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Abstract. These are the lecture notes of a graduate course on ergodic
group theory given at Université Paris-Saclay, Orsay, during 2020-2022.
In this course, we introduce various tools from group theory, ergodic the-
ory and functional analysis to study the structure of discrete groups that
arise as lattices in locally compact groups. Topics include: locally com-
pact groups and their lattices; group actions on measure spaces; unitary
representations; induction; amenability; Howe–Moore property; Kazh-
dan’s property (T); stationary measures; Poisson boundaries; reduced
cohomology. The aim of the course is to prove Bader–Shalom’s normal
subgroup theorem for irreductible lattices in product groups that can
be regarded as an extension of Margulis’s celebrated normal subgroup
theorem for lattices in semisimple Lie groups.
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CHAPTER 1

Locally compact groups and lattices

In this chapter, we introduce basic properties of lo-
cally compact groups and their lattices. We show that
SLd(Z) is a lattice in SLd(R) for every d ≥ 2.

1. Generalities on locally compact groups

Definition 1.1. LetG be any group endowed with a Hausdorff topology.
We say that G is a topological group if the map G×G→ G : (g, h) 7→ gh−1 is
continuous. We then say that G is locally compact if there exists a compact
neighborhood U ⊂ G of the identity element e ∈ G.

Let G be any locally compact group. We say that G is

• first countable if there exists a countable neighborhood basis of
e ∈ G.
• second countable if there exists a countable basis for the topology

on G.
• σ-compact if there exists an increasing sequence of compact subsets
Qn ⊂ G such that G =

⋃
n∈NQn.

• compactly generated if there exists a compact subset Q ⊂ G such
that e ∈ Q and G =

⋃
n≥1Q

n.
• totally disconnected if the connected component of e ∈ G is equal

to {e}.
The identity element e ∈ G has a neighborhood basis consisting of com-

pact subsets (see [DE14, Corollary A.8.2]). Any open subgroup H < G
is also closed since G \ H =

⋃
gH 6=H gH. Any compactly generated group

G is σ-compact. Any locally compact group G has a compactly generated
open subgroup H < G. Indeed, choose a compact neighborhood U ⊂ G of
e ∈ G. Then H :=

⋃
n≥1(U ∪ U−1)n is a compactly generated open sub-

group of G. In particular, any connected locally compact group is compactly
generated. A locally compact group G is second countable if and and only
it is first countable and σ-compact (see [St73]). Any locally compact sec-
ond countable group G is metrizable with a proper left invariant metric (see
[St73, HP06]).

The class of locally compact groups is stable under taking closed sub-
groups, finite direct products and quotients with respect to closed normal
subgroups. More precisely, we record the following facts.

Proposition 1.2. The following assertions hold:
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6 1. LOCALLY COMPACT GROUPS AND LATTICES

(i) If G is a locally compact group and H ≤ G is a closed subgroup,
then H endowed with the induced topology is locally compact.

(ii) If d ≥ 1 and G1, . . . , Gd are locally compact groups, then the product
group G = G1×· · ·×Gd endowed with the product topology is locally
compact.

(iii) If G is a locally compact group and N CG is a closed normal sub-
group, the quotient group G/N endowed with the quotient topology
is locally compact.

(iv) If G is a locally compact group acting continuously on a locally com-
pact group H by continuous automorphisms, then the semi-direct
product group G n H endowed with the product topology is locally
compact.

The proof of Proposition 1.2 is left to the reader as an exercise.

Examples 1.3. Here are some examples of locally compact groups. Let
d ≥ 1.

(i) Any groupG endowed with the discrete topology is locally compact.
In these notes, any countable group will always be endowed with
its discrete topology.

(ii) Any compact group K is locally compact. In particular, the fol-
lowing compact groups

Td :=
{

(z1, . . . , zd) ∈ Cd | ∀1 ≤ i ≤ d, |zi| = 1
}

SOd(R) := {A ∈ SLd(R) | A∗A = AA∗ = 1d}
U(d) := {A ∈ GLd(C) | A∗A = AA∗ = 1d}

are locally compact.
(iii) Any (finite dimensional) real Lie group G is locally compact.

– The abelian group (Rd,+) endowed with the usual topology is
locally compact.

– The general linear group GLd(R) can be regarded as the open

(dense) subset of invertible matrices in Md(R) ∼= Rd2 . En-

dowed with the topology coming from Rd2 , the group GLd(R)
is locally compact.

– The special linear group SLd(R) = ker(det) is a closed sub-
group of GLd(R) and so SLd(R) is locally compact.

– The semi-direct product group SLd(R) nRd is locally compact.
(iv) Any (finite dimensional) p-adic Lie group G is totally disconnected

locally compact. In particular, for every prime p ∈ P, the groups
GLd(Qp) and SLd(Qp) are totally disconnected locally compact.

(v) Let T = (V,E) be any locally finite tree and denote by Aut(T) the
automorphism group of T. Endowed with the topology of point-
wise convergence, the group Aut(T) is totally disconnected locally
compact.
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Let X be any locally compact space, meaning that every x ∈ X has a
compact neighborhood. We denote by B(X) the σ-algebra of Borel subsets
of X. We say that a Borel measure ν on X, that is, a measure defined on
B(X) is regular if the following conditions are satisfied:

(i) For every Borel subset B ⊂ X, we have

ν(B) = inf {ν(V ) | V is open and B ⊂ V } .
(ii) For every open subset U ⊂ X, we have

ν(U) = sup {ν(K) | K is compact and K ⊂ U} .
(iii) For every compact subset K ⊂ X, we have ν(K) < +∞.

When ν is nonzero, define the support of ν by

supp(ν) =
⋂
{F | F ⊂ X is closed and ν(X \ F ) = 0} .

Observe that supp(ν) is closed and ν(X \ supp(ν)) = 0.
If any open subset of X is σ-compact, then any Borel measure on X that

satisfies condition (iii) is regular (see [Ru87, Theorem 2.18]). In particular,
using [DE14, Lemma A.8.1(i)], if X is a locally compact second countable
space, then any open subset of X is σ-compact and thus any Borel measure
on X that satisfies condition (iii) is regular.

Denote by Cc(X) the space of compactly supported continuous functions
on X. We say that a linear functional Φ : Cc(X)→ C is positive if Φ(f) ≥ 0
for every f ∈ Cc(X)+. By Riesz’s representation theorem (see [Ru87,
Theorem 2.14]), for every positive linear functional Φ : Cc(X) → C, there
exists a unique regular Borel measure ν on X such that

∀f ∈ Cc(X), Φ(f) =

∫
X
f(x) dν(x).

In that case, we will simply write Φ = ν. Note that for every regular Borel
measure ν on X and every p ∈ [1,+∞), the space Cc(X) is ‖·‖p-dense in the
Banach space Lp(X, ν) of all ν-equivalence classes of p-integrable functions
on X.

Theorem 1.4 (Haar). Let G be any locally compact group. Then there
exists a nonzero regular Borel measure mG on G that is unique up to mul-
tiplicative constant and that satisfies one of the following equivalent condi-
tions:

(i) For every Borel subset B ⊂ G and every g ∈ G, mG(gB) = mG(B).
(ii) For every f ∈ Cc(G) and every g ∈ G,∫

G
f(g−1h) dmG(h) =

∫
G
f(h) dmG(h)

We say that mG is a left invariant Haar measure on G.

For a proof of Theorem 1.4, we refer the reader to [HR79, Chapter 15].
The locally compact group G is σ-compact if and only if the left invariant
Haar measure mG is σ-finite.
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Theorem 1.4 also implies that there exists a nonzero regular Borel mea-
sure µG on G that is unique up to multiplicative constant and that satisfies
one of the following equivalent conditions:

(i) For every Borel subset B ⊂ G and every g ∈ G, µG(Bg) = µG(B).
(ii) For every f ∈ Cc(G) and every g ∈ G,∫

G
f(hg) dµG(h) =

∫
G
f(h) dµG(h)

We say that µG is a right invariant Haar measure on G. Indeed, any left
invariant Haar measure mG on G gives rise to a right invariant Haar measure
µG on G by the formula

∀B ∈ B(G), µG(B) = mG(B−1).

The next proposition shows that any left invariant Haar measure has
full support.

Proposition 1.5. Let G be any locally compact group and mG any left
invariant Haar measure on G. Then supp(mG) = G. Moreover, for every
f ∈ Cc(G)+ such that f 6= 0, we have

∫
G f(h) dmG(h) > 0.

Proof. Since mG 6= 0, Conditions (ii) and (iii) in the definition of
regularity imply that there exists a compact subset K ⊂ G such that 0 <
mG(K) < +∞. Let U ⊂ G be any nonempty open subset. There exist
g1, . . . , gn ∈ G such that K ⊂

⋃n
i=1 giU . This implies that

0 < mG(K) ≤ mG(

n⋃
i=1

giU) ≤
n∑
i=1

mG(giU) = n ·mG(U)

and so mG(U) > 0. Thus, supp(mG) = G.
Moreover, let f ∈ Cc(G)+ such that f 6= 0. Then there exist ε > 0 and

an open subset U ⊂ G such that f(h) ≥ ε for every h ∈ U . This implies
that ∫

G
f(h) dmG(h) ≥

∫
U
εdmG(h) = ε ·mG(U) > 0.

This finishes the proof. �

The next proposition gives a characterization of compact groups in terms
of the Haar measure.

Proposition 1.6. Let G be any locally compact group and mG any left
invariant Haar measure on G.

Then G is compact if and only if mG(G) < +∞.

Proof. Firstly, assume that G is compact. Then by regularity we have
mG(G) < +∞.

Secondly, assume that G is not compact. Take a compact neighborhood
K ⊂ G of e ∈ G and set g0 = e. We have mG(K) > 0 by Proposition 1.5.
Since KK−1 is compact, there exists g1 ∈ G such that g1 ∈ G \ KK−1.
This implies that g1K ∩ K = ∅. By induction, define gn ∈ G so that
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gn ∈ G\ (K∪g1K∪· · ·∪gn−1K)K−1. It follows that (gnK)n∈N are pairwise
disjoint. This implies that

mG(G) ≥ mG(
⋃
n∈N

gnK) =
∑
n∈N

mG(gnK) = +∞ ·mG(K) = +∞.

This finishes the proof. �

Let G be any locally compact group and mG any left invariant Haar
measure on G. The measure mG need not be right invariant. For every
g ∈ G, define the nonzero regular Borel measure mg

G on G by the formula
mg
G(B) = mG(Bg) for every B ∈ B(G). Since mg

G is a left invariant Haar
measure, there exists a element ∆G(g) ∈ R∗+ such that mg

G = ∆G(g)mG.
Then ∆G : G → R∗+ : g 7→ ∆G(g) is a group homomorphism and is called
the modular function on G. The modular function ∆G does not depend on
the choice of the left invariant Haar measure mG on G. Moreover, we have

(1.1) ∀f ∈ Cc(G), ∀g ∈ G,
∫
G
f(hg−1) dmG(h) = ∆G(g)

∫
G
f(h) dmG(h).

The left invariant Haar measure mG is right invariant if and only if ∆G ≡ 1.
In that case, we say that G is unimodular. We then simply refer to mG as
a Haar measure on G.

Proposition 1.7. Let G be any locally compact group and mG any left
invariant Haar measure on G. Then the modular function ∆G : G→ R∗+ is
continuous. Moreover, we have

∀f ∈ Cc(G),

∫
G
f(h−1) dmG(h) =

∫
G

∆G(h−1)f(h) dmG(h).

Proof. Choose ϕ ∈ Cc(G) such that κ :=
∫
G ϕ(h) dmG(h) 6= 0. Set

Q = supp(ϕ). Then we have

∀g ∈ G, ∆G(g) =

∫
G ϕ(hg−1) dmG(h)∫
G ϕ(h) dmG(h)

.

Choose a compact neighborhood K ⊂ G of e ∈ G. Let ε > 0. Since ϕ is
uniformly continuous by Lemma 1.8, there exists a neighborhood U of e ∈ G
such that U ⊂ K, U−1 = U and

∀u ∈ U, sup
{
|ϕ(hu−1)− ϕ(h)| | h ∈ G

}
≤ εκ

mG(QK)
.

Then for every u ∈ U , we have

|∆G(u)− 1| ≤ 1

κ

∫
G
|ϕ(hu−1)− ϕ(h)|dmG(h)

≤ 1

κ
mG(QK)

εκ

mG(QK)
= ε.

This implies that ∆G : G→ R∗+ is continuous at the identity element e ∈ G
and so ∆G is continuous.
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Next, observe that both of the positive linear functionals

Cc(G)→ C : f 7→
∫
G
f(h−1) dmG(h)

Cc(G)→ C : f 7→
∫
G

∆(h−1)f(h) dmG(h)

define a nonzero right invariant regular Borel measure on G. Thus, there
exists c > 0 such that

∀f ∈ Cc(G),

∫
G
f(h−1) dmG(h) = c

∫
G

∆G(h−1)f(h) dmG(h)

Define ϕ̂ ∈ Cc(G) by the formula ϕ̂(h) = ϕ(h−1) for every h ∈ G. Then we
have

0 6=
∫
G
ϕ(h) dmG(h) =

∫
G
ϕ̂(h−1) dmG(h)

= c

∫
G

∆G(h−1)ϕ̂(h) dmG(h)

= c

∫
G

∆G(h−1)ϕ(h−1) dmG(h)

= c2

∫
G

∆G(h−1)∆G(h)ϕ(h) dmG(h)

= c2

∫
G
ϕ(h) dmG(h).

This implies that c = 1. �

In the proof of Proposition 1.7, we use the following technical result.
Denote by (Cb(G), ‖ · ‖∞) the Banach space of all bounded continuous func-
tions on G endowed with the supremum norm. Denote by λ : G y Cb(G)
(resp. ρ : G y Cb(G)) the left (resp. right) translation action defined by
(λ(g)f)(h) = f(g−1h) (resp. (ρ(g)f)(h) = f(hg)) for all g, h ∈ G and all
f ∈ Cb(G).

Lemma 1.8. Let G be any locally compact group and f ∈ Cc(G) any
compactly supported continuous function. Then for every ε > 0, there exists
a symmetric neighborhood U ⊂ G of e ∈ G such that

sup {‖λ(u)f − f‖∞, ‖ρ(u)f − f‖∞ | u ∈ U} < ε.

Then we say that f ∈ Cc(G) is uniformly continuous.

Proof. Let f ∈ Cc(G) and set Q = supp(f). Let ε > 0 and fix a
symmetric compact neighborhood V ⊂ G of e ∈ G. For every g ∈ G,
there exists an open neighborhood Wg ⊂ G of g ∈ G such that for all
w1, w2 ∈ Wg, we have |f(w1) − f(w2)| < ε. For every g ∈ G, choose an
open symmetric neighborhood Ug ⊂ G of e ∈ G such that gUgUg ∪UgUgg ⊂
Wg. Then for every g ∈ G, gUg ∩ Ugg is an open neighborhood of g ∈ G.
Since V QV is compact, there exist n ≥ 1 and g1, . . . , gn ∈ G such that
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V QV ⊂
⋃
i=1 giUgi ∩ Ugigi. Define U = V ∩

⋂n
i=1 Ugi which is a symmetric

neighborhood of the identity e ∈ G. Then for every u ∈ U and every g ∈ G,
we consider the following situations:

• If g ∈ V QV , then there exists 1 ≤ i ≤ n such that g ∈ giUgi ∩
Ugigi. Since u ∈ U ⊂ Ugi , we have gu ∈ giUgiUgi ⊂ Wgi and
ug ∈ UgiUgigi ⊂ Wgi . It follows that |f(gu) − f(g)| < ε and
|f(gu)− f(g)| < ε.
• If g /∈ V QV , then gu /∈ Q and ug /∈ Q. It follows that f(g) =
f(ug) = f(gu) = 0.

We have showed that for every u ∈ U and every g ∈ G, we have |f(gu) −
f(g)| < ε and |f(gu)− f(g)| < ε. �

Let (G,mG,∆G) and (H,mH ,∆H) be any locally compact groups with
their respective left invariant Haar measure and modular function. Let
σ : G y H be any continuous action by continuous group automorphisms
and write GnH for the locally compact semi-direct product group. Recall
that the group law on GnH is given by

∀g1, g2 ∈ G,∀h1, h2 ∈ H, (g1, h1) · (g2, h2) = (g1g2, σ
−1
g2 (h1)h2).

