the lengths ¢g and log(|| - ||) are
not Lipschitz equivalent on SLg(Z) < SLa(R). Indeed, set

yi= <é }) € SLy(Z) < SLy(R).

Then for every n > 1, {g(+™) = n while log(||[7"]]) = O(log(n)) since

n_(n 0 1 n7t\ /nt 0
7= o )0 1 0 n)
REMARK 4.20. The proof of Theorem 4.18(i) actually shows the follow-

ing stronger L2-integrability condition:

(4.10) VC C G compact subset, sup/ ls(1(g9,9  x))* dv(z) < +oo.
geCJX

From now on, we fix a finitely generated L2-integrable lattice I' < G.
For every unitary representation = : I' — U(H,) with H, separable, we
denote by 7 : G — U(Hz) the induced representation (see Chapter 2). We
define the induction from I' to G for cocycles using the first viewpoint on
induction.

DEFINITION 4.21 (Shalom [Sh99]). Let b € ZY(T',n) be any cocycle.
Define the induced cocycle b : G — Hz by the formula

Vg€ GVu e X, blg)(x) =b(r(g,9 7)) € Hr.

We need to check that the map b:G — H= is indeed a cocycle for T,
that is, b € ZY(G, 7). As before, set ps(b) = sup {||b(y)|| | v € S}. Note
that for every g € G, we have b(g) € Hz since

b 2 — T “LaNVII2 dv(z
||b<g>||y—/X|\b< (9,97 2))|2 du(2)
< /X t5(r(g,97"2))? dv(z) - ps(b)* < +oc.

Moreover, b satisfies the cocycle relation (4.1) for 7. Indeed, for all g,h € G
and every x € X, we have

b(gh)(z) = b(r(gh,h g~ x))

=b(r(g,9 '2) (h,h g7 w))

— b(r(g,9"2)) + (g, g~ 2))b(r(h, b g )
(b(9) + 7(9)b(R) ) ().

By Fubini’s theorem, the function G — Ry : g — |[b(g)]|, is measurable.
Since Hz = L%(X, v)®@H,, is separable, Lemma 4.2 implies that b € Z!(G, 7).
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As it will be useful later on, we also define the induced cocycle using the
second viewpoint on induction. With respect to the second viewpoint, the
induced cocycle b: G — Hz is defined by the formula

Vg, h € G, b(g)(h) = n(r(h~",A)) b(r(g, g~ "AL))
=b(r(h~tg, g hD)) — b(r (R, AT)).

The main result of this section due to Shalom shows that the induction
from I" to G for cocycles yields an injective map in (reduced) cohomology.

THEOREM 4.22 (Shalom [Sh99, Sh03]). The induction map
I:7Z 0, 7) = ZHG,7): b b
s continuous and satisfies
IBYT, 7)) c BYG,7) and Z(BYT,n)) c BYG,7).
Moreover, the canonical well-defined mappings

HY(T, ) — HY(G,7) and H (I,7) > H (G,7)

are both injective.

ProOF. First, we prove that the induction map Z : Z*(T', 7) — Z*(G, 7)
is continuous. This is immediate if the lattice I' < G satisfies the stronger
L%-integrability condition as in (4.10). Indeed, in that case, for every b €
7 (', ), we have

po(b)* = sup|b(g)|I7
geqQ

=sup | [[b(g)(x)]* dv(z)
geQ J X

= sup /X 1b(r(g, g~ )12 dv(a)

<sup [ ts(rlg.g7'0) dv(e) - ps ).
geQ J X

This shows that the induction map Z : (Z'(T',7),ps) — (Z'(G,7),pgq) is

continuous.

In general, choose a cohomologically adapted symmetric Borel probabil-
ity measure p € Prob(G) as in Terminology 4.6 such that we moreover have
u ~ mg. Fix a symmetric compact neighborhood @@ C G of e € G such
that G = (J,~, Q". By Theorem 4.7, we know that (Z'(G,7),(-,-),) is a
Hilbert space and for every compact subset K C G such that Q C K, the
norms px and || - ||, are equivalent on Z*(G, 7).

Denote by p9 € Prob(I") the pushforward measure of u®v € Prob(Gx X)
under the Borel map G' x X —1T': (g,2) — (9,97 '2).

CLAIM 4.23. The measure g € Prob(I') is symmetric and supp(ug) = I
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Indeed, using Fubini’s theorem and the facts that p is symmetric and
that v is G-invariant, for every v € I', we have

po(y) = (n@v)({(g,2) € G x X | (9,97 ') =7})
= (pev){(gr)eGxX|7(g"2) =71}
= (pov){(g,2) € G x X | 1(g,2) =71}
= (pov){(g,2) € Gx X [1(g,97'x) =~""})
= po(y!

Then pg is symmetric.

Next, let v € I' be any element. Since p ~ mg, the left translation
action G ~ (G, p) is nonsingular and transitive. Choose a countable dense
subgroup A < G and set B =A-F C G. Then pu(B) > 0 and p(hBAB) =0
for every h € A. Since G — R4 : h — u(hBAB) is continuous, it follows
that w(hBAB) = 0 for every h € G. Then we have u(B) = 1 and so
u(BNFv) = p(Fv) > 0. Thus, there exists g € A such that u(gFNFv) > 0.
By continuity, we may choose a neighborhood U C G of g € G such that
pw(hF N Fry) > 0 for every h € U. Then we have mg(F Nh~1Fy) > 0 for
every h € U and so

v)(
(
(
)-

(9,7) € G x X | 7(g9,7) =7})
(9,2) € G x X | go(x) € Frv})
v)({(g,2) €U x X | o(z) € g Fr})

::%kd&mEXIGW)GQAfWDdH@)

po(y) = po(v ™) =

= /Umo(fﬁ g~ ' Fv)du(g) > 0.