The next proposition provides an explicit calculation of the Haar measure
and the modular function on GnH.

Proposition 1.9. The regular Borel measure mGnH defined on GnH
by the formulae

∀f ∈ Cc(GnH),

∫
GnH

f(g, h) dmGnH(h)(1.2)

=

∫
H

(∫
G
f(g, h) dmG(g)

)
dmH(h)

=

∫
G

(∫
H
f(g, h) dmH(h)

)
dmG(g)

is a left invariant Haar measure on GnH. Moreover, the modular function
∆GnH : GnH → R∗+ satisfies

∀(g, h) ∈ GnH, ∆GnH(g, h) = ρ(g) ∆G(g) ∆H(h)

where ρ : G→ R∗+ is the continuous function defined by the formula

∀f ∈ Cc(H),∀g ∈ G,
∫
H
f(σg(h)) dmH(h) = ρ(g)

∫
H
f(h) dmH(h).

Proof. Fubini’s theorem implies that for every f ∈ Cc(GnH), we have∫
H

(∫
G
f(g, h) dmG(g)

)
dmH(h) =

∫
G

(∫
H
f(g, h) dmH(h)

)
dmG(g).
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Denote by mGnH the unique regular Borel measure on G n H defined by
(1.2). For every f ∈ Cc(GnH) and every (g1, h1) ∈ GnH, we have∫

GnH
f((g1, h1) · (g2, h2)) dmGnH(g2, h2)

=

∫
GnH

f(g1g2, σ
−1
g2 (h1)h2) dmGnH(g2, h2)

=

∫
G

(∫
H
f(g1g2, h2) dmH(h2)

)
dmG(g2)

=

∫
H

(∫
G
f(g2, h2) dmG(g2)

)
dmH(h2)

=

∫
GnH

f(g2, h2) dmGnH(g2, h2).

This shows that mGnH is a left invariant Haar measure on GnH.
Consider the function ρ : G → R∗+ as defined above. For every f ∈

Cc(GnH) and every (g2, h2) ∈ GnH, we have∫
GnH

f((g1, h1) · (g2, h2)−1) dmGnH(g1, h1)

=

∫
GnH

f(g1g
−1
2 , σg2(h1h

−1
2 )) dmGnH(g1, h1)

= ∆H(h2)

∫
G

(∫
H
f(g1g

−1
2 , σg2(h1)) dmH(h1)

)
dmG(g1)

= ρ(g2) ∆H(h2)

∫
G

(∫
H
f(g1g

−1
2 , h1) dmH(h1)

)
dmG(g1)

= ρ(g2) ∆G(g2) ∆H(h2)

∫
H

(∫
G
f(g1, h1) dmG(g1)

)
dmH(h1)

= ρ(g2) ∆G(g2) ∆H(h2)

∫
GnH

f(g1, h1) dmGnH(g1, h1)

and hence ∆GnH(g2, h2) = ρ(g2) ∆G(g2) ∆H(h2). �

Examples 1.10. Here are some examples of unimodular locally compact
groups. Let d ≥ 1.

(i) Any group G endowed with the discrete topology is unimodular.
Indeed, in that case the counting measure mG is a nonzero regular
Borel measure on G that is clearly both left and right invariant.

(ii) Any compact group G is unimodular. Indeed, fix a left invariant
Haar measure mG on G. Then ∆G(G) < R∗+ is a compact sub-
group and so ∆G(G) = {1}. This shows that ∆G ≡ 1 and so G is
unimodular.

(iii) Any abelian locally compact group G is unimodular. The Lebesgue
measure dx1 · · · dxd on Rd is a Haar measure.



2. LATTICES IN LOCALLY COMPACT GROUPS 13

(iv) Recall that the general linear group GLd(R) can be regarded as the
open (dense) subset of invertible matrices inMd(R) ∼= Rd×· · ·×Rd.
For every g ∈ GLd(R), the Jacobian of the diffeomorphism

Lg : Md(R)→Md(R) : (x1, . . . , xd) 7→ (gx1, . . . , gxd)

is equal to det(g)d. It follows that a left invariant Haar measure
mG on G = GLd(R) is given by

dmG(g) =
1

det(g)d

∏
1≤i,j≤d

dgij , g = (gij)ij .

For every g ∈ GLd(R), since the Jacobian of the diffeomorphism

Rg : Md(R)→Md(R) : x 7→ xg

is also equal to det(g)d, it follows that mG is right invariant and so
G = GLd(R) is unimodular.

(v) Recall that the special linear group SLd(R) < GLd(R) is defined
by SLd(R) = ker(det). It follows from Iwasawa’s theorem that the
only normal subgroups of SLd(R) are {1}, {±1} and SLd(R). This
implies that ker(∆SLd(R)) = SLd(R) and so SLd(R) is unimodular.

(vi) For every d ≥ 2, the strict upper triangular subgroup G = Td(R)
defined as the group of all matrices g = (gij)ij such that gij = 0
for all 1 ≤ j < i ≤ d and gii = 1 for all 1 ≤ i ≤ d is homeomorphic

with R
d(d−1)

2 . Under this identification, the Lebesgue measure on

R
d(d−1)

2 gives rise to a left and right invariant Haar measure mG on
G defined as

dmG(n) =
∏

1≤i<j≤d
dnij , n = (nij)ij .

Indeed, for all i > j and all g, n ∈ Td(R), we have (gn)ij = gij +
nij +

∑
j<k<i giknkj . Endow the set {(i, j) | 1 ≤ j < i ≤ d} with

the lexicographical order. Then for every g ∈ Td(R), the Jacobian
matrix of the diffeomorphism Td(R) → Td(R) : n 7→ gn is upper
triangular with diagonal entries all equal to 1. This implies that
the Jacobian of the diffeomorphism Td(R) → Td(R) : n 7→ gn is
equal to 1. The same argument shows that for every g ∈ Td(R),
the Jacobian of the diffeomorphism Td(R) → Td(R) : n 7→ ng is
equal to 1. Thus, G = Td(R) is unimodular.

2. Lattices in locally compact groups

Let G be any locally compact group and Γ < G any discrete subgroup.
We say that a Borel subset F ⊂ G is a Borel fundamental domain (for the
right translation action Γ y G) if

∀γ1, γ2 ∈ Γ, γ1 6= γ2 ⇒ Fγ1 ∩ Fγ2 = ∅ and
⋃
γ∈Γ

Fγ = G.
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Denote by G/Γ = {gΓ | g ∈ G} the quotient space and by p : G → G/Γ :
g 7→ gΓ the quotient map. Endow G/Γ with the quotient topology.

Proposition 1.11. Keep the same notation as above. The following
assertions hold:

(i) The quotient map p : G → G/Γ is continuous and open and G/Γ
is Hausdorff and locally compact. Moreover, the action map G ×
G/Γ→ G/Γ : (g, x) 7→ gx is continuous.

(ii) If G/Γ is compact, then there exists a Borel fundamental domain
F ⊂ G that is relatively compact in G.

(iii) If G is second countable, then G/Γ is second countable. Moreover,
there exists a Borel fundamental domain F ⊂ G such that for every
compact subset Y ⊂ G/Γ, the subset p−1(Y ) ∩ F ⊂ G is relatively
compact in G.

Proof. (i) Endow the quotient space G/Γ = {gΓ | g ∈ G} with the
quotient topology. By definition, a subset V ⊂ G/Γ is open if and only if
p−1(V ) ⊂ G is open. Then the quotient topology is the finest topology on
G/Γ that makes the quotient map p : G→ G/Γ continuous. Let now U ⊂ G
be any open set. Then p−1(p(U)) = p−1({hΓ | h ∈ U}) =

⋃
γ∈Γ Uγ is open

and so is p(U) ⊂ G/Γ is open. This shows that p : G→ G/Γ is open.
Let x1, x2 ∈ G/Γ with x1 6= x2. Write x1 = g1Γ and x2 = g2Γ. Note

that g2 /∈ g1Γ. Choose a compact neighborhood U1 ⊂ G (resp. U2 ⊂ G2)
of g1 ∈ G (resp. g2 ∈ G). Since U−1

2 U1 ⊂ G is compact and since Γ < G
is discrete, the set Λ := {γ ∈ Γ | U1 ∩ U2γ 6= ∅} is finite. For every γ ∈ Λ,
since g1 6= g2γ, there exist neighborhoods Uγ of g1 ∈ G and Vγ of g2γ ∈ G
such that Uγ ∩ Vγ = ∅. Set

U1 = U1 ∩
⋂
γ∈Λ

Uγ and U2 = U2 ∩
⋂
γ∈Λ

Vγγ
−1.

Then for every γ ∈ Γ, we have U1 ∩ U2γ = ∅. Indeed, if γ ∈ Γ \ Λ,
then U1 ∩ U2γ = ∅. If γ ∈ Λ, then Uγ ∩ (Vγγ

−1)γ = ∅. Thus, we have

p(U1) ∩ p(U2) = ∅. This shows that G/Γ is Hausdorff.
Let x = gΓ ∈ G/Γ be any element. Choose a compact neighborhood

K ⊂ G of e ∈ G. Then gK is a compact neighborhood of g ∈ G and so
p(gK) is a compact neighborhood of x ∈ G/Γ. This shows that G/Γ is
locally compact.

Define the action map a : G × G/Γ → G/Γ : (g, x) 7→ gx. Recall
that the multiplication map m : G × G → G is continuous. Since the map
idG×p : G × G → G × G/Γ : (g, h) 7→ (g, hΓ) is continuous and open, the
commutative diagram

G×G G

G×G/Γ G/Γ

m

id×p p

a
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shows that the action map a : G×G/Γ→ G/Γ is continuous.
(ii) Since Γ < G is discrete, there exists an open neighborhood V ⊂ G

of e ∈ G such that V ∩ Γ = {e}. Since the map G×G→ G : (g, h) 7→ g−1h
is continuous, there exists an open neighborhood U ⊂ G of e ∈ G such that
U−1U ⊂ V . Replacing U with U ∩K where K is a relatively compact open
neighborhood of e ∈ G, we may assume that U ⊂ G is relatively compact.
Since G/Γ is compact and since (p(gU)g∈G) is an open covering of G/Γ,
there exist g1, . . . , gn ∈ G such that G/Γ =

⋃n
i=1 p(giU). Define the Borel

subset

F =

n⋃
i=1

giU \⋃
j<i

gjUΓ

 .

By construction, F ⊂ G is relatively compact. Then we have
⋃
γ∈ΓFγ =⋃n

i=1 giUΓ = p−1(
⋃n
i=1 p(giU)) = p−1(G/Γ) = G. Let γ1, γ2 ∈ Γ be any

elements such that Fγ1 ∩ Fγ2 6= ∅. Up to exchanging γ1 and γ2, there
exist i ≥ j and u1, u2 ∈ U such that giu1γ1 = gju2γ2. By construction and

since giu1 = gju2γ2γ
−1
1 ∈ giU ∩ gjUΓ, we necessarily have i = j. Then

u1γ1 = u2γ2 and so u−1
2 u1 = γ2γ

−1
1 ∈ U−1U ∩ Γ ⊂ V ∩ Γ = {e}. This shows

that γ1 = γ2 and thus F ⊂ G is a Borel fundamental domain.
(iii) Choose a countable basis (Un)n∈N for the topology on G. Let V ⊂

G/Γ be any open set. Then p−1(V ) =
⋃
γ∈Γ V γ ⊂ G is open and so there

exists a subfamily (Unk)k such that p−1(V ) =
⋃
k Unk . Then we have

V = p(p−1(V )) =
⋃
k p(Unk). This shows that (p(Un))n∈N is a countable

basis for the quotient topology on G/Γ and so G/Γ is second countable. For
every n ∈ N, choose gn ∈ Un.

As before, there exist open neighborhoods U, V ⊂ G of e ∈ G such that
U ⊂ G is relatively compact, U−1U ⊂ V and V ∩ Γ = {e}. We claim that
G =

⋃
n∈N gnU . Indeed, for every g ∈ G, gU−1 ⊂ G is an open set and

hence there exists n ∈ N such that Un ⊂ gU−1. This implies that there
exists u ∈ U such that gn = gu−1 or equivalently g = gnu and thus g ∈ gnU .
Define the Borel subset

F =
⋃
n∈N

(
gnU \

⋃
k<n

gkUΓ

)
.

Then we have
⋃
γ∈ΓFγ =

⋃
n∈N gnUΓ = G. Let γ1, γ2 ∈ Γ be any elements

such that Fγ1 ∩ Fγ2 6= ∅. Up to exchanging γ1 and γ2, there exist m ≥ n
and u1, u2 ∈ U such that gmu1γ1 = gnu2γ2. By construction and since
gmu2 = gnu2γ2γ

−1
1 ∈ gmU ∩ gnUΓ, we necessarily have m = n. Then

u1γ1 = u2γ2 and so u−1
2 u1 = γ2γ

−1
1 ∈ U−1U ∩ Γ ⊂ V ∩ Γ = {e}. This

shows that γ1 = γ2 and thus F ⊂ G is a Borel fundamental domain. Let
Y ⊂ G/Γ be any compact subset. Since (p(gnU))n∈N is an open covering of

Y , there exist n1 ≤ · · · ≤ nk such that Y ⊂
⋃k
i=1 p(gniU). Then we have

p−1(Y ) ∩ F ⊂
⋃nk
j=0(gjU \

⋃
i<j giUΓ) and so p−1(Y ) ∩ F ⊂ G is relatively

compact. �
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Observe that when G is a locally compact σ-compact group, any discrete
subgroup Γ < G is necessarily countable. Indeed, since G is σ-compact,
the left invariant Haar measure mG is σ-finite. We may then choose a
Borel probability measure µ ∈ Prob(G) such that µ ∼ mG. We may also
choose open neighborhoods U, V ⊂ G of e ∈ G such that UU−1 ⊂ V and
V ∩ Γ = {e}. Then (γU)γ∈Γ is a family of pairwise disjoint open subsets.
Moreover, since mG(γU) = mG(U) > 0 for every γ ∈ Γ, it follows that
µ(γU) > 0 for every γ ∈ Γ. This implies that Γ is necessarily countable.

Corollary 1.12. Let G be any locally compact second countable group
and Γ < G any discrete subgroup. Then there exists a Borel map σ : G/Γ→
G such that

• σ(G/Γ) = F is a Borel fundamental domain,
• σ(Γ) = e,
• x = σ(x)Γ for every x ∈ G/Γ,
• σ(Y ) ⊂ G is relatively compact for every compact subset Y ⊂ G/Γ.

We then simply say that σ : G/Γ→ G is a Borel section.

Proof. Choose a Borel fundamental domain F ⊂ G as in Proposition
1.11(iii) such that e ∈ F . Then p|F : F → G/Γ is Borel and bijective. This
implies that the map σ = (p|F )−1 : G/Γ→ G is Borel (see [Zi84, Theorem
A.4]) and satisfies all the required properties. �

Definition 1.13. Let G be any locally compact group and Γ < G any
discrete subgroup. We say that Γ < G is uniform or cocompact if G/Γ is
compact.

We say that Γ < G is a lattice if there exists a G-invariant regular Borel
probability measure ν ∈ Prob(G/Γ).

Define the linear mapping T : Cc(G)→ Cc(G/Γ) : f 7→ f by the formula

∀g ∈ G, f(gΓ) =
∑
γ∈Γ

f(gγ).

We claim that T : Cc(G)→ Cc(G/Γ) is surjective. Indeed, let ϕ ∈ Cc(G/Γ)
be any function and denote by Q = supp(ϕ) ⊂ G/Γ its compact support.
Choose a relatively compact open neighborhood V ⊂ G of e ∈ G. Then there
exist g1, . . . , gn ∈ G such that Q ⊂

⋃n
i=1 p(giV ). Set K = p−1(Q)∩

⋃n
i=1 giV .

Then K ⊂ G is a compact subset such that p(K) = Q. By Urysohn’s lemma
(see e.g. [DE14, Lemma A.8.1(ii)]), we may choose fK ∈ Cc(G)+ such that
f |K ≡ 1K .

Define the function f : G → C by the formula f(g) = ϕ(gΓ)
T (fK)(gΓ)fK(g)

if T (fK)(gΓ) 6= 0 and f(g) = 0 otherwise. Then supp(f) ⊂ supp(fK) is
compact and f is continuous on G since T (fK)(gΓ) > 0 on a neighborhood
of Q. Thus, f ∈ Cc(G) and we have T (f) = ϕ.

Proposition 1.14. Let G be any locally compact group and Γ < G any
uniform discrete subgroup. Then G is unimodular and Γ < G is a lattice.
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If G is moreover compactly generated, then Γ < G is finitely generated.

Proof. Fix a right invariant Haar measure µG on G. Consider the
positive linear functional

Φ : Cc(G/Γ)→ C : f 7→
∫
G
f(g) dµG(g).

In order to check that Φ is well-defined, it suffices to show that if ϕ ∈ Cc(G)
is such that ϕ = 0, then we have

∫
G ϕ(g) dµG(g) = 0. Indeed, for every

ψ ∈ Cc(G), using Fubini’s theorem, we have∫
G
ϕ(hΓ)ψ(h) dµG(h) =

∑
γ∈Γ

∫
G
ϕ(hγ)ψ(h) dµG(h)

=
∑
γ∈Γ

∫
G
ϕ(h)ψ(hγ−1) dµG(h)

=

∫
G
ϕ(h)ψ(hΓ) dµG(h).

Since the map Cc(G) → Cc(G/Γ) : f 7→ f is surjective, there exists ψ ∈
Cc(G) such that ψ ≡ 1 on the compact subset supp(ϕ)Γ ⊂ G/Γ. Therefore,
we obtain∫

G
ϕ(h) dµG(h) =

∫
G
ϕ(h)ψ(hΓ) dµG(h) =

∫
G
ϕ(hΓ)ψ(h) dµG(h) = 0.

By Riesz’s representation theorem, there exists a unique regular Borel mea-
sure ν on G/Γ such that

∀f ∈ Cc(G),

∫
G
f(h) dµG(h) =

∫
G
f(hΓ) dν(hΓ).

Note that the above argument does not use the fact that Γ < G is uniform.
However, since Γ < G is uniform, G/Γ is compact and we have 0 <

ν(G/Γ) < +∞. Up to normalization, we may assume that ν(G/Γ) = 1.
Define the left invariant Haar measuremG onG by the formulamG(B) =

µG(B−1) for every B ∈ B(G). Then for every B ∈ B(G) and every g ∈ G,
we have

(g∗µG)(B) = µG(g−1B) = mG(B−1g) = ∆G(g)mG(B−1) = ∆G(g)µG(B)

and so g∗µG = ∆G(g)µG. By uniqueness in the previous construction, we
obtain g∗ν = ∆G(g) ν for every g ∈ G. Since ν ∈ Prob(G/Γ) is a probability
measure, we obtain ∆G(g) = 1 and g∗ν = ν for every g ∈ G. Thus, ∆G ≡ 1
and so G is unimodular. Moreover, ν ∈ Prob(G/Γ) is G-invariant and so
Γ < G is a lattice.

Assume moreover that G is compactly generated. Choose a compact
subset Q ⊂ G such that e ∈ Q and G =

⋃
n≥1Q

n. Since G/Γ is compact,

we may choose a compact subset K ⊂ G such that p(K) = G/Γ (see the
proof of surjectivity of the map T : Cc(G) → Cc(G/Γ)). Up to replacing
Q by Q ∪K, we may further assume that Q · Γ = G. Then S0 = Q ∩ Γ is



18 1. LOCALLY COMPACT GROUPS AND LATTICES

finite. Moreover, since Q2 is compact, there exists a finite subset S1 ⊂ Γ
such that Q2 ⊂ QS1. Indeed, otherwise we could find sequences (gn)n∈N in
Q2, (hn)n∈N in Q and (γn)n∈N in Γ such that gn = hnγn for every n ∈ N and
(γn)n∈N are pairwise distinct. This would imply that γn = h−1

n gn ∈ Q3 ∩ Γ
for every n ∈ N. Since Q3 is compact and Γ < G is discrete, Q3 ∩ Γ must
be finite, a contradiction. Set S = S0 ∪ S1 ⊂ Γ. Then Q ∩ Γ ⊂ S and for
every n ≥ 1, we have Qn+1 ⊂ QSn. We claim that S is a finite generating
set for Γ. Indeed, by construction, we have Q ∩ Γ ⊂ S. Next, let n ≥ 1 and
γ ∈ Qn+1 ∩ Γ ⊂ QSn ∩ Γ. Then γ = gγn where g ∈ Q and γn ∈ Sn. This
implies that γγ−1

n = g ∈ Q ∩ Γ ⊂ S. Then γ = gγn ∈ SSn = Sn+1 and
hence Qn+1∩Γ ⊂ Sn+1. This implies that Γ =

⋃
n≥1Q

n∩Γ ⊂
⋃
n≥1 S

n and
so Γ is finitely generated. �

Proposition 1.15. Let G be any locally compact group that possesses
a lattice Γ < G. Then G is unimodular. Moreover, there is a unique G-
invariant regular Borel probability measure ν ∈ Prob(G/Γ).

Proof. Let ν ∈ Prob(G/Γ) be a G-invariant regular Borel probability
measure. We claim that there exists a unique left invariant Haar measure
mG on G such that

(1.3) ∀f ∈ Cc(G),

∫
G
f(h) dmG(h) =

∫
G/Γ

f(gΓ) dν(gΓ).

Indeed, the well-defined positive linear functional

Cc(G)→ C : f 7→
∫
G/Γ

f(gΓ) dν(gΓ)

is left invariant. By Riesz’s representation theorem, there exists a unique
left invariant Haar measure mG on G for which (1.3) holds.

Applying (1.1), for every f ∈ Cc(G) and every γ ∈ Γ, letting fγ :=
f( · γ−1) ∈ Cc(G), we have

∆G(γ)

∫
G
f(h) dmG(h) =

∫
G
fγ(h) dmG(h)

=

∫
G/Γ

fγ(hΓ) dν(hΓ)

=

∫
G/Γ

f(hΓ) dν(hΓ)

=

∫
G
f(h) dmG(h).

This implies that ∆G(γ) = 1 for every γ ∈ Γ. Consider the well-defined con-
tinuous mapping ∆ : G/Γ→ R∗+ : gΓ 7→ ∆G(g). Then η = ∆∗ν ∈ Prob(R∗+)
is a Borel probability measure that is invariant under multiplication by
∆G(g) for every g ∈ G. This implies that ∆G ≡ 1 and so G is unimod-
ular.
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Observe that (1.3) implies that there is a unique G-invariant regular
Borel probability measure ν ∈ Prob(G/Γ). �

The next proposition provides a group-theoretic characterization of uni-
form lattices in locally compact groups.

Proposition 1.16. Let G be any locally compact group and Γ < G any
lattice. The following assertions are equivalent:

(i) Γ < G is uniform.
(ii) There exists a compact neighborhood U ⊂ G of e ∈ G such that for

every g ∈ G, we have gΓg−1 ∩ U = {e}.

Proof. (i) ⇒ (ii) Assume that Γ < G is uniform. Since Γ < G is
discrete, we may choose a compact neighborhood W ⊂ G of e ∈ G such that
Γ ∩W = {e}. Next, we may choose a symmetric compact neighborhood
V ⊂ W of e ∈ G such that V V V ⊂ W . Observe that for every h ∈ V , we
have

hΓh−1 ∩ V ⊂ h(Γ ∩ h−1V h)h−1 ⊂ h(Γ ∩W )h−1 = {e}.
By compactness of G/Γ, there exist n ≥ 1 and g1, . . . , gn ∈ G such that
G/Γ =

⋃n
i=1 gip(V ). Set U :=

⋂n
i=1 giV g

−1
i . Then for every g ∈ G, there

exist 1 ≤ i ≤ n and h ∈ V such that gΓ = gihΓ and hence

gΓg−1 ∩ U = gihΓh−1g−1
i ∩ U ⊂ gi(hΓh−1 ∩ V )g−1

i = {e}.
(ii)⇒ (i) Denote by ν ∈ Prob(G/Γ) the unique G-invariant regular Borel

probability measure and by mG the unique Haar measure on G such that
(1.3) holds. Assume that there exists such a compact neighborhood U ⊂ G
of e ∈ G. Choose a compact neighborhood V ⊂ G of e ∈ G such that
V −1V ⊂ U . Choose a nonnegative function ϕ ∈ Cc(G) such that 0 ≤ ϕ ≤ 1
and supp(ϕ) ⊂ V . Set ε :=

∫
G ϕ(h) dmG(h).

For every g ∈ G, define ϕg := ϕ( · g−1) ∈ Cc(G). Note that 0 ≤ ϕg ≤ 1
and supp(ϕg) ⊂ V g. Moreover, we have supp(ϕg) ⊂ V gΓ. Since mG is right
invariant, we have

ε =

∫
G
ϕ(h) dmG(h)

=

∫
G
ϕg(h) dmG(h)

=

∫
G/Γ

ϕg(hΓ) dν(hΓ)

=

∫
V gΓ

ϕg(hΓ) dν(hΓ)

=

∫
V gΓ

∑
γ∈Γ

ϕg(hγ) dν(hΓ).

We claim that for every h ∈ V gΓ, there is at most one γ ∈ Γ such that
hγ ∈ V g. Indeed, if γ1, γ2 ∈ Γ are elements such that hγ1, hγ2 ∈ V g, then



20 1. LOCALLY COMPACT GROUPS AND LATTICES

gγ−1
1 γ2g

−1 ∈ V −1V ⊂ U . Since gΓg−1 ∩ U = {e}, we have γ1 = γ2. Since
0 ≤ ϕg ≤ 1 and supp(ϕg) ⊂ Vg, it follows that

ε =

∫
V gΓ

∑
γ∈Γ

ϕg(hγ) dν(hΓ) ≤
∫
V gΓ

1 dν(hΓ) = ν(V gΓ).

We have showed that ν(V gΓ) ≥ ε for every g ∈ G.
Let F ⊂ G be any finite subset for which for every g, h ∈ F such that

g 6= h, we have V gΓ ∩ V hΓ = ∅. Then we have

]F · ε ≤
∑
g∈F

ν(V gΓ) = ν(
⋃
g∈F

V gΓ) ≤ 1

and hence ]F ≤ ε−1. We may then choose a maximal finite subset F ⊂ G
with the aforementioned property. It follows that for every g ∈ G, we have
V gΓ ∩ V FΓ 6= ∅ and hence gΓ ∈ V −1V FΓ ⊂ UFΓ. Since UFΓ ⊂ G/Γ is
compact, it follows that G/Γ = UFΓ is compact. �

When G is a locally compact second countable group, we prove a very
useful criterion to ensure that a discrete subgroup Γ < G is a lattice.

Theorem 1.17. Let G be any locally compact second countable group
and Γ < G any discrete subgroup. The following assertions are equivalent:

(i) Γ < G is a lattice.
(ii) G is unimodular and there is a Borel fundamental domain F ⊂ G

for the right translation action Γ y G such that 0 < mG(F) < +∞.
(iii) G is unimodular and there is a Borel subset S ⊂ G such that

S · Γ = G and 0 < mG(S) < +∞.

Proof. Recall that since G is a locally compact second countable group,
the discrete subgroup Γ < G is necessarily countable.

(i) ⇒ (ii) We already know that G is unimodular by Proposition 1.15.
Denote by ν ∈ Prob(G/Γ) the unique G-invariant regular Borel probability
measure. Denote by mG the unique Haar measure on G satisfying (1.3).
Since G is locally compact second countable, (1.3) holds for every nonneg-
ative Borel function f : G→ R+. In particular, for f = 1F , we have f ≡ 1
and so

mG(F) =

∫
G
f(h) dmG(h) =

∫
G/Γ

f dν(hΓ) = 1 < +∞.

Since mG(G) > 0, G =
⋃
γ∈ΓFγ and mG(Fγ) = mG(F) for every γ ∈ Γ,

we also have mG(F) > 0.
(ii)⇒ (iii) It is trivial.
(iii)⇒ (i) Following the proof of Proposition 1.14 and since mG is right

invariant, we may consider the well-defined nonzero left invariant linear func-
tional

Φ : Cc(G/Γ)→ C : f 7→
∫
G
f(g) dmG(g).
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By Riesz’s representation theorem, there exists a unique nonzero G-invariant
regular Borel measure ν on G/Γ such that (1.3) holds. Since G is locally
compact second countable, (1.3) holds for every nonnegative Borel function
f : G→ R+. In particular, for f = 1S, we have f ≥ 1 and so

ν(G/Γ) ≤
∫
G/Γ

f dν(hΓ) =

∫
G
f(h) dmG(h) = mG(S) < +∞.

Then 1
ν(G/Γ)ν ∈ Prob(G/Γ) is a G-invariant regular Borel probability mea-

sure and so Γ < G is a lattice. �

Let us point out that when Γ < G is a lattice then all Borel fundamental
domains for the right translation action Γ y G have the same finite Haar
measure. Indeed, whenever F1,F2 ⊂ G are Borel fundamental domains,
since the Haar measure mG on G is right invariant, we have

mG(F1) =
∑
γ∈Γ

mG(F1 ∩ F2γ)

=
∑
γ∈Γ

mG(F1γ
−1 ∩ F2)

= mG(F2).

Examples 1.18. Here are some examples of lattices in locally compact
groups.

(i) For every d ≥ 1, the discrete subgroup Zd < Rd is a uniform lattice.
(ii) More generally, any lattice Γ < G in a locally compact second

countable abelian group G is necessarily uniform.
(iii) The discrete Heisenberg group H3(Z) < H3(R) is a uniform lattice

in the continuous Heisenberg group H3(R):

H3(Z) :=


1 x z

0 1 y
0 0 1

 | x, y, z ∈ Z


H3(R) :=


1 x z

0 1 y
0 0 1

 | x, y, z ∈ R
 .

(iv) More generally, any lattice Γ < G in a locally compact second
countable nilpotent group G is necessarily uniform.

3. SLd(Z) is a lattice in SLd(R), d ≥ 2

In this section, we prove the following theorem due to Minkowski.

Theorem 1.19 (Minkowski). For every d ≥ 2, the discrete subgroup
SLd(Z) < SLd(R) is a nonuniform lattice.

Before proving Theorem 1.19, we need to prove some preliminary results
that are also of independent interest.
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Let d ≥ 1. Endow Rd with its canonical euclidean structure. Denote by
K := SOd(R) < SLd(R) the special orthogonal subgroup and observe that
K < SLd(R) is compact. Denote by A < SLd(R) the subgroup of diagonal
matrices with positive entries, that is,

A := {a = diag(λ1, . . . , λd) | λ1, . . . , λd > 0, λ1 · · ·λd = 1} < SLd(R).

Denote by N := Td(R) < SLd(R) the strict upper triangular subgroup as in
Example 1.10(vi).

Lemma 1.20 (Iwasawa decomposition). The map K×A×N → SLd(R) :
(k, a, n) 7→ kan is a homeomorphism. We simply write SLd(R) = K ·A ·N .

Proof. Denote by (e1, . . . , ed) the canonical basis of Rd. The map
Ψ : K×A×N → SLd(R) : (k, a, n) 7→ kan is clearly continuous. Conversely,
let g ∈ SLd(R) be any element and write vi = gei ∈ Rd for every 1 ≤
i ≤ d. By Gram–Schmidt’s orthogonalization process, set w1 = v1 and
wi+1 = vi+1 − PVi(vi+1) where Vi = Vect(v1, . . . , vi) for every 1 ≤ i ≤ d− 1.
Then ( w1

‖w1‖ , . . . ,
wd
‖wd‖) is an orthonormal basis for Rd and we may find k ∈

Od(R) such that kei = wi
‖wi‖ for every 1 ≤ i ≤ d. Then the matrix k−1g

is upper triangular and (k−1g)ii = ‖wi‖ for every 1 ≤ i ≤ d. It follows
that det(k−1) = det(k−1g) = ‖w1‖ · · · ‖wd‖ > 0 and hence k ∈ SOd(R).
Letting a = diag(‖w1‖, . . . , ‖wd‖) ∈ A, we have g = kan and the map
SLd(R) → K × A × N : g 7→ (k, a, n) is continuous. Since its inverse is
Ψ, we have showed that Ψ : K × A × N → SLd(R) : (k, a, n) 7→ kan is a
homeomorphism. �

Lemma 1.21. Endow (K,dk), (A,da), (N, dn) with their respective Haar
measure. Then the pushforward measure of∏

1≤i<j≤d

λi
λj

dk da dn

under the map K × A × N → SLd(R) : (k, a, n) 7→ kan is a Haar measure
on SLd(R).