This finishes the proof of Claim 4.23.
For every b € Z(T', 7), we obtain

012, / 15012 dpao)
- / 1b(r (g, g~ )| dpu(g)dv(x)
GxX

/ (/ 15(g) ()] dv(z )) dp(g)
_ /G 5(9) 12 du(g)

= [b]? < +oc.

From the above equality, we infer the following crucial fact. For every b €
ZHT',7), we have ||b]|,, < +oo. The proof of Theorem 4.7 then shows
that the space (Z'(I',7), (-, ),,) is a Hilbert space (see Remark 4.9). Since
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supp(pp) = T' and since S C T is finite, there exists k1 > 0 such that
s < K1 || - ||yo- This means that the identity linear mapping
v: (ZYD, ), | - | o) — (ZY(D,7),pg) : b b

is continuous and bijective. Since both (Z'(I',7), | - ||) and (Z*(T',7), ps)
are Banach spaces, the open mapping theorem (see [Ru91, Corollaries 2.12])

implies that exists a constant ko such that | - ||, < k2ps. In other words,
the norms || - ||, and ps are equivalent on Z'(T', 7). As we have seen, the
induction map Z : (ZYT,7), | - lu) — (ZYG,7),| - ||,) is an isometry.

The previous reasoning implies that the induction map Z : (Z*(T, ), ps) —
(Z'(G,7),px) is continuous for every compact subset K C G such that
Q CK.

We use the notation 0, : H, — BYT,m) (resp. 0z : Hz — BY(G,7))
for the coboundary map. For every £ € Hr, we have Z(0;§) = 0z(1x ®
¢). This shows that Z(BY(T, 7)) ¢ BY(G, 7). Since Z is continuous, this
further implies that Z(B*(T, 7)) € B}(G, 7). This shows that the canonical
mappings

H'(I, ) — HY(G,7) and H (I,7)— H (G,7)

are well-defined. It remains to prove that they are both injective.

In order to do that, we introduce the following transfer operator that
was suggested to us by Narutaka Ozawa (see also [Sh03, p. 144]). We use
the second viewpoint on induction for cocycles. Choose a relatively compact
subset C' C F such that mg(C) > 0. Set K := QU eg 676_1 C G and
note that K C G is a compact subset such that Q C K. Define the mapping
T : ZY(G,7) — ZY(T', 7) by the formula

maiC)2 /C c(gyh™")(g) dmg?(g, h).

CraM 4.24. The following assertions hold:
(i) The transfer operator 7 : (ZY(G,7),pr) — (Z'(T',7),ps) is well-
defined and continuous.
(ii) For every b € Z!(I, ), we have

A~

T () =b.

(iii) For every n € Hz, we have

T(0:m) = 0,6 where &— mG1<0) /C n(g) dme(g) € Ha.

PrROOF OF CLAIM 4.24. Keep the same notation as before.
(i) Let ¢ € Z(G,7) and v € I'. Firstly, note that the map G x G —
Har: (g,h) = c(gyh™1)(g) is measurable. Next, we have

mGzC)Q /C /C le(grh (@) dme(g)dme (h)
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- — o /w<[%_m4Hdh])@Hﬁdmch>dma@)
< o6 Lo (LI (o)) dmai
?
(

< O oo Il )

mg(Cy~1C~1)
ma(C)2 CyC
This implies that 7 (c)(y) € Hr. Letting
1 -1

K= o O sup {mg(C"y

we have [|T(c)(v)]| < kpk(c) for every v € S. This shows that ps(7(c)) <
k pr(c) for every c € Z(G, 7).

We next prove that 7 (c) € ZY(T', 7). Indeed, using Fubini’s theorem, for
almost every (g1, g2,93) € G X G X G, we have

1(c)? < +o0.

Ch)|y€eS}< oo,

c(9192)(93) = ¢(91)(g3) + (F(g1)c(92))(g3) = e(g1)(g5) + c(92) (g7 ' 9s)-

Moreover, using Fubini’s theorem, for every v € I' and almost every (g1, g2) €

G x G, we have

c(g1)(g277") = 7(7) c(g1)(g2)-

These facts imply that for every (v1,72) € I' xI" and almost every (g, h, k) €
G x G x G, we have

c(gnr2h)(g) = clgnk ™" kyah™")(g)
= c(gmk™")(9) + c(ky2h ") (kv ")
= c(gnk™")(g) + m() c(ky2h ™) (k).

This further implies that for every (v1,72) € I' x I', we have

T = g [ elamh™)(a) dm(a. )

mal
7n01c» L (elam™) (o) + mlan)etinah ™) 1)dmE g, b 1)
= T(c)n) +7(1)T(e)(72)-

It follows that the transfer operator 7 : (Z'(G,7),px) — (ZY(T',7),ps) is
well-defined and continuous.