Proof. Consider the product map Ψ : K × AN → SLd(R) : (k, p) 7→
k−1p. Since SLd(R) is unimodular, the regular Borel measure (Ψ−1)∗mSLd(R)

on K×AN is right invariant. Then (Ψ−1)∗mSLd(R) is a right invariant Haar
measure on the locally compact second countable group K ×AN and hence
(Ψ−1)∗mSLd(R) = µK ⊗ µAN where µK is a right invariant Haar measure on
K and µAN is a right invariant Haar measure on AN . Since K is compact,
µK is also left invariant and hence we may assume that dµK(k) = dk. It

remains to prove that
∏

1≤i<j≤d
λi
λj

dadn is a right invariant Haar measure

on AN .
As explained in Examples 1.10(vi), we may assume that dmN (n) :=

dn =
∏

1≤i<j≤d dnij . Observe that N C AN is a normal subgroup and

define the conjugation action Ad : Ay N by Ad(a)(n) = ana−1 for a ∈ A,
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n ∈ N . Then AN = A n N and da dn is a left invariant measure on
AN by Proposition 1.9. A simple calculation shows that Ad(a)∗mN =

(
∏

1≤i<j≤d
λi
λj

)−1 ·mN . Then Proposition 1.9 implies that
∏

1≤i<j≤d
λi
λj

da dn

is a right invariant Haar measure on AN . �

For all t, u > 0, set

At := {a = diag(λ1, . . . , λd) ∈ A | ∀1 ≤ i ≤ d− 1, λi ≤ tλi+1}
Nu := {n = (nij)ij ∈ N | ∀1 ≤ i < j ≤ d, |nij | ≤ u}

St,u := K ·At ·Nu.

The Borel subset St,u ⊂ G is called a Siegel domain. We now have all the
tools to prove Theorem 1.19.

Proof of Theorem 1.19. For every t ≥ 2√
3

and every u ≥ 1
2 , we

show that SLd(R) = St,u · SLd(Z) and that St,u has finite Haar measure.
By Theorem 1.17, this implies that SLd(Z) < SLd(R) is a lattice. We divide
the proof into a series of claims.

Claim 1.22. For all t, u > 0, the Siegel domain St,u has finite Haar
measure.

Indeed, note that since K and Nu are both compact in SLd(R), using
Lemma 1.21 it suffices to prove that

κt :=

∫
At

∏
1≤i<j≤d

λi
λj

da < +∞.

Observe that the map

Θ : A→ Rd−1 : diag(λ1, . . . , λd) 7→
(

log
λ2

λ1
, . . . , log

λd
λd−1

)
is a topological group isomorphism. We may choose the Haar measure da
on A that is the pushforward of the Lebesgue measure on Rd−1 by Θ−1. We
then have

κt =

∫
Rd−1

∏
1≤i<j≤d

exp(−(si + · · ·+ sj−1))1{s1,...,sd−1≥− log t} ds1 · · · dsd−1

=

d−1∏
k=1

∫ +∞

− log t
exp(−k(d− k)sk) dsk < +∞.

Claim 1.23. For every u ≥ 1
2 , we have N = Nu · (N ∩ SLd(Z)).

Indeed, it suffices to prove Claim 1.23 for u = 1
2 . We proceed by induc-

tion over d ≥ 1. For d = 1, there is nothing to prove. Assume that the
result is true for d− 1 ≥ 1 and let us prove it for d. Let n ∈ N = Td(R) be
any element that we write

n =

(
1 ∗
0 n0

)
where n0 ∈ Td−1(R).



24 1. LOCALLY COMPACT GROUPS AND LATTICES

By induction hypothesis, there exists γ0 ∈ Td−1(R) ∩ SLd−1(Z) such that
n1 := n0γ

−1
0 ∈ Td−1(R)1/2. Write

n

(
1 0
0 γ−1

0

)
=

(
1 x
0 n1

)
where x ∈ Rd−1.

Choose y ∈ Zd−1 such that x− y ∈ [−1/2, 1/2]d−1. Then

n =

(
1 x
0 n1

)(
1 0
0 γ0

)
=

(
1 x− y
0 n1

)(
1 y
0 1

)(
1 0
0 γ0

)
where (

1 x− y
0 n1

)
∈ N1/2 and

(
1 y
0 1

)(
1 0
0 γ0

)
∈ N ∩ SLd(Z).

This shows the result is true for d and finishes the proof of Claim 1.23.

Claim 1.24. For every t ≥ 2√
3
, we have SLd(R) = K ·At ·N · SLd(Z).

Indeed, it suffices to prove Claim 1.24 for t = 2√
3
. We proceed by

induction over d ≥ 1. For d = 1, there is nothing to prove. Assume that the
result is true for d− 1 ≥ 1 and let us prove it for d. Denote by (e1, . . . , ed)
the canonical basis of Rd. Let g ∈ SLd(R) be any element. Since Λ = gZd
is a lattice in Rd, there must exist a vector v1 ∈ Λ \ {0} such that

‖v1‖ = min {‖v‖ | v ∈ Λ \ {0}} .

By minimality of the norm of v1 ∈ Λ \ {0}, we may find v2, . . . , vd ∈ Λ \ {0}
such that (v1, . . . , vd) is a basis of Λ (see e.g. [Ca71, Corollary I.3]). Up to
further replacing v1 by −v1, there exists γ ∈ SLd(Z) such that γei = g−1vi
for every 1 ≤ i ≤ d. Note that gγe1 = v1.

Next, consider the Iwasawa decomposition gγ = kan and write

an =

(
λd−1 ∗

0 λ−1g0

)
where λ ∈ R∗, g0 ∈ SLd−1(R).

By induction hypothesis, there exist k0 ∈ SOd−1(R) and γ0 ∈ SLd−1(Z) such
that k−1

0 g0γ
−1
0 ∈ (Ad−1)2/

√
3 · Td−1(R). If we consider

h =

(
1 0
0 k−1

0

)
k−1gγ

(
1 0
0 γ−1

0

)
=

(
λd−1 ∗

0 λ−1 k−1
0 g0γ

−1
0

)
∈ AN

we obtain that the diagonal coefficients of h satisfy hi,i ≤ 2√
3
hi+1,i+1 for

every 2 ≤ i ≤ d − 1. It remains to prove that h1,1 ≤ 2√
3
h2,2. Observe that

for every w ∈ Zd \ {0}, we have

‖he1‖ = ‖gγ
(

1 0
0 γ−1

0

)
e1‖ = ‖gγe1‖ = ‖v1‖ ≤ ‖gγ

(
1 0
0 γ−1

0

)
w‖ = ‖hw‖.
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Using Claim 1.23, write h = diag(h11, . . . , hdd)n1γ1 where n1 ∈ N1/2 and
γ1 ∈ N ∩ SLd(Z). Then he1 = diag(h11, . . . , hdd)e1 = h11e1 and with w =
γ−1

1 e2 ∈ Zd \ {0}, we have hw = diag(h11, . . . , hdd)n1e2 = h11n12e1 + h22e2.
Then we obtain

h2
11 = ‖he1‖2 ≤ ‖hw‖2 = h2

11n
2
12 + h2

22 ≤
1

4
h2

11 + h2
22

and so h2
11 ≤ 4

3h
2
22. This finishes the proof of Claim 1.24.

A combination of Claims 1.22, 1.23, 1.24 and Theorem 1.17 implies that
SLd(Z) < SLd(R) is a lattice.

It remains to prove that SLd(Z) < SLd(R) is nonuniform. Indeed, regard
SL2(R) < SLd(R) as a subgroup in the top left corner and set

γ :=

(
1 1
0 1

)
∈ SL2(Z) < SLd(Z).

Then a simple calculation shows that

gnγg
−1
n =

(
1 n−2

0 1

)
→ e with gn :=

(
n−1 0

0 n

)
∈ SL2(R) < SLd(R).

Then Proposition 1.16 implies that SLd(Z) < SLd(R) is nonuniform. �

4. More examples of lattices

In this expository section, we provide more examples of lattices in lo-
cally compact groups. The main examples of lattices we discuss arise from
arithmetic subgroups of algebraic groups.

We first introduce some terminology. We say that a connected linear
algebraic group G < GLn(C) is defined over Q or is a Q-group if the
ideal J (G) ⊂ C[g11, . . . , gij , . . . , gnn, T ] of all polynomials vanishing on G is
spanned by JQ(G) := J (G) ∩ Q[g11, . . . , gij , . . . , gnn, T ] over C. Moreover,
we say that G is

• semisimple if its maximal connected algebraic solvable normal sub-
group is trivial.
• almost simple if the only proper algebraic normal subgroups are

finite.

We then say that G(Z) := G ∩GLd(Z) is an arithmetic group.

Example 1.25. For every d ≥ 2, the special linear group SLd is a con-
nected almost simple semisimple algebraic Q-group.

The next theorem is a particular case of a general result due to Borel–
Harish-Chandra showing that arithmetic groups are lattices.

Theorem 1.26 (Borel–Harish-Chandra [BHC61]). Let G be any con-
nected semisimple algebraic Q-group. Then G(Z) < G(R) is a nonuniform
lattice.
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One can then view Theorem 1.26 as a generalization of Theorem 1.19.
We also mention that any noncompact connected semisimple Lie group con-
tains both uniform and nonuniform lattices (see e.g. [Ra72, Chapter XIV]).

In these lecture notes, we will be interested in discrete groups that arise
as lattices in product groups. In that respect, we introduce the following
terminology. Let r ≥ 2 and G1, . . . , Gr be any locally compact groups. Set
G = G1×· · ·×Gr. For every 1 ≤ i ≤ r, denote by pi : G→ Gi the canonical
factor map.

Definition 1.27. Let Γ < G be any discrete subgroup. We say that
Γ < G is irreducible if for every 1 ≤ i ≤ r, the image pi(Γ) is dense in Gi.

Let us point out that Definition 1.27 is not really restrictive. Indeed,
whenever Γ < G is a discrete subgroup, letting Hi = pi(Γ) for every 1 ≤
i ≤ r, we may regard Γ as a discrete and irreducible subgroup of the locally
compact group H = H1 × · · · ×Hr.

Example 1.28. Here are some examples of discrete irreducible sub-
groups Γ < G in locally compact groups.

(i) Let q ≥ 2 be any square-free integer. Define the field automorphism
σ : Q(

√
q) → Q(

√
q) : x + y

√
q 7→ x − y√q. For every d ≥ 2, the

subgroup

Γ := {(g, gσ) | g ∈ SLd(Z[
√
q])} < SLd(R)× SLd(R)

is discrete and irreducible. Write SLd(Z[
√
q]) < SLd(R)× SLd(R).

(ii) Let p ∈ P be any prime. For every d ≥ 2, the subgroup

Γ :=
{

(g, g) | g ∈ SLd(Z[p−1])
}
< SLd(R)× SLd(Qp)

is discrete and irreducible. Write SLd(Z[p−1]) < SLd(R)×SLd(Qp).

Borel–Harish-Chandra’s results [BHC61] provide many examples of lat-
tices in algebraic groups. We refer the reader to [Ma91, Chapter IX] and
[Be09, §2] for further details.

Examples 1.29. Let d ≥ 2.

(i) The discrete subgroup SLd(Z) < SLd(R) is a nonuniform lattice
(see Theorem 1.19).

(ii) For every square-free integer q ≥ 2, the discrete subgroup

SLd(Z[
√
q]) < SLd(R)× SLd(R)

is a nonuniform irreducible lattice.
(iii) For every prime p ∈ P, the discrete subgroup

SLd(Z[p−1]) < SLd(R)× SLd(Qp)
is a nonuniform irreducible lattice.

(iv) More generally, for every finite set of primes S = {p1, . . . , pr} ⊂ P,
the discrete subgroup

SLd(Z[S−1]) < SLd(R)× SLd(Qp1)× · · · × SLd(Qpr)
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is a nonuniform irreducible lattice.
(v) For every prime p ∈ P and every r ≥ 1, set q = pr and denote

by Fq((t)) the field of formal power series in one variable t over
the finite field Fq and by Fq[t

−1] ⊂ Fq((t)) the polynomial ring
in one variable t−1. Then the discrete subgroup SLd(Fq[t

−1]) <
SLq(Fq((t))) is a nonuniform lattice.

(vi) Let d ≥ 3 and p ≥ q ≥ 1 such that p+ q = d. Define

Jp,q :=

(
1p 0

0 −
√

2 1q

)
Γ :=

{
g ∈ SLd(Z[

√
2]) | gJp,qtg = Jp,q

}
G :=

{
g ∈ SLd(R) | gJp,qtg = Jp,q

}
.

Then Γ < G is a uniform lattice.





CHAPTER 2

Group unitary representation theory

In this chapter, we present an introduction to uni-
tary representation theory for locally compact groups.
We define and study the notions of amenability and
Kazhdan’s property (T). We prove that SLd(R) has
the Howe–Moore property for every d ≥ 2. We also
prove that SLd(R) and its lattice SLd(Z) have Kazh-
dan’s property (T) for every d ≥ 3.

1. Generalities on unitary representations

Let (H, 〈 · , · 〉) be any (complex) Hilbert space. We always assume that
〈 · , · 〉 is conjugate linear in the second variable. We denote by

U(H) = {u ∈ B(H) | u∗u = uu∗ = 1H}
the group of unitary operators on H. We simply write 1 = 1H. We endow
U(H) with the strong operator topology defined as the initial topology on
U(H) that makes the maps U(H) → H : u 7→ uξ continuous for all ξ ∈ H.
Then U(H) is a topological group but U(H) need not be locally compact.
When H is separable, U(H) is a Polish group.

Definition 2.1. Let G be any locally compact group. We say that the
mapping π : G → U(Hπ) is a strongly continuous unitary representation if
the following conditions hold:

(i) π : G→ U(Hπ) is a group homomorphism.
(ii) π : G→ U(Hπ) is strongly continuous, meaning that π is a continu-

ous map when U(Hπ) is endowed with the strong operator topology
as above.

When π : G → U(Hπ) only satisfies condition (i), we simply say that
π is a unitary representation. When G is discrete, condition (ii) is trivially
satisfied.

The next result shows that in order to prove that the unitary represen-
tation π : G→ U(Hπ) is strongly continuous, it is enough to show that the
coefficients of π are measurable functions.

Lemma 2.2. Let G be any locally compact group, Hπ any separable
Hilbert space and π : G → U(Hπ) any unitary representation. Assume
that for all ξ, η ∈ Hπ, the map ϕξ,η : G→ C : g 7→ 〈π(g)ξ, η〉 is measurable.
Then π is strongly continuous.

29
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Proof. Let ξ ∈ Hπ be any vector. It suffices to show that the map
G→ Hπ : g 7→ π(g)ξ is continuous at e ∈ G. Let Q ⊂ G be any symmetric
compact neighborhood of e ∈ G. Consider the compactly generated open
subgroup H :=

⋃
n≥1Q

n < G. It further suffices to show that the map

H → Hπ : g 7→ π(g)ξ is continuous at e ∈ H. Thus, we may as well assume
that G is σ-compact.