(ii) Let b € ZY(T', 7). Recall that with the second viewpoint on induction,
the induced cocycle b:G— Hz is given by the formula

Vs,t € G, b(s)(t) = b(r(t " s,s 1)) — b(r(t~",tT)).
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Set v* = 7(s71,sT") € T for every s € G. It follows that for every v € T, we
have

7)) = m(icy /c blgvh ) (g) dmE (g, h)
20)2 /cg(b(wh) = b(v%)) dmg*(g, )
- W /(;Jb(v) +r(MP(") = b(37)) dmE (g, h).

Observe that for every g € C C F, we have v = 7(g 1, gI') = g o (gl') = e.
Then we have T (b) =
(iii) Let n € Hz. For every v € I, we have

T(@w)(w)szC) / (@) (970~ (g) dmE2 (g, h)
1

= GO /Cz((%(gvh‘l)n)(g) —1(g)) dmg’(g, h)
= L) = i) dmRa. )
1
— e [T = n(a) dmP .
=m(7)§ —¢
where ¢ = fc (9)dmea(g) € Hyr. Then T(0:n) = 0:&. This finishes
the proof of Clalm 4.24. O

Let b € Z'(T', 7) such that b € BY(G, 7). By combining items (ii) and (iii)
in Claim 4.24, we obtain that b € BY(TI", 7). This proves that the canonical
map HY(T, 7) — HY(G,7) is injective.

Let b € ZY(T,7) such that b € BY(G,7). By combining items (i), (i)
and (iii) in Claim 4.24, we obtain that b € BY(T', 7). This proves that the
canonical map o (Iym) — Hl(G, 7) is injective. O



CHAPTER 5

Bader—Shalom’s normal subgroup theorem

In this chapter, we prove Bader—Shalom’s normal sub-
group theorem (NST) for irreducible lattices in product
groups [BS04]. The proof follows Margulis’s strategy
that consists in proving a “property (T) half” and a
“amenability half” and relies on the main results from
Chapters 3 and 4.

Introduction

DEFINITION 5.1. Let G be any locally compact group. We say that G is

e topologically simple if any proper closed normal subgroup is trivial.
e abstractly simple if any proper normal subgroup is trivial.

Moreover, let I' be any discrete group. We say that T' is just infinite if T" is
infinite and every nontrivial normal subgroup N <1 T has finite index.

For every d > 1 and every unital commutative ring R, we define the
projective special linear group

PSL4(R) == SLq4(R)/Z(SLa(R))

as the quotient of the special linear group SLg(R) by its center Z(SLg4(R)).
For instance, we have

THEOREM 5.2 (Iwasawa). For every field k and every d > 2, if |k| > 3
or d > 2, then PSLy(k) is abstractly simple.

Theorem 5.2 implies that for every d > 2, the locally compact group
PSL4(R) is topologically simple. More generally, every simple real Lie group
with trivial center is topologically simple.

The main result of this chapter is the following normal subgroup theorem
(NST) due to Bader-Shalom.

THEOREM 5.3 (Bader—Shalom [BS04]). For every i € {1,2}, let G; be a
topologically simple nondiscrete noncompact compactly generated lcsc group.

LetT' < G1x Gy be any finitely generated L2-integrable irreducible lattice.
Then I' is just infinite.

Theorem 5.3 applies to all uniform lattices I' < GG; x G. Indeed, such
uniform lattices I' < G x G2 are finitely generated by Proposition 1.14 and
L2-integrable.

99
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EXAMPLES 5.4. We give examples of finitely generated L2-integrable ir-
reducible lattices I' < G X G4 in products of topologically simple compactly
generated lcsc groups to which Theorem 5.3 applies.

(i) For every d > 2 and every square-free integer ¢ > 2,
PSL4(Z[y/g]) < PSLy(R) x PSLy(R)

is just infinite.
(ii) For every d > 2 and every prime p € P,

PSL4(Z[p™!]) < PSLyg(R) x PSL4(Q))
is just infinite.

Theorem 5.3 extends Margulis’s celebrated normal subgroup theorem
(NST) for irreducible lattices in semisimple algebraic groups.

THEOREM 5.5 (Margulis [Ma91, Chapter 1V]). Let G be any higher
rank semisimple algebraic group and I' < G any irreducible lattice. For
every normal subgroup N T, either N C Z(T') and N is finite or N < T
has finite index.

Let us point out that Bader—Shalom’s NST 5.3 generalizes Margulis’s
NST 5.5 for irreducible lattices in higher rank nonsimple semisimple alge-
braic groups. Bader—Shalom’s NST 5.3 also generalizes Burger—-Mozes’s NST
[BMO00a, BMOOD] for irreducible uniform lattices in product of trees. On
the other hand, Margulis’s NST 5.5 applies to all lattices I' < G in higher
rank simple algebraic groups such as G = SL4(R), d > 3. In that respect,
Bader—Shalom’s NST 5.3 and Margulis’s NST 5.5 are complementary.

The strategy of the proof of Theorem 5.3 follows Margulis’s remarkable
idea. Let N < T' be any nontrivial normal subgroup. In order to show that
N has finite index in I', we will prove that the quotient group I'/N has
property (T) (see Theorem 5.6) and is amenable (see Theorem 5.8). Using
Proposition 2.27, it will follow that I'/N is finite. The rest of this chapter
is devoted to proving the “property (T) half” and the “amenability half” of
Theorem 5.3.