As usual, we denote by mG a left invariant Haar measure on G. Let
ε > 0 and set B := {g ∈ G | ‖π(g)ξ − ξ‖ < ε/2}. Then B ⊂ G is a
measurable subset since B = {g ∈ G | 2<(〈π(g)ξ, ξ〉) > 2‖ξ‖2 − ε2/4}.
Moreover, we have B−1 = B and B2 = BB−1 ⊂ {g ∈ G | ‖π(g)ξ − ξ‖ < ε}.
Since π(G)ξ ⊂ Hπ is separable, there exists a sequence (gn)n∈N in G such
that (π(gn)ξ)n∈N is dense in π(G)ξ. This implies that

⋃
n∈N gnB = G and

so mG(B) > 0. Since G is σ-compact, up to replacing B by B ∩ K for a
suitable symmetric compact subset, we may further assume that B = B−1,
B ⊂ K and 0 < mG(B) < +∞. Then 1B ∈ L2(G,B(G),mG) and ϕ =
1B ∗ 1B ∈ Cc(G). Since ϕ(e) = mG(B) > 0, the subset U = ϕ−1(0,+∞) is
open, e ∈ U and U ⊂ BB ⊂ {g ∈ G | ‖π(g)ξ − ξ‖ < ε}. �

Definition 2.3. Let G be any locally compact group and π : G →
U(Hπ) any strongly continuous unitary representation. We say that

• π has invariant vectors and we write 1G ⊂ π if the subspace of
π(G)-invariant vectors

(Hπ)G := {ξ ∈ Hπ | ∀g ∈ G, π(g)ξ = ξ}
is nonzero. Otherwise, we say that π is ergodic and we write 1G 6⊂ π.
• π has almost invariant vectors and we write 1G ≺ π if for every
ε > 0 and every compact subset Q ⊂ G, there exists a unit vector
ξ ∈ Hπ such that

sup
g∈Q
‖π(g)ξ − ξ‖ < ε.

Otherwise, we say that π has spectral gap and we write 1G ⊀ π.

It is clear that if 1G ⊂ π, then 1G ≺ π.

For every i ∈ {1, 2}, let πi : G → U(Hπi) be any strongly continuous
unitary representation. We say that π1 and π2 are unitarily equivalent if
there exists a unitary operator U : Hπ1 → Hπ2 such that for every g ∈ G,
we have π2(g) = Uπ1(g)U∗. In this situation, we will identify π1 with π2.

1.1. Examples of unitary representations. Let G be any locally
compact group.

The left regular representation λG. Let mG be any left invariant
Haar measure on G and simply denote by L2(G) = L2(G,B(G),mG) the
corresponding Hilbert space of L2-integrable functions on G. Define the left
regular representation λG : G→ U(L2(G)) by the formula

∀g ∈ G, ∀ξ ∈ L2(G), (λG(g)ξ)(h) = ξ(g−1h).
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The left regular representation λG : G→ U(L2(G)) is a strongly continuous
unitary representation. This follows from the well known facts that the
subspace Cc(G) of compactly supported continuous functions on G is ‖ · ‖2-
dense in L2(G) and the left translation action λ : G y Cc(G) is ‖ · ‖∞-
continuous (see Lemma 1.8).

Proposition 2.4. Keep the same notation as above. Then 1G ⊂ λG if
and only if G is compact.

Proof. If G is compact, then the left invariant Haar measure mG is
finite. This implies that the constant function 1G belongs to L2(G) and
is λG(G)-invariant. Conversely, assume that there exists a nonzero λG(G)-
invariant vector ξ ∈ L2(G).

Claim 2.5. There exists a σ-compact open subgroup H < G such that
ξ = 1Hξ.

Indeed, define the measurable subsets B := {h ∈ G | ξ(h) 6= 0} and
Bn := {h ∈ G | |ξ(h)| ≥ n−1} for every n ≥ 1. Then B =

⋃
n≥1Bn and

mG(Bn) < +∞ for every n ≥ 1. By regularity, for every n ≥ 1, there exists
an open set Un ⊂ G such that Bn ⊂ Un and mG(Un) < +∞. To prove
the claim, it suffices to show that every open set U ⊂ G with finite Haar
measure is contained in a σ-compact open subgroup H < G.

Let U ⊂ G be any nonempty open set such that mG(U) < +∞. Let
L < G be any σ-compact open subgroup. Since mG(U) < +∞, the set
Λ := {gL ∈ G/L | U ∩ gL 6= ∅} is at most countable. Letting H < G be
the subgroup generated by L and Λ, we have that U ⊂ H and H < G is
σ-compact and open. This finishes the proof of Claim 2.5.

Using Claim 2.5 and the assumption, for every g ∈ G, we have

1Hξ = ξ = λG(g)ξ = λG(g)(1Hξ) = 1gHξ = 1H∩gHξ.

Since ξ 6= 0, we have mG(H ∩ gH) > 0 for every g ∈ G. It follows that
gH = H for every g ∈ G and hence H = G. This shows that G is σ-
compact.

We may now apply Fubini’s theorem. Indeed, since for every g ∈ G and
mG-almost every h ∈ G, we have ξ(g−1h) = ξ(h), Fubini’s theorem implies
that there exists h ∈ G such that for mG-almost every g ∈ G, we have
ξ(g−1h) = ξ(h). This further implies that ξ is essentially constant. If we
denote by c > 0 the essential value of |ξ|2, we obtain c·mG(G) = ‖ξ‖2 < +∞
and so mG(G) < +∞. Then G is compact by Proposition 1.6. �

The Koopman representation κ. Let G be any locally compact
second countable group and (X,B, ν) any standard probability space. We
simply write (X, ν) in what follows. We endow G with its σ-algebra B(G)
of Borel subsets. Let G y (X, ν) be any probability measure preserving
(pmp) action meaning that the action map G × X → X : (g, x) 7→ gx is
measurable (where we endow G×X with the product σ-algebra B(G)⊗B)
and that g∗ν = ν for every g ∈ G. Denote by L2(X, ν) the Hilbert space
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of L2-integrable functions on X. Since (X, ν) is a standard probability
space, L2(X, ν) is separable (see e.g. [Zi84, Theorem A.11]). Define the
Koopman representation κ : G → U(L2(X, ν)) associated with the pmp
action Gy (X, ν) by the formula

∀g ∈ G, ∀ξ ∈ L2(X, ν), (κ(g)ξ)(x) = ξ(g−1x).

The Koopman representation κ : G→ U(L2(X, ν)) is a strongly continuous
unitary representation. This follows from Lemma 2.2 after noticing that for
all ξ, η ∈ L2(X, ν), the map

ϕξ,η : G→ C : g 7→ 〈κ(g)ξ, η〉 =

∫
X
ξ(g−1x)η(x) dν(x)

is measurable thanks to Fubini’s theorem. The constant function 1X is
κ(G)-invariant. For this reason, it is natural to consider the restriction of
the Koopman representation to the orthogonal complement L2(X, ν)0 =
L2(X, ν)	 C1X that we denote by κ0 : G→ U(L2(X, ν)0).

We say that a measurable subset Y ⊂ X is

• ν-a.e. G-invariant if for every g ∈ G, we have ν(gY4Y ) = 0.
• strictly G-invariant if for every g ∈ G, we have gY = Y .

The next lemma clarifies the difference between the two notions.

Lemma 2.6. For any ν-a.e. G-invariant measurable subset Y ⊂ X, there
is a strictly G-invariant measurable subset Z ⊂ X such that ν(Y4Z) = 0.

Proof. Fix a left invariant Haar measure mG on G. By assumption
and using Fubini’s theorem, the measurable subset

X0 := {x ∈ X | G→ C : g 7→ 1Y (g−1x) is mG-a.e. constant}

is ν-conull in X. For every x ∈ X0, denote by f(x) the unique essential value
of the measurable function G → C : g 7→ 1Y (g−1x). For every x ∈ X \X0,
set f(x) = 0. Note that f(X) ⊂ {0, 1}. Fubini’s theorem implies that the
function f : X → C is measurable and f(x) = 1Y (x) for ν-almost every
x ∈ X. For every x ∈ X0 and every h ∈ G, the measurable function
G → C : g 7→ 1Y (g−1h−1x) is mG-a.e. constant, hence h−1x ∈ X0 and
f(h−1x) = f(x). This further implies that f is strictly G-invariant meaning
that f(g−1x) = f(x) for every g ∈ G and every x ∈ X. Set Z := {x ∈ X |
f(x) = 1}. Then Z ⊂ X is a strictly G-invariant measurable subset such
that ν(Y4Z) = 0. �

From now on, we simply say that the measurable subset Y ⊂ X is G-
invariant if for every g ∈ G, we have ν(gY4Y ) = 0. We say that the pmp
action Gy (X, ν) is ergodic if every G-invariant measurable subset Y ⊂ X
is null or conull.

Proposition 2.7. Keep the same notation as above. Then 1G ⊂ κ0 if
and only if the pmp action Gy (X, ν) is not ergodic.
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Proof. If the pmp action G y (X, ν) is not ergodic, then there exists
a G-invariant measurable subset Y ⊂ X such that 0 < ν(Y ) < 1. Then the
nonzero vector ξ = 1Y −ν(Y )1X ∈ L2(X, ν)0 is κ0(G)-invariant. Conversely,
assume that there exists a nonzero κ0(G)-invariant vector ξ ∈ L2(X, ν)0. Up
to taking the real or imaginary part of ξ, we may assume that ξ is real valued.
Next, up to taking ξ+ = max(ξ, 0) or ξ− = max(−ξ, 0), we may further
assume that ξ ∈ L2(X, ν) is κ(G)-invariant, nonnegative and ξ /∈ C1X . For
every t > 0, define the G-invariant measurable subset Xt = {x ∈ X | ξ(x)2 ≥
t}. Then the function R∗+ → R+ : t 7→ ν(Xt) is measurable, non-increasing

and satisfies ‖ξ‖2 =
∫ +∞

0 ν(Xt) dt. We claim that there exists t > 0 such
that 0 < ν(Xt) < 1. Indeed otherwise there would exist s > 0 such that
ν(Xt) = 0 for every t > s and ν(Xt) = 1 for every t ≤ s. This would imply
that ξ is ν-almost everywhere constant equal to

√
s and thus ξ ∈ C1X , a

contradiction. Therefore, there exists t > 0 such that 0 < ν(Xt) < 1. This
shows that the pmp action Gy (X, ν) is not ergodic. �

The quasi-regular representation λG/Γ. Let G be any locally com-
pact second countable group and Γ < G any lattice. We endow the locally
compact second countable space X = G/Γ with its σ-algebra B of Borel sub-
sets (see Proposition 1.11(iii)). We denote by ν ∈ Prob(X) the unique G-
invariant Borel probability measure (see Proposition 1.15). Then the action
G y (X, ν) is pmp. In that case, we denote by λG/Γ : G → U(L2(G/Γ, ν))
the Koopman representation and we call it the quasi-regular representation.
Since G y X is transitive, Lemma 2.6 implies that G y (X, ν) is ergodic
and Proposition 2.7 implies that λ0

G/Γ : G→ U(L2(G/Γ, ν)0) is ergodic. We

can strengthen the above result when Γ < G is a uniform lattice.

Proposition 2.8. Assume that Γ < G is a uniform lattice. Then λ0
G/Γ

has spectral gap.

Proof. We may choose a Borel section σ : X → G such that σ(X)
is relatively compact in G (see Proposition 1.11 and Corollary 1.12). We
further choose the Haar measure mG on G such that σ∗ν = mG|σ(X). Set

Q = σ(X)σ(X)−1 ⊂ G. Observe that Q = Q−1 is relatively compact in
G and so mG(Q) < +∞. Let (ξn)n∈N be any bounded sequence of vectors
in L2(X, ν)0 such that limn supg∈Q ‖λ0

G/Γ(g)ξn − ξn‖ = 0. Using Fubini’s

theorem, we obtain∫
X
|ξn(x)|2 dν(x) =

1

2

∫
X

(∫
σ(X)σ(x)−1

|ξn(gx)− ξn(x)|2 dmG(g)

)
dν(x)

≤ 1

2

∫
X

(∫
Q
|ξn(gx)− ξn(x)|2 dmG(g)

)
dν(x)

=
1

2

∫
Q

(∫
X
|ξn(gx)− ξn(x)|2 dν(x)

)
dmG(g)
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=
1

2

∫
Q
‖λ0

G/Γ(g−1)ξn − ξn‖2 dmG(g)

=
1

2
mG(Q) · sup

g∈Q
‖λ0

G/Γ(g−1)ξn − ξn‖ → 0 as n→ +∞.

This implies that limn ‖ξn‖ = 0 and thus λ0
G/Γ has spectral gap. �

The previous result justifies to introduce the following terminology.

Definition 2.9. Let G be any locally compact second countable group.
We say that a lattice Γ < G is weakly uniform if λ0

G/Γ has spectral gap.

Proposition 2.8 shows that any uniform lattice Γ < G is weakly uniform.
In Section 3, we will provide examples of nonuniform weakly uniform lattices
Γ < G.

1.2. Induction of unitary representations. Whenever Γ < G is a
lattice, we explain how to naturally associate to any unitary representation
π : Γ→ U(Hπ) a strongly continuous unitary representation π̂ : G→ U(Hπ̂).
We then compute the induced representation π̂ in several examples.

Let G be any locally compact second countable group and Γ < G any
lattice. Set X = G/Γ and denote by ν ∈ Prob(X) the unique G-invariant
(regular) Borel probability measure onX. Choose a Borel section σ : X → G
as in Corollary 1.12. Define the Borel map τ : G × X → Γ : (g, x) 7→
σ(gx)−1gσ(x). Observe that for every g ∈ G and every x ∈ X, τ(g, x) ∈ Γ is
the unique element γ ∈ Γ such that gσ(x) = σ(gx) τ(g, x). The Borel map
τ satisfies the 1-cocycle relation

(2.1) ∀g1, g2 ∈ G, ∀x ∈ X, τ(g1g2, x) = τ(g1, g2x) τ(g2, x).

We present two different viewpoints to define the induction from Γ to G
for unitary representations. Let π : Γ → U(Hπ) by any unitary representa-
tion. Assume that Hπ is separable so that Hπ is a Polish space.

Induction I. Denote by L2(X, ν,Hπ) the Hilbert space of ν-equivalence
classes of all measurable functions η : X → Hπ that satisfy

•
∫
X ‖η(x)‖2 dν(x) < +∞.

Endowed with the sesquilinear form defined by

∀η1, η2 ∈ L2(X, ν,Hπ), 〈η1, η2〉ν =

∫
X
〈η1(x), η2(x)〉dν(x),

the space L2(X, ν,Hπ) is indeed a Hilbert space. We may and will identify
L2(X, ν,Hπ) with the tensor product Hilbert space L2(X, ν)⊗Hπ. We refer
the reader to [BHV08, Appendix E] for further details.

Definition 2.10. With this viewpoint, the induced representation π̂1 :
G→ U(L2(X, ν,Hπ)) is defined by the formula

∀g ∈ G, ∀η ∈ L2(X, ν,Hπ), (π̂1(g)η)(x) = π(τ(g, g−1x))η(g−1x).
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Simply write Hπ̂ = L2(X, ν,Hπ). The induced representation π̂1 : G →
U(Hπ̂) is a strongly continuous unitary representation. This follows from
Lemma 2.2 after noticing that for all η1, η2 ∈ Hπ̂, the map

ϕη1,η2 : G→ C : g 7→
∫
X
〈π(τ(g, g−1x))η1(g−1x), η2(x)〉dν(x)

is measurable thanks to Fubini’s theorem.
Induction II. Denote by F = σ(X) ⊂ G and recall that F ⊂ G is

a Borel fundamental domain for the right translation action Γ y G and
so G = F · Γ. Denote by mG the unique Haar measure on G such that
σ∗ν = mG|F . Denote by L2(G,Hπ)Γ the Hilbert space of mG-equivalence
classes of all measurable functions ξ : G→ Hπ that satisfy

• For mG-almost every g ∈ G and every γ ∈ Γ, ξ(gγ−1) = π(γ)ξ(g).
•
∫
F ‖ξ(g)‖2 dmG(g) < +∞.

Endowed with the sesquilinear form defined by

∀ξ1, ξ2 ∈ L2(G,Hπ)Γ, 〈ξ1, ξ2〉 =

∫
F
〈ξ1(g), ξ2(g)〉 dmG(g),

the space L2(G,Hπ)Γ is indeed a Hilbert space.

Definition 2.11. With this view point, the induced representation π̂2 :
G→ U(L2(G,Hπ)Γ) is defined by the formula

∀g ∈ G, ∀η ∈ L2(G,Hπ)Γ, (π̂2(g)ξ)(h) = ξ(g−1h).

Let us explain why this second view point is actually equivalent to the
first viewpoint. Define the mapping U : L2(G,Hπ)Γ → Hπ̂ by the formula
(Uξ)(x) = ξ(σ(x)) for all ξ ∈ L2(G,Hπ)Γ. Then it is plain to see that U is
a unitary operator such that U∗ : Hπ̂ → L2(G,Hπ)Γ is given by the formula
(U∗η)(g) = π(τ(g−1, gΓ))η(gΓ) for all η ∈ Hπ̂. Moreover, for every g ∈ G,
we have π̂2(g) = U∗π̂1(g)U . Therefore, π̂1 and π̂2 are unitarily equivalent.