1. Property (T) half

The main result of this section provides a sufficient condition to ensure
that factors of irreducible lattices in product groups have property (T). This
is the “property (T) half” of Theorem 5.3 which is due to Shalom. For any
lesc group G, denote by [G, G] the closure of the subgroup generated by the
set of commutators {ghg~'h~! | g,h € G}. Then [G,G] < G is a closed
normal subgroup and G/[G, G] is abelian.

THEOREM 5.6 (Shalom [Sh99]). For every i € {1,2}, let G; be any
compactly generated lcsc group. Set G = G1 X Ga and denote by p; : G — G}
the canonical factor map. Assume that G/|G,G] is compact.
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Let T < G be any finitely generated L2-integrable irreducible lattice and
N < T any normal subgroup. Assume that p;(N) < G; is dense for every
i€ {1,2}. Then I'/N has property (T).

The following dichotomy result will be one of the key ingredients in the
proof of Theorem 5.6.

PROPOSITION 5.7 (Shalom [Sh99]). For every i € {1,2}, let G; be any
compactly generated lesc group and set G = G1 x Gy. Let m: G — U(H) be
any strongly continuous unitary representation. At least one of the following
assertions holds:

(i) H(G,7) =

(ii) There exists i € {1,2} such that 7|q, is not ergodic.

PRrROOF. For every i € {1,2}, choose a Borel probability measure p; €
Prob(G;) as in Terminology 4.6. Set u = 1 ® ps € Prob(G). Assume that

7|q, is ergodic for every i € {1,2}. In order to show that ﬁl(G,w) =0,
using Theorem 4.7, it suffices to show that any p-harmonic 1-cocycle b €
Har, (G, ) is identically zero.
Let be HarM(G m) be any p-harmonic 1-cocycle. Recall that we have
fG ) =0. Foreveryi € {1,2}, set b(y;) = fG (gi)dui(gi) €
7—[ and m(p;) = fG (9:) dui(gi) € B(Hy). Since G = G; x G2 and
1= p1 ® po, we have

() = /G w(g) du(g) = /G o) nlan) A o1, 02) = ) ()

Using the 1-cocycle relation, for every (g1, g2) € G1 X Ga2, we have

(5.1)  b(g1) +7(g1) b(g2) = b(g192) = b(gag1) = b(ga) + 7(g2) b(g1)-
By integrating (5.1) against g = 1 ® pe € Prob(G) and since b(u) = 0, we
obtain
b(p1) + m(pa) b(p2) = 0= b(u2) + 7(u2) b(pn).
This implies that

b(pr) = —m(p1) b(pa) = —m (1) (=7 (p2) b(p1)) = w(p) b(p1).

Since 7 is ergodic, we have ker(1 — 7(u)) = {0} and so b(u1) = 0. Likewise,
we have b(ug) = 0.
Next, for every (g1,92) € G1 X Ga, rewriting (5.1) as

(5.2) (1 —m(g1)) bg2) = (1 = 7(g2)) b(g1)-

By integrating (5.2) against p1 € Prob(Gy), for every go € G2, we obtain
(1 = 7(p1)) bg2) = (1 = m(g2)) b(pa1) = 0.

Since 7|, is ergodic, we have ker(1 — 7(u1)) = {0} and so b(g2) = 0 for

every go € Go. Likewise, we have b(g;1) = 0 for every g1 € G1. The 1-cocycle
relation implies that b = 0. U

We are ready to prove Theorem 5.6.
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PROOF OF THEOREM 5.6. By contradiction, assume that I'/N does not
have property (T). Choose a symmetric finitely supported probability mea-
sure p € Prob(I') whose support supp(u) generates I'. Denote by 1 €
Prob(I'/N) the pushforward measure under the factor map I' — I'/N. Then
7 € Prob(I'/N) satisfies the assumption of Terminology 4.6 for the factor
group I'/N. By Theorems 4.7 and 4.10, there exist a unitary representation
m : I'/N — U(Hr) and a nonzero fi-harmonic cocycle b € Hargy(I'/N, 7).
Replacing H, with the closure of the linear span of b(I'/N), we may as-
sume that H, is separable. We regard 7 as a ['-unitary representation such
that 7|y = 13, and b € Har,(I',m) as a nonzero p-harmonic cocycle for
m: ' — U(H,) such that by = 0.

Consider the induced representation 7 : G — U(Hz) and the induced
cocycle b : G — H=. We claim that for every i € {1,2}, we have (Hz)% =
(Hz)%. We prove it for i = 1, the proof for i = 2 being analogous. Let
n € (Hz)%'. Using the second viewpoint on induction and [Ma91, Lemma
1.4.1.1], we may regard n : G — H, as a measurable function such that for
every v € T, every g1 € G1 and every h € G, we have n(g1h) = n(h) and
n(hy~1) = w(y)n(h). Then 7 is right N-invariant and right G-invariant
since G1 < G is a normal subgroup. By assumption, N - G is dense in
G and [Ma91, Lemma I1.4.1.1] implies that 7 is right G-invariant and left
G-invariant. Thus, n € (Hz)C.