In what follows, it will be useful to switch from one viewpoint to the
other. We will simply denote by π̂ : G→ U(Hπ̂) the induced representation
and we will emphasize (when necessary) the viewpoint we choose.

Examples 2.12. Keep the same notation as above. The following veri-
fications are left as an exercise.

(i) Assume that π = 1Γ is the trivial representation. Then π̂ = λG/Γ
is the quasi-regular representation.

(ii) Assume that π = λΓ is the left regular representation for Γ. Then
π̂ = λG is the left regular representation for G.

(iii) Let π : G → U(Hπ) be any strongly continuous unitary represen-
tation and let ρ = π|Γ : Γ→ U(Hπ) be the restriction. Then ρ̂ and
π ⊗ λG/Γ are unitarily equivalent.

The following result will turn out to be useful later on.
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Proposition 2.13. Let π : Γ → U(Hπ) be any unitary representation
and denote by π̂ : G → U(Hπ̂) the induced representation. Then 1Γ ⊂ π if
and only if 1G ⊂ π̂.

Proof. Choose the first viewpoint on induction. Keep the same nota-
tion as above. Firstly, assume that 1Γ ⊂ π and choose a π(Γ)-invariant unit
vector ξ ∈ Hπ. Then η = 1X ⊗ ξ ∈ Hπ̂ is a π̂(G)-invariant unit vector and
so 1G ⊂ π̂.

Conversely, assume that 1G ⊂ π̂ and choose a π̂(G)-invariant unit vector
η ∈ Hπ̂. Then for every g ∈ G and ν-almost every x ∈ X, we have

π(τ(g, g−1x))η(g−1x) = η(x).

For every x ∈ X, define the measurable function ζx : G → Hπ : g 7→
π(τ(g, g−1x))η(g−1x). Set

Y := {x ∈ X | ζx is mG-a.e. constant}.
For every x ∈ Y , denote by ζ(x) ∈ Hπ the unique essential value of the
function ζx. Fubini’s theorem implies that Y ⊂ X is conull, the function
ζ : Y → Hπ : x 7→ ζ(x) is measurable and ζ(x) = η(x) for ν-almost every
x ∈ Y . Viewing ζ ∈ Hπ̂, we have ζ = η.

Claim 2.14. For every x ∈ Y and every h ∈ G, we have h−1x ∈ Y and
π(τ(h, h−1x))ζ(h−1x) = ζ(x).

Indeed, using the cocycle relation (2.1) and since x ∈ Y , for mG-almost
every g ∈ G, we have

π(τ(h, h−1x))∗ ζ(x) = π(τ(h, h−1x))∗π(τ(hg, g−1h−1x))η(g−1h−1x)

= π(τ(g, g−1h−1x))η(g−1h−1x).

Since the left hand side does not depend on g ∈ G, this implies that h−1x ∈
Y and π(τ(h, h−1x))ζ(h−1x) = ζ(x). This finishes the proof of Claim 2.14.

Claim 2.14 implies that Y ⊂ X is G-invariant and so Y = X = G/Γ.
Moreover, for every x ∈ X and every h ∈ G, we have π(τ(h, h−1x))ζ(h−1x) =
ζ(x). Set ξ = ζ(Γ) ∈ Hπ. We have ξ 6= 0, otherwise we would have
ζ(h−1Γ) = π(τ(h, h−1Γ))∗ζ(Γ) = 0 for every h ∈ G. This would imply that
η = ζ = 0, a contradiction. Then ξ 6= 0 and for every γ ∈ Γ, we have
π(γ)ξ = π(τ(γ, γ−1Γ))ζ(γ−1Γ) = ζ(Γ) = ξ. Then ξ ∈ Hπ is a nonzero
π(Γ)-invariant vector and so 1Γ ⊂ π. �

2. Amenability

Definition 2.15. Let G be any locally compact group. We say that G
is amenable if any affine continuous action G y C on a nonempty convex
compact subset of a Hausdorff locally convex topological vector space has a
G-fixed point.

We give a few examples of locally compact amenable groups.

Proposition 2.16. Any compact group is amenable.
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Proof. Denote by mG the (unique) Haar probability measure on G. Let
Gy C be any affine continuous action on a nonempty convex compact subset
of a Hausdorff locally convex topological vector space. Define the convex
weak∗-compact subset Prob(C) = {µ ∈ CR(C)∗ | µ ≥ 0 and µ(1C) = 1} and
consider the affine weak∗-continuous action Gy Prob(C) defined by

∀g ∈ G, ∀f ∈ CR(C), ∀µ ∈ Prob(C), (g∗µ)(f) = µ(f ◦ g).

Define the barycenter map Bar : Prob(C)→ C as the unique continuous map
satisfying f(Bar(µ)) = µ(f) for every real-valued continuous affine function
f ∈ AR(C). Since G y C is continuous affine, Bar : Prob(C) → C is G-
equivariant. Choose a point c ∈ C and define the G-equivariant continuous
orbital map ι : G→ C : g 7→ gc. We may define µ = ι∗mG ∈ Prob(C). Since
mG is a left invariant Borel measure, it follows that g∗µ = µ for every g ∈ G.
This further implies that Bar(µ) ∈ C is a G-fixed point. �

Proposition 2.17. Any abelian locally compact group is amenable.

Proof. Let Gy C be any continuous affine action on a nonempty con-
vex compact subset of a Hausdorff locally convex topological vector space.
Whenever F ⊂ G is a finite subset, denote by CF the convex compact subset
of F-fixed points in C. Since G is abelian, G leaves CF globally invariant.
If we show that the compact subset CF is nonempty for every finite subset
F ⊂ G, by finite intersection property, we will have that the compact sub-
set of G-fixed points CG =

⋂
{CF | F ⊂ G finite subset} is nonempty. It

remains to prove that CF is nonempty for every finite subset F ⊂ G. By in-
duction and since G is abelian, it suffices to prove that Cg = {c ∈ C | gc = c}
is nonempty for every g ∈ G. This in turn follows from Markov–Kakutani’s
fixed point theorem. Choose c ∈ C and for every n ∈ N, set

cn =
1

n+ 1
(c+ gc+ · · ·+ gnc) ∈ C.

By compactness, denote by c∞ ∈ C an accumulation point of the sequence
(cn)n∈N. Since 1

n+2c+ n+1
n+2gcn = n+1

n+2cn + 1
n+2g

n+1c and since g is a homeo-
morphism of C, it follows that gc∞ = c∞ and so c∞ ∈ Cg. �

We prove various permanence properties enjoyed by amenable locally
compact groups.

Proposition 2.18. Let G,H be any locally compact groups. Assume
that G is amenable. The following assertions hold:

(i) If ρ : G → H is a continuous homomorphism with dense range,
then H is amenable.

(ii) If H CG is a closed normal subgroup, then G/H is amenable.

Proof. (i) Let H y C be any continuous affine action on a nonempty
convex compact subset of a Hausdorff locally convex topological vector
space. By composing with ρ : G → H, we obtain a continuous affine G-
action. Since G is amenable, the continuous affine G-action has a G-fixed
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point. This shows that the original continuous affine H-action has a ρ(G)-
fixed point. By continuity and density of ρ(G) in H, we obtain a H-fixed

point. Thus, H = ρ(G) is amenable.
(ii) It suffices to apply item (i) to the continuous homomorphism G →

G/H. �

Let now G be any locally compact σ-compact group. As usual, we denote
by B(G) the σ-algebra of Borel subsets of G and we fix a left invariant Haar
measure mG on G. Denote by ∆G : G → R∗+ the modular function. For
every p ∈ [1,+∞], we simply write Lp(G) = Lp(G,B(G),mG). Since G is
σ-compact, mG is σ-finite and hence we have L∞(G) = L1(G)∗. We denote
by λ : Gy Lp(G) the left translation action defined by

∀g ∈ G,∀F ∈ Lp(G), (λ(g)F )(h) = F (g−1h).

The left translation action λ : Gy Lp(G) is isometric for every p ∈ [1,+∞]
and continuous for every p ∈ [1,+∞). Since G y L∞(G) need not be
continuous, we denote by UC`(G) ⊂ L∞(G) the subspace of left uniformly
continuous functions

UC`(G) := {F ∈ L∞(G) | ‖λ(g)F − F‖∞ → 0 as g → e}.

Observe that UC`(G) ⊂ L∞(G) is a λ(G)-invariant ‖ · ‖∞-closed subspace.
Letting Cb(G) be the space of bounded continuous functions on G, we have
the following inclusions UC`(G) ⊂ Cb(G) ⊂ L∞(G). Observe that when G
is discrete, we have UC`(G) = Cb(G) = `∞(G). Whenever F ⊂ L∞(G) is a
‖ · ‖∞-closed subspace such that C1G ⊂ F , we say that an element m ∈ F∗
is a mean if m(F ) ≥ 0 for every F ∈ F+ and m(1G) = 1. If F ⊂ L∞(G)
is moreover λ(G)-invariant, we say that m ∈ F∗ is a left invariant mean if
m(λ(g)F ) = m(F ) for every g ∈ G and every F ∈ F .

Recall that the convolution product of two measurable functions F1, F2 :
G→ C, whenever it makes sense, is defined as

(F1 ∗ F2)(h) =

∫
G
F1(g)F2(g−1h) dmG(g).

Set P(G) = {µ ∈ L1(G) | µ ≥ 0 and ‖µ‖1 = 1}. We will use the following
technical lemma whose proof is left to the reader.

Lemma 2.19. The following assertions hold:

(i) If µ ∈ P(G) and F ∈ L∞(G), then µ ∗ F ∈ UC`(G).
(ii) If (µi)i∈I is a net in L1(G) such that limi ‖µi‖1 = 0, then for every

F ∈ L∞(G), we have limi ‖µi ∗ F‖∞ = 0.
(iii) There exists a net (µi)i∈I in P(G) such that for every µ ∈ L1(G),

we have limi ‖µi ∗ µ− µ‖1 = limi ‖µ ∗ µi − µ‖1 = 0.
(iv) If g ∈ G, µ ∈ P(G) and F ∈ L∞(G), then (λ(g)µ)∗F = λ(g)(µ∗F ).

The main result of this section is a functional analytic characterization
of amenability for locally compact groups.
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Theorem 2.20. Let G be any locally compact σ-compact group. The
following conditions are equivalent:

(i) 1G ≺ λG, that is, the left regular representation λG has almost
invariant vectors.

(ii) There exists a left invariant mean m ∈ L∞(G)∗.
(iii) There exists a left invariant mean m ∈ UC`(G)∗.
(iv) G is amenable, that is, any affine continuous action G y C on

a nonempty convex compact subset of a Hausdorff locally convex
topological vector space has a G-fixed point.

Proof. (i) ⇒ (ii) There exists a net (ξi)i∈I of unit vectors in L2(G)
such that for every compact subset Q ⊂ G, we have

lim
i

sup
g∈Q
‖λG(g)ξi − ξi‖2 = 0.

Choose a nonprincipal ultrafilter U on I. Define the unital ∗-homomorphism
ρ : L∞(G) → B(L2(G)) by the formula ρ(F )ξ = Fξ for every F ∈ L∞(G)
and every ξ ∈ L2(G). Then we have λG(g)ρ(F )λG(g)∗ = ρ(λ(g)F ) for every
g ∈ G and every F ∈ L∞(G). Define the mean m ∈ L∞(G)∗ by the formula

∀F ∈ L∞(G), m(F ) := lim
i→U
〈ρ(F )ξi, ξi〉.

Then for every g ∈ G and every F ∈ L∞(G), we have

m(λ(g)F ) = lim
i→U
〈ρ(λ(g)F )ξi, ξi〉

= lim
i→U
〈λG(g)ρ(F )λG(g)∗ξi, ξi〉

= lim
i→U
〈ρ(F )λG(g)∗ξi, λG(g)∗ξi〉

= m(F ).

Thus, m ∈ L∞(G)∗ is a left invariant mean.
(ii)⇒ (iii) This is trivial.
(iii) ⇒ (iv) As in Proposition 2.16, define the convex weak∗-compact

subset Prob(C) = {µ ∈ CR(C)∗ | µ ≥ 0 and µ(1C) = 1} and consider the
affine weak∗-continuous action Gy Prob(C) defined by

∀g ∈ G,∀f ∈ CR(C),∀µ ∈ Prob(C), (g∗µ)(f) = µ(f ◦ g).

Recall that the barycenter map Bar : Prob(C)→ C is the unique continuous
map satisfying f(Bar(µ)) = µ(f) for every real-valued continuous affine
function f ∈ AR(C). Since G y C is continuous affine, Bar : Prob(C) →
C is G-equivariant. Choose a point c ∈ C and define the G-equivariant
continuous orbital map ι : G → C : g 7→ gc. For every f ∈ CR(C), we have
f ◦ ι ∈ UC`(G). We may define µ ∈ Prob(C) by the formula

∀f ∈ CR(C), µ(f) = m(f ◦ ι).

Since m ∈ UC`(G)∗ is a left invariant mean, it follows that g∗µ = µ for every
g ∈ G. This further implies that Bar(µ) ∈ C is a G-fixed point.
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(iv)⇒ (iii) Endow E = UC`(G)∗ with the weak∗-topology and consider
the nonempty convex weak∗-compact subset C ⊂ UC`(G)∗ of all means on
UC`(G). Since the action G y UC`(G) is ‖ · ‖∞-continuous, the action
Gy C is affine weak∗-continuous. Thus, there exists a G-fixed point m ∈ C
and so m ∈ UC`(G)∗ is a left invariant mean.

(iii) ⇒ (i) We proceed in several intermediate steps. Let m ∈ UC`(G)∗

be a left invariant mean.

Claim 2.21. For every µ ∈ P(G) and every F ∈ UC`(G), we have
m(µ ∗ F ) = m(F ).

Indeed, let µ ∈ P(G) and F ∈ UC`(G). Observe that using Lemma
2.19(ii), we may assume that µ ∈ P(G) is compactly supported. Then
denote by K = supp(µ) ⊂ G the compact support of µ ∈ P(G). The G-
equivariant mapping ι : G → UC`(G) : g 7→ λ(g)F is continuous and thus
ι(K) ⊂ UC`(G) is a compact subset. Then the closed convex hull C of ι(K)
is a convex compact subset of UC`(G) (see [Ru91, Theorem 3.20]). Set
ν = ι∗µ and regard ν ∈ Prob(C) by the formula

∀f ∈ CR(C), ν(f) =

∫
G
µ(g)f(λ(g)F ) dmG(g).

We claim that µ ∗ F = Bar(ν) ∈ C. Recall that f(Bar(ν)) = ν(f) for every
f ∈ AR(C). For every h ∈ G, regarding the evaluation map eh : UC`(G) →
C : f 7→ f(h) as an element of AR(C), we have

Bar(ν)(h) = eh(Bar(ν)) = ν(eh) =

∫
G
µ(g)eh(λ(g)F ) dmG(g) = (µ ∗ F )(h).

Thus, we have Bar(ν) = µ ∗F . Since m ∈ UC`(G)∗ is a left invariant mean,
we can regard m ∈ AR(C) and we obtain

m(µ ∗ F ) = m(Bar(ν)) =

∫
G
µ(g)m(λ(g)F ) dmG(g) = m(F ).

This finishes the proof of Claim 2.21.

Claim 2.22. There exists a mean m0 ∈ L∞(G)∗ such that for every
µ ∈ P(G) and every F ∈ L∞(G), we have m0(µ ∗ F ) = m0(F ).

Indeed, choose any µ0 ∈ P(G). Thanks to Lemma 2.19(i), we may
define the mean m0 ∈ L∞(G)∗ by the formula m0(F ) = m(µ0 ∗ F ) for every
F ∈ L∞(G). Choose a net as in Lemma 2.19(iii). Using Lemma 2.19(ii), for
every µ ∈ P(G), we have

m0(µ ∗ F ) = lim
i
m0(µ ∗ µi ∗ F )

= lim
i
m(µ0 ∗ µ ∗ µi ∗ F )

= lim
i
m(µi ∗ F ) by Claim 2.21

= lim
i
m(µ0 ∗ µi ∗ F ) by Claim 2.21
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= m(µ0 ∗ F )

= m0(F ).