Denote by p : Hz — (Hz)C (resp. ¢ : Hz — Hz © (Hz)®) the orthogonal
projection. On the one hand, p ob:G — (H=) is a continuous additive
group homomorphism. Since G/[G, G| is compact, we have Hom(G,C) =
{0}. This further implies that pog = 0. On the other hand, a combination of
the previous paragraph and Proposition 5.7 implies that ¢ obe B (T, Hz ©
(#)F). Thus, we have b =pob+qob € El(%, H=) and hence b € EI(F, )
by Theorem 4.22. Since b is p-harmonic, we have b = 0, a contradiction.
Therefore, I'/N has property (T). O

2. Amenability half

The main result of this section provides a complete characterization of
when factors of irreducible lattices in product groups are amenable. This is
the “amenability half” of Theorem 5.3 which is due to Bader—Shalom.

THEOREM 5.8 (Bader-Shalom [BS04]). For every i € {1,2}, let G; be
any lesc group. Set G = G1 X Gy and denote by p; : G — G; the canonical
factor map. Let I < G be any irreducible lattice and N < T' any normal
subgroup.

Then T'/N is amenable if and only if for every i € {1,2}, G;/pi(N) is
amenable.

We will use results from Chapter 3. Before proving Theorem 5.8, we
need some preparation. For every i € {1,2}, let G; be any lcsc group
and set G = G x Ga. For every i € {1,2}, choose an admissible Borel
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probability measure p; € Prob(G;) and denote by (B;,vp,) the (G, pi)-
Poisson boundary. Set p = pu1 ® pa € Prob(G) and denote by (B,vg) the
(G, u)-Poisson boundary. The next proposition describes any ergodic (G, u)-
space in terms of a canonical relatively measure preserving extension. For
every i € {1,2}, denote by j € {1,2} the unique element so that {1,2} =
{i, 4}

PrOPOSITION 5.9 (Bader—Shalom [BS04]). Let (Y,n) be any ergodic
(G, pu)-space. The following assertions hold:

(i) For everyi e {1,2}, (Y,n) is a (Gi, u;)-space.

(ii) For every i € {1,2}, the G;-equivariant measurable factor map m; :
(Y,n) — (Yi,m) arising from the inclusion L=®(Y)% C L>®(Y) is
relatively measure preserving.

(iii) We have that m @ mo : (Y,n) — (Y1 X Yo, m1 ® 12) is a relatively
measure preserving G-equivariant measurable factor map.

PRrROOF. (i) Let i € {1,2}. Set ¢; = p; *n € Prob(Y') and observe that
¢i < n (by Lemma 3.6). Since G = G; x G and p = p1 ® pe and since
w*xn =mn, we have

[1% G = K k1) = R LK) = %) = G
Since (Y, n) is an ergodic (G, pt)-space, Proposition 3.8(ii) implies that ¢; = 7.
This shows that (Y,n) is a (G;, pi)-space.

(ii) Observe that L>®(Y)% < L*®(Y) is a G;-invariant von Neumann
subalgebra. Denote by m; : (Y,n) — (Y;,7;) the G;-equivariant measurable
factor map such that L>®(Y;) = L>®(Y)%. We have n; = n|L°°(Y)GJ" Since
(Y,n) is a (G4, p;)-space, (Y;,n;) is also a (G, ui)-space. Denote by E; :
L®(Y) — L*®(Y)% the unique conditional expectation such that noE; = 1.
By Proposition 3.8, we have

Vi EL®(Y), T (f) = /G o7 1(f) dpsi(g5)

Bi(f) = lim 3" (T3,)(/).
k=1

Since G and Gy commute in G and since the action G ~ L*°(Y") is weak™-
continuous, 7, : L=(Y) — L*>(Y) is Gj-equivariant. This further implies
that E; : L(Y) — L>®(Y)% is G-equivariant. Thus, m; : (Y,n) — (Y;, 1)
is relatively measure preserving.

(iii) Set A = L°°(Y) and A; = L®(Y)% = L*>®(Y;) for every i € {1,2}.
We have n; = 1|4, and no E; = for every ¢ € {1,2}. Denote by 0 : G ~ A
the weak*-continuous action. Since E; : A — A2 is Gi-equivariant and
since A® = Cly, it follows that Ei|461 =n(-)1y. Then for every fi € Ay
and every fo € Ao, we have

n(f1- fo) = n(EL(f1- f2)) = n(E1(f1) - f2) = n(f1) n(f2).
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This shows that A, and A, are n-independent in A and so we write A1 ®As =
Ay V Ay C A for the G-invariant von Neumann subalgebra generated by Aj
and As. Denote by E : A — A1 ® Ay the unique conditional expectation
such that no E =n. Let i € {1,2}. Since E;0E : A — A, is a conditional
expectation such that no E;oE =7, we have E;oE = E;. Let ¢g; € G; be
any element. We have

1 1

noog oEoo, " =nokE;ooq ocEoo,

=noog oE;oE oog_i1 (since E; is G;-equivariant)

— . -1
=100y 0k,

=nokE; (since E; is G;-equivariant)

= ’,7.
Since o4, o E oa;1 : A — A; is a conditional expectation such that 7o oy, o
anil = 7, we have oy, o anil = E. This shows that E: A — A; ® As
is Gj-equivariant. Likewise, E: A — A; ® Ay is Gj-equivariant. Altogether,
E:A— A ® Ay is G-equivariant.