This finishes the proof of Claim 2.22.
Denote by M the nonempty convex weak∗-compact subset of all means

on L∞(G). Hahn–Banach theorem implies that the map P(G) → M :
µ 7→ mµ defined by the formula mµ(F ) =

∫
G µ(g)F (g) dmG(g) for every

F ∈ L∞(G) has dense range. Thus, we can find a net (µi)i∈I in P(G)
such that mµi → m0 for the weak∗-topology. For every µ ∈ P(G), define
µop ∈ P(G) by the formula µop(g) = ∆G(g)−1µ(g−1). For every µ ∈ P(G)
and every F ∈ L∞(G), using Fubini’s theorem, we have∫

G
(µ ∗ µi)(g)F (g) dmG(g) =

∫
G×G

µ(h)µi(h
−1g)F (g) dm⊗2

G (g, h)

=

∫
G×G

µi(h
−1g)µ(h)F (g) dm⊗2

G (g, h)

=

∫
G×G

µi(g)µ(h)F (hg) dm⊗2
G (g, h)

=

∫
G×G

µi(g)µop(h)F (h−1g) dm⊗2
G (g, h)

=

∫
G×G

µi(g) (µop ∗ F )(g) dmG(g).

Then Claim 2.22 implies that for every µ ∈ P(G), µ ∗ µi − µi → 0 weakly
in L1(G). Denote by J the directed set of all pairs (ε,F) where ε > 0 and
F ⊂ P(G) is a finite subset endowed with the order (ε1,F1) ≤ (ε2,F2) if and
only if ε1 ≤ ε2 and F2 ⊂ F1. Let j = (ε,F) ∈ J and consider the Banach
space (Ej , ‖ · ‖) =

⊕
µ∈F (L1(G), ‖ · ‖1). The weak topology on Ej is simply

the product of the weak topologies on L1(G). Then 0 belongs to the weak
closure in Ej of the convex subset

Cj := {(µ ∗ ψ − ψ)µ∈F | ψ ∈ P(G)} ⊂ Ej .

Hahn–Banach theorem implies that 0 belongs to the strong closure in Ej
of Cj . Then we may find ψj ∈ P(G) such that for every µ ∈ F , we have
‖µ ∗ ψj − ψj‖1 < ε. Thus, we have found a net (ψj)j∈J in P(G) such that
for every µ ∈ P(G), we have limj ‖µ ∗ ψj − ψj‖1 = 0.

Note that for every nonempty ‖ · ‖1-compact subset K ⊂ P(G), we have
limj ‖µ ∗ ψj − ψj‖1 = 0 uniformly on K. Indeed, let ε > 0 and choose
µ1, . . . , µn ∈ K such that for every µ ∈ K, there exists 1 ≤ i ≤ n for which
‖µ − µi‖ ≤ ε. Choose j0 ∈ J such that ‖µi ∗ ψj − ψj‖1 ≤ ε for every
1 ≤ i ≤ n and every j ≥ j0. Then for every µ ∈ K and every j ≥ j0,
choosing 1 ≤ i ≤ n such that ‖µ− µi‖ ≤ ε, we have

‖µ ∗ ψj − ψj‖1 ≤ ‖(µ− µi) ∗ ψj‖1 + ‖µi ∗ ψj − ψj‖1
≤ ‖µ− µi‖1 + ‖µi ∗ ψj − ψj‖1
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≤ 2ε.

This shows that limj ‖µ ∗ ψj − ψj‖1 = 0 uniformly on K.
Fix ε > 0 and Q ⊂ G any compact subset. Fix any µ ∈ P(G). The

orbital map G→ P(G) : g 7→ λ(g)µ is ‖ · ‖1-continuous and so ι(Q) ⊂ P(G)
is ‖ · ‖1-compact. Lemma 2.19(iv) implies that

sup
g∈Q
‖λ(g)(µ ∗ ψj)− µ ∗ ψj‖1 = sup

g∈Q
‖(λ(g)µ) ∗ ψj − µ ∗ ψj‖1 → 0.

We may find j ∈ J large enough so that with ζ = µ ∗ ψj ∈ P(G), we have

sup
g∈Q
‖λ(g)ζ − ζ‖1 ≤ ε2.

Set ξ = ζ1/2 ∈ L2(G)+ and observe that ‖ξ‖ = 1. Moreover, we have

sup
g∈Q
‖λG(g)ξ − ξ‖22 = sup

g∈Q

∫
G
|ξ(g−1h)− ξ(h)|2 dmG(h)

= sup
g∈Q

∫
G
|ζ(g−1h)1/2 − ζ(h)1/2|2 dmG(h)

≤ sup
g∈Q

∫
G
|ζ(g−1h)− ζ(h)|dmG(h)

= sup
g∈Q
‖λ(g)ζ − ζ‖1 ≤ ε2.

This implies that 1G ≺ λG and finishes the proof of Theorem 2.20. �

For countable discrete groups, we prove the following dynamical charac-
terization of amenability.

Theorem 2.23. Let Γ be any countable discrete group. The following
assertions are equivalent:

(i) Γ is amenable.
(ii) For any action Γ y X by homeomorphisms on a compact metriz-

able space, there exists a Γ-invariant Borel probability measure ν ∈
Prob(X).

Proof. (i) ⇒ (ii) Denote by Prob(X) ⊂ C(X)∗ the convex weak∗-
compact subset of all Borel probability measures on X and consider the
affine action Γ y Prob(X). Since Γ is amenable, there exists a Γ-invariant
Borel probability measure ν ∈ Prob(X).

(ii) ⇒ (i) Denote by M the convex weak∗-compact set of all means
on `∞(Γ). As `∞(Γ) is not ‖ · ‖∞-separable, we cannot directly use the
assumption in item (ii). However, since Γ is countable, there exists an
increasing net (Fi)i∈I of Γ-invariant closed ‖ · ‖∞-separable subspaces of
`∞(Γ) so that C1Γ ⊂ Fi for every i ∈ I and `∞(Γ) =

⋃
i∈I Fi. For every

i ∈ I, denote by Mi ⊂ (Fi)∗ the weak∗-compact convex subset of all means
on Fi and by ri : M → Mi : m 7→ m|Fi the Γ-equivariant restriction
map. Then we have MΓ =

⋂
i∈I r

−1
i (MΓ

i ). Note that Mi is metrizable
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since Fi is ‖ · ‖∞-separable. By assumption, there exists a Γ-invariant Borel
probability measure µi ∈ Prob(Mi). Arguing as in the proof of Theorem
2.20 (iii)⇒ (iv), we see that Bar(µi) ∈MΓ

i is a left Γ-invariant mean.
We have showed that for every i ∈ I, the compact subset MΓ

i ⊂ M
is nonempty. Moreover, for any finite subset F ⊂ I, since I is a directed
set, there exists j ∈ I such that i ≤ j for every i ∈ F . This implies that
MΓ

j ⊂
⋂
i∈FMΓ

i and so
⋂
i∈F r

−1
i (MΓ

i ) is nonempty. Since M is compact,

it follows that MΓ =
⋂
i∈I r

−1
i (MΓ

i ) is nonempty. This shows that `∞(Γ)
has a left invariant mean and thus Γ is amenable by Theorem 2.20. �

We conclude this section by proving von Neumann’s result regarding
nonamenability of free groups.

Theorem 2.24 (von Neumann). Denote by F2 = 〈a, b〉 the free group
on two generators. Then F2 is nonamenable.

Proof. By contradiction, assume that F2 = 〈a, b〉 is amenable. Denote
by m ∈ `∞(F2)∗ a left invariant mean. Define n : P(F2) → [0, 1] : W 7→
m(1W ) and observe that n is a finitely additive left invariant probability mean
on F2. Then we necessarily have n(F ) = 0 for every finite subset F ⊂ F2.
In particular, we have n({e}) = 0.

Denote by Wa ⊂ F2 the subset of reduced words whose first letter is a.
Likewise, consider the subsetsWa−1 ,Wb,Wb−1 ⊂ F2. Observe that F2\{e} =
Wa tWa−1 tWb tWb−1 . Since a · (Wa tWb tWb−1) ⊂Wa, it follows that

n(Wa) + n(Wb) + n(Wb−1) = n(Wa tWb tWb−1)

= n(a · (Wa tWb tWb−1))

≤ n(Wa).

This implies that n(Wb) = n(Wb−1) = 0. Likewise, we have n(Wa) =
n(Wa−1) = 0. This further implies that n(F2) = 0, a contradiction. �

One can show that amenability is inherited by closed subgroups. Thus,
any locally compact group that contains F2 as a closed subgroup is nona-
menable.

3. Property (T)

Definition 2.25 (Kazhdan [Ka67]). Let G be any locally compact
group. We say that G has property (T) if for every strongly continuous
unitary representation π : G→ U(Hπ) such that 1G ≺ π, we have 1G ⊂ π.

First, we prove various permanence properties enjoyed by locally com-
pact groups with property (T).

Proposition 2.26. Let G,H be any locally compact groups. Assume
that G has property (T). The following assertions hold:

(i) If ρ : G → H is a continuous homomorphism with dense range,
then H has property (T).
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(ii) If HCG is a closed normal subgroup , then G/H has property (T).
(iii) G is compactly generated. In particular, if G is discrete, then G is

finitely generated.
(iv) G is unimodular.

Proof. (i) Let π : H → U(Hπ) be any strongly continuous unitary
representation such that 1H ≺ π. Then π ◦ ρ : G → U(Hπ) is a strongly
continuous unitary representation such that 1G ≺ π◦ρ. Since G has property
(T), we have 1G ⊂ π ◦ ρ and so π has a nonzero ρ(G)-invariant vector. By
continuity and density of ρ(G) in H, it follows that 1H ⊂ π. This shows
that H has property (T).

(ii) It suffices to apply item (i) to the continuous homomorphism G →
G/H.

(iii) Denote by O the set of all compactly generated open subgroups of
G. Since G is locally compact, we have O 6= ∅ and G =

⋃
H∈OH. For

every H ∈ O, since H is open in G, the homogeneous space G/H is discrete.
Denote by π : G → U(Hπ) the strongly continuous unitary representation
where Hπ :=

⊕
H∈O `

2(G/H) and such that

∀g, h ∈ G, ∀H ∈ O, π(g)δhH = δghH .

We claim that 1G ≺ π. Indeed, let Q ⊂ G be any compact subset. By
compactness, there exist H1, . . . ,Hk ∈ O such that Q ⊂ H1 ∪ · · · ∪ Hk.
Denote by H < G the subgroup generated by H1, . . . ,Hk and observe that
H ∈ O. For every g ∈ Q, since Q ⊂ H, we have π(g)δH = δH . This
shows that 1G ≺ π. Since G has property (T), there exists a nonzero π(G)-
invariant vector ξ ∈ Hπ. Then there exists H ∈ O such that the orthogonal
projection ξH ∈ `2(G/H) of ξ ∈ Hπ is nonzero. Since π(g)ξH = ξH for every
g ∈ G and since ξH 6= 0, it follows that G/H is finite. Since H < G is
compactly generated, it follows that G is compactly generated.

(iv) Denote by ∆G : G → R∗+ the modular function. Then ∆G(G)

has property (T) by (iii). Since ∆G(G) is abelian, ∆G(G) is amenable by

Proposition 2.17 and so ∆G(G) is compact (see Proposition 2.27 below). It
follows that ∆G(G) = {1} and thus G is unimodular. �

Next, we observe that property (T) is completely opposite to amenabil-
ity. In particular, we obtain the following characterization of compact
groups.

Proposition 2.27. Let G be any locally compact group. The following
assertions are equivalent:

(i) G is compact.
(ii) G is amenable and has property (T).

Proof. (i) ⇒ (ii) Assume that G is compact. Then G is amenable
by Proposition 2.16. Let now π : G → U(Hπ) be any strongly continuous
unitary representation such that 1G ≺ π. There exists a unit vector ξ ∈ Hπ
such that supg∈G ‖π(g)ξ − ξ‖ ≤ 1/2. Denote by η ∈ Hπ the circumcenter of
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the bounded set π(G)ξ. Then η is π(G)-invariant. Moreover, since η belongs
to the closure of the convex hull of π(G)ξ, it follows that ‖η− ξ‖ ≤ 1/2 and
so η 6= 0. This shows that 1G ⊂ π.

(ii)⇒ (i) Since G has property (T), G is compactly generated by Propo-
sition 2.26(iii) and hence σ-compact. Since G is amenable, we have 1G ≺ λG
by Theorem 2.20. Since G has property (T), we obtain 1G ⊂ λG. Proposi-
tion 2.4 implies that G is compact. �

Next we show that property (T) is inherited by lattices.

Proposition 2.28. Let G be any locally compact second countable group
and Γ < G any lattice. If G has property (T), then so does Γ.

Proof. Let π : Γ → U(Hπ) be any unitary representation such that
1Γ ≺ π. Denote by π̂ : G → U(Hπ̂) the induced representation. We choose
the first viewpoint on induction. Set X = G/Γ. We may choose a Borel
section σ : X → G as in Corollary 1.12 such that σ(K) is relatively compact
in G for every compact subset K ⊂ X. As usual, denote by τ : G × X →
Γ : (g, x) 7→ σ(gx)−1gσ(x) the corresponding Borel 1-cocycle.

Claim 2.29. We have 1G ≺ π̂.

Indeed, let Q ⊂ G be any compact subset and ε > 0. We may assume

that e ∈ Q. Choose a compact subset K ⊂ X such that ν(X \ K) < ε2

8 .
Since the action map G × X → X : (g, x) 7→ gx is continuous, the subset
Q−1K is compact in X. This implies that the image of the map f : Q×K →
G : (g, x) 7→ τ(g, g−1x) is relatively compact in G. Since Γ is discrete in G,
this further implies that Λ := f(Q × K) ∩ Γ is a finite subset of Γ. Since
1Γ ≺ π, there exists a unit vector ξ ∈ Hπ such that

max {‖π(γ)ξ − ξ‖ | γ ∈ Λ} < ε√
2
.

Set η = 1X ⊗ ξ ∈ Hπ̂. Then ‖η‖ = 1 and for every g ∈ Q, we have

‖π̂(g)η − η‖2 =

∫
X
‖π(τ(g, g−1x))ξ − ξ‖2 dν(x)

≤
∫
K
‖π(τ(g, g−1x))ξ − ξ‖2 dν(x) + 4ν(X \K)

≤ max{‖π(γ)ξ − ξ‖2 | γ ∈ Λ}+ 4ν(X \K)

< ε2.

This shows that 1G ≺ π̂ and finishes the proof of Claim 2.29.
Since G has property (T), we obtain 1G ⊂ π̂. Proposition 2.13 further

implies that 1Γ ⊂ π. �

We point out that the converse to Proposition 2.28 holds, namely if
Γ < G is a lattice and if Γ has property (T), then G has property (T). We
will not prove this fact.
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Corollary 2.30. Let G be any locally compact second countable group
with property (T). Then any lattice Γ < G is weakly uniform.

Proof. The strongly continuous unitary representation λ0
G/Γ : G →

U(L2(G/Γ)0) is ergodic by Proposition 2.7. By property (T), λ0
G/Γ has

spectral gap. This means that Γ < G is weakly uniform. �

4. Property (T) for SLd(R), d ≥ 3

4.1. Howe–Moore property for SLd(R), d ≥ 2. Let H be any (com-
plex) Hilbert space and denote by B(H) the unital Banach ∗-algebra of all
bounded linear operators T : H → H. Besides the norm topology on B(H)
given by the supremum norm

∀T ∈ B(H), ‖T‖∞ := sup {‖Tξ‖ | ξ ∈ H, ‖ξ‖ ≤ 1} ,

we can define two weaker locally convex topologies on B(H) as follows.

• The strong operator topology on B(H) is defined as the initial topol-
ogy on B(H) that makes the maps B(H)→ H : T 7→ Tξ continuous
for all ξ ∈ H.
• The weak operator topology on B(H) is defined as the initial topol-

ogy on B(H) that makes the maps B(H) → C : T 7→ 〈Tξ, η〉 con-
tinuous for all ξ, η ∈ H.