Observe that the inclusion A;® Ay C A corresponds to the G-equivariant
measurable factor map m ® my : (Y, 1) — (Y1 X Ya,1m1 ® 12). Since E : A —
A1 ® Ag is G-equivariant, m ® w2 : (Y,n) — (Y1 X Ya,m1 ® 12) is relatively
measure preserving. O

The following corollary describes all possible (G, p)-boundaries in terms
of (G}, p;)-boundaries.

COROLLARY 5.10 (Bader—Shalom [BS04]). Let (C,v¢c) be any (G, p)-
boundary. For every i € {1,2}, there exists a unique (G, p;)-boundary
(Ci,ve,) such that (C,ve) = (Cy x Co,vey @ vey) as (G, p)-spaces.

In particular, we have (B,vg) = (By X Ba,vp, @vp,) as (G, p)-spaces.

PRrROOF. By Proposition 3.22, we have L>°(B;) = L>=(B)%. Let (C,v¢)
be any (G, p)-boundary and denote by 7¢ : (B,vg) — (C,v¢) the essen-
tially unique G-equivariant measurable factor map. By Proposition 5.9, for
every i € {1,2}, denote by m; : (C,vc) — (Cj,vc,) the relatively measure
preserving Gj-equivariant measurable factor map arising from L*°(C;) =
Lo°(C)%. Since L*®(C;) = L®(C)% < L®(B)% = L®(B;), (C;,vc,) is
a (Gy, ui)-boundary. Proposition 5.9(iii) implies that m ® mo : (C,ve) —
(C1 x Ca,ve, ® vey,) is a relatively measure preserving G-equivariant mea-
surable factor map. Then Corollary 3.26 implies that m ® w3 : (C,ve) —
(C1 x Ca,ve, ®ue,) is an isomorphism and so (C, v¢) = (C1 x Co, v, @vey,)
as (G, u)-spaces.

Applying the above reasoning to (C,v¢) = (B,vp), we have (B,vp) =
(B1 X Ba,vp, ®vp,) as (G, u)-spaces. O

Let now I' < G be any irreducible lattice. The key result to prove

Theorem 5.8 is the following factor theorem that describes all possible I'-
factors of the (G, u)-Poisson boundary (B, vp).
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THEOREM 5.11 (Bader—Shalom [BS04]). Let T' ~ (Z,¢) be any non-
singular action so that there exists a I'-equivariant measurable factor map
w : (B,vg) — (Z,(). Then there exists a (G, u)-boundary (C,vc) and
a T'-equivariant measurable isomorphism ¢ : (Z,() — (C,v¢) such that
pom=m¢c almost everywhere.

We say that a pmp action G ~ (X,v) is irreducible if for every i €
{1, 2}, the restriction G; ~ (X,v) is ergodic. Before proving Theorem 5.11,
we prove the following general intermediate factor theorem that describes
all possible intermediate G-factors associated with irreducible pmp actions
G (X,v).

THEOREM 5.12 (Bader-Shalom [BS04]). Let G ~ (X,v) be any irre-
ducible pmp action. Let (Y,n) be any (G, pn)-space so that there exist G-
equivariant measurable factor maps

(Bx X,vp@v) —— (Y,n) —2—= (X,v)

such that po¥ =px : Bx X — X.

Then there exist a (G, p)-boundary (C,vc) with its essentially unique
G-equivariant measurable factor map mc : (B,vg) — (C,vc) and a G-
equivariant measurable isomorphism ® : (Y,n) — (C x X,vc ® v) such that
DoV =nc®idx and px o ® = p almost everywhere.

Proor. Using Proposition 3.3, we may and will assume that all G-
spaces considered in the proof are compact metrizable G-spaces. The G-
equivariant measurable factor maps

(Bx X,vp@v) —Y (Y,n) —2— (X,v)

such that poW¥ =px : B x X — X give rise to the following inclusions of
G-invariant von Neumann subalgebras
L>®(X) CL>™(Y) C L*(B x X)
such that v = n|r~(x) and n = (vp ® V)|, (y) and the inclusion
Clp®L>®(X)=L>"(X) CL®(B x X)=L*(B) ® L*(X)

is the diagonal inclusion.

Since G ~ (X, v) is irreducible, we have L>°(X)% = L>°(X)% = Cly.
By Corollary 5.10, we have (B,vg) = (By X Ba,vp, ® vp,) as (G, pu)-
spaces. Moreover, Corollary 3.29 implies that L>°(B x X )% = L*(By) and
L>®(B x X)% = L*®(By). Following Proposition 5.9, denote by ¢ : (Y,7n) —
(C,vc) the relatively measure preserving G-equivariant measurable factor
map corresponding to the inclusion L®°(C) = L>®(Y)F1QL>®(Y)%2 C L*®(Y)
where vo = 1|1 (). Since

L®(C) = L®(Y)“1 @ L®°(Y)% ¢ L®(B x X)“* @ L®(B x X)% = L*(B)

and vo = vplro ey, it follows that (C,v¢) is a (G, p)-boundary. Denote
by mc : (B,vg) — (C,vc) the essentially unique G-equivariant measurable
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factor map. We obtain the following commutative diagram of G-equivariant
measurable factor maps:

(Bx X,vp@v) —— (Y,n) —— (X,v)

[ J l
(B.vg) —Es (Cove) —— (4}

where the vertical arrows are relatively measure preserving G-equivariant
measurable factor maps. In particular, we obtain the following inclusions of
G-invariant von Neumann subalgebras

L®(C) B L2(X) € L®(Y) € L®(B) @ L=(X)

such that ve ® v = e ygre(x) and 1 = (VB @ v)|L=y). We obtain
that o @ p: (Y,n) = (C x X,vc ®@ v) is a G-equivariant measurable factor
map. It remains to prove that ¥ : (B x X,vg ®v) — (Y,n) factors through
U (CxX,vc®v) — (Y,n) and that (p®p)oV¥ = idcx x almost everywhere.

Using Theorem 3.20 and the naturality of limit measures as in Corol-
lary 3.28, for P-almost every w € 2, we obtain the following commutative
diagram of measurable factor maps:

(Bx X,050v) —2— (Yin,) —2— (X,v)

e J* |

(3755) L) (C7 5#@(@)) — {*}

Denote by E : L*°(Y) — L°(C) the unique conditional expectation such
that vc o E = 7 and consider the restriction E |¢y) : C(Y) — L>(C). By
duality, we obtain the G-equivariant measurable map g : C' — Prob(Y)
such that n = [, f(c)dvc(c). Using Corollary 3.25, for P-almost every
w € Q, we have (m¢(w)) = 1. Thus, we may consider the well-defined
G-equivariant measurable map C' — Prob(Y') : m¢(W) = 1y = 0z @)- The
above commutative diagram implies that for P-almost every w € €2, we have
the following isomorphisms:

(@} x X, 05 0v) —= (¢~ ({me@)}) tro@) —— (X,v)
Then for P-almost every w € ) and v-almost every x € X, we have
U(@,2) = (plo-1(ro(@)) () == ¥(rc(@),z). This implies that ¥ : (B x

X,vp ®v) — (Y,n) factors through ¥ : (C x X,vc ® v) — (Y, n) and that
(p®p)o ¥ =idoxx almost everywhere. (]

We now combine Theorem 5.12 and the induction procedure to prove
Theorem 5.11.

PROOF OF THEOREM 5.11. Set X := G/I" and denote by v € Prob(X)
the unique G-invariant Borel probability measure on X. Choose a Borel
section 0 : X — G as in Corollary 1.12. Since I' < G is irreducible, the pmp
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action G ~ (X, v) is irreducible. For every g € G and every x € X, denote
by 7(g,x) € ' the unique element in I' such that go(x) = o(gz) (g, ).
Then 7: G x X — I' is a Borel 1-cocycle.

Let ' ~ (Z,¢) be any nonsingular action and 7 : (B,vp) — (Z,() any
I'-equivariant measurable factor map. Up to discarding a vp-null invari-
ant measurable subset, we may assume that 7 is strictly I'-equivariant (see
[Zi84, Proposition B.5]). Define the induced space Ind%(Z) = Z x X and
the induced action G ~ Ind¥(Z) by the formula

Vge GVx e X,Nz€ Z, g-(z,2)=(1(g,2)z, gx).
Define the G-equivariant measurable map
U:BxX —Ind¥(2): (bz) — (n(o(z)"'D), z).

and set 7 = U, (vg ® v) € Prob(Ind¥(Z)). Observe that n ~ ¢ ® v. Define
the G-equivariant measurable map

p:d¥(Z) = X : (z,2) — .

We obtain the following (strictly) G-equivariant measurable factor maps
(B x X,vp®v) —— (Indf(2),n) —— (X,v)

such that poVU =px : Bx X — X.

Using Theorem 5.12, there exist a (G, u)-boundary (C, v¢) with its essen-
tially unique G-equivariant measurable factor map 7¢ : (B,vg) — (C,ve)
and a G-equivariant measurable isomorphism @ : (Ind%(Z),n) — (C x
X, vo®v) such that PoV¥ = 1o ®idx and px o® = p almost everywhere. We
may choose conull G-invariant measurable subsets Yy C Indlg (Z) and Y7 C
C'x X sothat @ : Yy — Y7 is measurable bijective and strictly G-equivariant,
px(®(z,z)) = x for every (z,x) € Yy and ®(¥ (b, x)) = (wc(b),x) for every
(b,x) € W1 ().

Define the measurable map ¢ : Yy — C such that for every (z,x) € Y,
we have ®(z,z) = (¢(z,x),x). Then by G-equivariance, for every g € G
and every (z,z) € Yy, we have

e(1(9,2)2, gz) = go(2, ).
Then for every (z,x) € Yy, we have
(z,T) = (r(o(z) 1, 2)z,0(x) te) =o(x) ! (2,2) € Yy

and ¢(2,T') = o(x) " 1p(z,2). Define the measurable subset Zg = {z € 7 |
(2,T) € Yy} and note that Yy C Zy x X. Conversely, for every z € Z
and every z € X, we have (z,2) = o(x) - (2,I') € Yy. This shows that
Zy x X C Yy. Thus, we have Yy = Zy x X. Then Zy C Z is (-conull.
Moreover, for every v € I and every z € Zp, we have (vz,I') =~-(2,T') € Yy
and @(vz,T') = y¢(z,T'). This implies that Zy C Z is I'-invariant and the
measurable map ¢ : Zyg — C : z — ¢(z,I') is I'-equivariant. For every
(z,x) € Zyp x X, we have ®(z,z) = (o(z)1(2),z). Since ® is injective, it
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follows that 1 : Zyg — C'is injective and so 9 : Zy — ¥ (Zj) is a measurable

isomorphism.
For every (b,z) € ¥~1(Zy x X), we have

(o(2)e(r(o(z)7'b)), x) = (n(0(2)'b), x) = ®(¥(b,2)) = (7c(b), ).

Define the conull I'-invariant measurable subset By = 7~ 1(Zy) C B. In
particular, for every b € By, we have U(b,I') = (n(b),I') € Zp x X and
Y(m(b)) = me(b). This further implies that ¥.( = Yumwp = TovB = V.
This finishes the proof of Theorem 5.11. ([l

We now have all the tools available to prove Theorem 5.8.

PROOF OF THEOREM 5.8. Firstly, assume that I'/N is amenable. Let
i € {1,2}. Since N<TI'is normal and since p;(T') < G; is dense, p;(N)<G; is a
closed normal subgroup. Moreover, the well-defined group homomorphism
I'/N — G;/pi(N) has dense range. Therefore, G;/p;(/N) is amenable by
Proposition 2.18.

Conversely, assume that for every i € {1,2}, G;/p;(N) is amenable.
To prove that I'/N is amenable, we use Theorem 2.20 and we show that
¢>*(I'/N) has a left invariant mean. Let ¢ € {1,2}. Using Theorem 3.34, we

may choose an admissible Borel probability measure 7z; € Prob(G;/p;(IN)) so

that the (G;/p;(N),f;)-Poisson boundary is trivial. Choose an admissible
Borel probability measure u; € Prob(G;) so that 7, is the pushforward
measure of y; under the quotient map G; — G;/p;(N). Denote by (B, vp,)
the (G, pi)-Poisson boundary. Set p = p1 ® pa € Prob(G) and (B,vp) =
(B1 X Ba,vp, ®vp,). Then Corollary 5.10 implies that (B, vp) is the (G, u)-
Poisson boundary.

Consider the nonsingular action I' ~ (B,vg). Denote by L>(B)N c
L*°(B) the I'-invariant weak*-closed unital *-subalgebra of all N-invariant
essentially bounded measurable functions.

CLAIM 5.13. We have L=(B)Y = C1p.

Indeed, by Corollary 5.10 and Theorem 5.11, for every i € {1,2}, there
exists a (G, p;)-boundary (Cy, ve,) and there exists a I-equivariant weak™-
continuous unital *-isomorphism L>®°(B)N = L>(C) where (C,vc) = (O} x
Ca,ve, @V, ). Since N acts trivially on L>(B)¥ | it follows that for every i €
{1,2}, pi(N) acts trivially on (Cj,v¢,) and so (Cy,ve;) is a (G /pi(N), 1, )-
space. Since by construction the (G;/p;(INV), it;)-Poisson boundary is trivial,
Corollary 3.27 implies that the probability measure v, € Prob(C;) is Gi-
invariant. This further implies that the probability measure vc € Prob(C)
is G-invariant. Since (C,v¢) is a (G, p)-boundary, Corollary 3.26 implies
that (C,v¢) is trivial. This further implies that L>°(B)Y = L>®(C) = C1p.

By Corollary 3.33, the nonsingular action I' ~ (B,vpg) is amenable.
Then there exists a I'-equivariant projection ® : L*(I' x B) — L*(B).
Observe that £>°(I'/N) = ¢2°(T')N c L>°(I'x B)" and Claim 5.13 shows that
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®(L>®(I' x B)N) ¢ L=(B)N = Cl1p. The restriction of ® to {*°(I'/N) yields
a left T-invariant mean m : ¢>*(I'/N) — C : F — ®(F ® 1p). Therefore,
I'/N is amenable by Theorem 2.20. |

3. Proof of Bader—Shalom’s normal subgroup theorem
We combine Theorems 5.6 and 5.8 to prove Theorem 5.3.

PROOF OF THEOREM 5.3. Let {¢} # N < T be a nontrivial normal
subgroup. We show that I'/N is finite by proving that I'/N has property
(T) and is amenable.

We claim that for every i € {1,2}, p;(N) # {e} and so G; = p;(N).
Indeed, by contradiction, up to permuting the indices, assume that p;(N) =
{e}. Then N = {e} x pa(N). Since p2(I') < G3 is dense, p2(N) < Gy is
a nontrivial closed normal subgroup. Since G3 is topologically simple, it
follows that Go = p2(N) and so G is discrete. This is a contradiction.

Next, we claim that [G,G| = G. Indeed, write ¢ : G — G/|G,G] for
the continuous factor map. Let ¢ € {1,2} and set ¢; = ¢|g,. Since G; is
topologically simple, we have ker(q;) = {e} or ker(¢;) = G;. If ker(¢;) = {e},
then ¢; : G; — G/[G,G] is a continuous injective group homomorphism
and so G; is abelian. Using the structure theory of locally compact abelian
groups (see [HR79, Chapter VI, §24]), it follows that G; = Z/pZ for some
prime p € P. This is a contradiction. Therefore, ¢|g, = 0 for every i € {1,2}
and so ¢ = 0. This implies that G = [G, G].

Therefore, Theorem 5.6 implies that I'/N has property (T) and Theorem
5.8 implies that I'/N is amenable. Therefore, I'/N is finite by Proposition
2.27. ([
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