Note that we already defined the strong operator topology on U(H). As
a matter of fact, on U(H), strong and weak operator topologies coincide.
Observe that whenH is separable, both strong and weak operator topologies
are metrizable on the unit ball of B(H) denoted by Ball(B(H)). Moreover,
Ball(B(H)) is weakly compact.

Let G be any locally compact group and π : G → U(Hπ) any strongly
continuous unitary representation. We say that π is mixing if π(g) → 0
weakly as g → ∞. Note that when G is noncompact, the left regular rep-
resentation λG : G→ U(L2(G)) is mixing. Any mixing strongly continuous
unitary representation is ergodic. In that respect, we introduce the following
terminology.

Definition 2.31. Let G be any noncompact locally compact group. We
say that G has the Howe–Moore property if any ergodic strongly continuous
unitary representation π : G→ U(Hπ) is mixing.

Observe that when G has the Howe–Moore property, for every nontrivial
strongly continuous unitary representation π : G → U(Hπ), the subrepre-
sentation π0 : G → U(Hπ 	 (Hπ)G) is ergodic and hence mixing. Here are
some properties enjoyed by locally compact groups with the Howe–Moore
property.

Proposition 2.32. Let G be any noncompact locally compact group with
the Howe–Moore property. The following assertions hold:
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(i) For every closed normal subgroup N C G, either N is compact or
N = G.

(ii) For every open subgroup H < G, either H is compact or H = G.
(iii) For every ergodic pmp action G y (X, ν) and every noncompact

closed subgroup H < G, the action H y (X, ν) is still ergodic.

Proof. (i) Let N C G be any proper closed normal subgroup. Define
the quasi-regular representation π : G → U(L2(G/N)) and note that π =
λG/N ◦ p where p : G → G/N is the canonical factor map and λG/N :

G/N → U(L2(G/N)) is the left regular representation of the locally compact
group G/N . Since N 6= G, we have L2(G/N)G 6= L2(G/N). By Howe–
Moore property, the subrepresentation π0 : G→ U(L2(G/N)	 L2(G/N)G)
is mixing. Since π|N ≡ 1, it follows that π0|N ≡ 1 and thus N is compact.

(ii) Let H < G be any proper open subgroup. Then the homogeneous
space G/H is discrete and nontrivial. Define the strongly continuous unitary
representation π : G→ U(`2(G/H)) by the formula

∀g, h ∈ G, π(g)δhH = δghH .

Since H 6= G, the unit vector δH ∈ `2(G/H) is not π(G)-invariant and so
`2(G/H)G 6= `2(G/H). By Howe–Moore property, the subrepresentation
π0 : G → U(`2(G/H) 	 `2(G/H)G) is mixing. Since the nonzero vector
ξ := δH−P`2(G/H)G(δH) ∈ `2(G/H)	`2(G/H)G is π(H)-invariant, it follows
that H is compact.

(iii) Let H < G be any noncompact closed subgroup and G y (X, ν)
any ergodic pmp action. By Proposition 2.7, the Koopman representation
κ0 : G → U(L2(X, ν)0) is ergodic. By Howe–Moore property, κ0 : G →
U(L2(X, ν)0) is mixing and hence π|H : H → U(L2(X, ν)0) is ergodic. Then
Proposition 2.7 implies that H y (X, ν) is ergodic. �

The main theorem of this subsection is the following well-known result
due to Howe–Moore.

Theorem 2.33 (Howe–Moore [HM77]). For every d ≥ 2, SLd(R) has
the Howe–Moore property.

As a consequence of Theorem 2.33 and Proposition 2.32(iii), we obtain
the following ergodicity result due to Moore.

Corollary 2.34 (Moore [Mo65]). Let d ≥ 2 and set G = SLd(R). Let
Γ < G be any lattice and denote by ν ∈ Prob(G/Γ) the unique G-invariant
Borel probability measure. For every noncompact closed subgroup H < G,
the pmp action H y (G/Γ, ν) is ergodic.

Before proving Theorem 2.33, we need to prove some preliminary results
that are also of independent interest.

Define the following subgroups of SL2(R):

U+ =

{(
1 x
0 1

)
| x ∈ R

}
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U− =

{(
1 0
x 1

)
| x ∈ R

}
A =

{(
λ 0
0 λ−1

)
| λ > 0

}
.

Observe that SL2(R) is generated by U+ ∪ U−.

Lemma 2.35. Let π : SL2(R) → U(Hπ) be any strongly continuous uni-
tary representation. Every π(U+)-invariant vector is π(SL2(R))-invariant.

Proof. Let ξ ∈ Hπ be any π(U+)-invariant unit vector. Define the
continuous function ϕ : G → C : g 7→ 〈π(g)ξ, ξ〉. By assumption, ϕ is
U+-bi-invariant. For every n ≥ 1, set

gn :=

(
0 −n
1
n 0

)
∈ SL2(R).

A simple calculation shows that for every λ > 0, we have(
1 λn
0 1

)
gn

(
1 n

λ
0 1

)
=

(
λ 0
1
n λ−1

)
→
(
λ 0
0 λ−1

)
.

Since ϕ is continuous and U+-bi-invariant, it follows that

∀a ∈ A, ϕ(a) = lim
n
ϕ(gn) = ϕ(1) = 1.

This further implies that π(a)ξ = ξ for every a ∈ A. It follows that ϕ is
A-bi-invariant.

Another simple calculation shows that for every x ∈ R, we have(
n 0
0 1

n

)(
1 0
x 1

)(
1
n 0
0 n

)
=

(
1 0
x
n2 1

)
→
(

1 0
0 1

)
.

Since ϕ is continuous and A-bi-invariant, it follows that for every u ∈ U−,
we have ϕ(u) = 1 and so π(u)ξ = ξ.

We have showed that ξ is both π(U+)-invariant and π(U−)-invariant.
Since SL2(R) is generated by U+ ∪ U−, it follows that ξ is π(SL2(R))-
invariant. �

Let d ≥ 2. For all 1 ≤ a 6= b ≤ d and all x ∈ R, denote by Eab(x) ∈
SLd(R) the elementary matrix defined by (Eab(x))ij = 1 if i = j, (Eab(x))ij =
x if i = a and j = b, (Eab(x))ij = 0 otherwise. We leave as an exercise to
check that SLd(R) is generated by {Eab(x) | 1 ≤ a 6= b ≤ d, x ∈ R}. For
every 2 ≤ k ≤ d, regard SLk(R) < SLd(R) as the following subgroup:

SLk(R) ∼=
{(

A 0d−k,k
0k,d−k 1d−k,d−k

)
| A ∈ SLk(R)

}
.

For all 1 ≤ `1 < `2 ≤ d, denote by H`1,`2 < SLd(R) the (`1, `2)-copy of
SL2(R) in SLd(R) that consists in all matrices g ∈ SLd(R) such that g`1`1 =
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α, g`1`2 = β, g`2`1 = γ, g`2`2 = δ, gii = 1 for all i 6= `1, `2, gij = 0 for all
i 6= j and {i, j} 6= {`1, `2} and such that(

α β
γ δ

)
∈ SL2(R).

Lemma 2.36. Let d ≥ 2 and π : SLd(R) → U(Hπ) be any strongly
continuous unitary representation. Let ξ ∈ Hπ be any π(H`1,`2)-invariant
vector for some 1 ≤ `1 < `2 ≤ d. Then ξ is π(SLd(R))-invariant.

Proof. Up to permutation, we may assume that `1 = 1 and `2 = 2.
We proceed by induction over 2 ≤ k ≤ d. By assumption, ξ is π(SL2(R))-
invariant. Assume that ξ is π(SLk(R))-invariant for 2 ≤ k ≤ d − 1 and
let us show that ξ is π(SLk+1(R))-invariant. Let 1 ≤ j ≤ k and x ∈ R.
For every n ≥ 1, denote by gn ∈ SLk(R) < SLk+1(R) any diagonal ma-
trix such that (gn)ii = 1

n if i = j. Then a simple computation shows

that gnEj(k+1)(x)g−1
n = Ej(k+1)(

x
n) → 1 as n → ∞ and g−1

n E(k+1)j(x)gn =
E(k+1)j(

x
n)→ 1 as n→∞. Since π(gn)ξ = ξ, we have

‖π(Ej(k+1)(x))ξ − ξ‖ = lim
n
‖π(Ej(k+1)(x))π(gn)∗ξ − π(gn)∗ξ‖

= lim
n
‖π(gnEj(k+1)(x)g−1

n )ξ − ξ‖ = 0

and so π(Ej(k+1)(x))ξ = ξ. Likewise, we have π(E(k+1)j(x))ξ = ξ. Since
SLk+1(R) is generated by SLk(R) ∪ {Ej(k+1)(x), E(k+1)j(x) | 1 ≤ j ≤ k, x ∈
R}, it follows that ξ is π(SLk+1(R))-invariant. By induction over 2 ≤ k ≤ d,
it follows that ξ is π(SLd(R))-invariant. �

Let d ≥ 2. Denote by K := SOd(R) < SLd(R) the special orthogonal
subgroup and observe that K < SLd(R) is compact. Define the subset
A+ ⊂ SLd(R) of diagonal matrices by

A+ := {diag(λ1, . . . , λd) | λ1 ≥ · · · ≥ λd > 0, λ1 · · ·λd = 1} ⊂ SLd(R)

and by A < SLd(R) the subgroup of diagonal matrices generated by A+.

Lemma 2.37 (Cartan decomposition). We have SLd(R) = K ·A+ ·K.

Proof. Let g ∈ SLd(R) be any matrix. By polar decomposition, we may
write g = k0h where k0 ∈ K and h ∈ SLd(R) is symmetric positive definite.
By diagonalization, there exists k2 ∈ K such that k2hk

−1
2 = a ∈ A+. Then

g = k1ak2 with k1 = k0k
−1
2 ∈ K. �

We now have all the tools to prove Theorem 2.33.

Proof of Theorem 2.33. Let d ≥ 2 and π : SLd(R) → U(Hπ) be
any strongly continuous unitary representation. Assuming that π is not
mixing, we show that there exists a nonzero π(SLd(R))-invariant vector.
Since SLd(R) is second countable, π(G)ξ is separable for every ξ ∈ Hπ and
so we may assume assume that Hπ is separable. Since π is not mixing, there
exists a sequence (gn)n∈N in G such that gn →∞ and π(gn) 6→ 0 weakly. Up
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to taking a subsequence, we may assume that there exists T ∈ B(H) such
that T 6= 0 and π(gn)→ T weakly. Using Lemma 2.37, there exist sequences
(k1,n)n∈N and (k2,n)n∈N in K and (an)n∈N in A+ such that gn = k1,nank2,n

for every n ∈ N. Up to taking another subsequence, we may assume that
k1,n → k1 in K and k2,n → k2 in K. This implies that π(k1,n)→ π(k1) and
π(k2,n)→ π(k2) strongly. This further implies that π(an)→ π(k1)∗Tπ(k2)∗

weakly. Set S := π(k1)∗Tπ(k2)∗ ∈ B(H) and observe that S 6= 0.
For every n ∈ N, write an = diag(λ1,n, . . . , λd,n) with λ1,n ≥ · · · ≥ λd,n

and λ1,n · · ·λd,n = 1. Since an → ∞, it follows that
λ1,n
λd,n
→ +∞. A simple

computation shows that for every x ∈ R,

a−1
n E1d(x)an = E1d(

λd,n
λ1,n

x)→ 1.

This implies that for every x ∈ R, we have π(E1d(x))S = S since

∀η1, η2 ∈ Hπ, 〈π(E1d(x))Sη1, η2〉 = lim
n
〈π(E1d(x))π(an)η1, η2〉

= lim
n
〈π(a−1

n E1d(x)an)η1, π(a−1
n )η2〉

= 〈η1, S
∗η2〉

= 〈Sη1, η2〉.

Choose η ∈ Hπ so that ξ := Sη 6= 0. Then ξ ∈ Hπ is a nonzero π(E1d(R))-
invariant vector. Denote by H1d < SLd(R) the (1, d)-copy of SL2(R). By
Lemma 2.35, ξ is π(H1d)-invariant and by Lemma 2.36, ξ is π(SLd(R))-
invariant. This finishes the proof of Theorem 2.33. �

4.2. Property (T) for SLd(R), d ≥ 3. The main theorem of this
subsection is the following celebrated result due to Kazhdan.

Theorem 2.38 (Kazhdan [Ka67]). For every d ≥ 3, SLd(R) has prop-
erty (T).

Before proving Theorem 2.38, we need to prove some preliminary results
that are also of independent interest.

For any locally compact second countable abelian group N , we denote

by N̂ the unitary dual of N

N̂ = {χ : N → T | χ is a continuous group homomorphism}.

Endowed with the topology of uniform convergence on compact subsets, N̂
is a locally compact second countable abelian group. We refer to [BHV08,

Section A.2] for further details. Denote by B(N̂) the σ-algebra of Borel

subsets of N̂ . For every regular Borel probability measure µ ∈ Prob(N̂),

define the strongly continuous unitary representation πµ : N → U(L2(N̂ , µ))
by the formula

∀ξ ∈ L2(N̂ , µ),∀g ∈ N, (πµ(g)ξ)(χ) = χ(g) ξ(χ).
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The fact that πµ : N → U(L2(N̂ , µ)) is strongly continuous follows from

Lemma 2.2 after noticing that for all ξ1, ξ2 ∈ L2(N̂ , µ), the map

ϕξ1,ξ2 : N → C : g 7→
∫
N̂
χ(g)ξ1(χ) ξ2(χ) dµ(χ)

is continuous (hence measurable) thanks to Lebesgue’s dominated conver-
gence theorem.

We prove the following spectral theorem regarding strongly continuous
unitary representations of locally compact abelian groups.

Theorem 2.39. Let N be any locally compact second countable abelian
group and π : N → U(Hπ) be any strongly continuous unitary representa-

tion. Then there exists a unique mapping Eπ : B(N̂)→ B(Hπ) that satisfies
the following properties.

(i) For every ξ ∈ Hπ, the mapping B(N̂) → R+ : B 7→ 〈Eπ(B)ξ, ξ〉
defines a finite regular Borel measure µξ on N̂ such that

∀h ∈ N, 〈π(h)ξ, ξ〉 =

∫
N̂
χ(h) dµξ(χ).

(ii) For every B ∈ B(N̂), Eπ(B) is an orthogonal projection in B(Hπ).
Moreover, Eπ({1

N̂
}) is the orthogonal projection onto the closed

subspace (Hπ)N of π(N)-invariant vectors.

We then say that Eπ : B(N̂) → B(Hπ) is the projection-valued spectral
measure associated with π : N → U(Hπ).

Proof. (i) Using Bochner’s theorem (see [BHV08, Theorem D.2.2]),

for every ξ ∈ Hπ, there exists a finite regular Borel measure µξ on N̂ such
that

∀h ∈ N, 〈π(h)ξ, ξ〉 =

∫
N̂
χ(h) dµξ(χ).

For all ξ, η ∈ Hπ, define the finite regular complex Borel measure µξ,η on N̂

by the formula µξ,η = 1
4

∑3
k=0 ikµξ+ikη. Then we have

∀h ∈ N, 〈π(h)ξ, η〉 =

∫
Ĥ
χ(h) dµξ,η(χ).

Observe that for every ξ ∈ Hπ with ‖ξ‖ = 1, we have µξ ∈ Prob(N̂) and

on the π(N)-invariant closed subspace Hξ = Vect{π(N)ξ}, the strongly
continuous unitary subrepresentation π : N → U(Hξ) is unitarily equivalent

to the strongly continuous unitary representation πµξ : N → U(L2(N̂ , µξ)).

Using Riesz’s representation theorem, for every B ∈ B(N̂), denote by
Eπ(B) ∈ B(Hπ) the unique bounded operator that satisfies

(2.2) ∀ξ, η ∈ Hπ, 〈Eπ(B)ξ, η〉 = µξ,η(B) =

∫
N̂

1B(χ) dµξ,η(χ).

By definition, we have µξ(B) = 〈Eπ(B)ξ, ξ〉 for every B ∈ B(N̂).
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(ii) For every ξ ∈ Hπ with ‖ξ‖ = 1, the bounded operator Eπ(B)

leaves invariant the π(N)-invariant closed subspace Hξ = Vect{π(N)ξ}
and Eπ(B)|Hξ is unitarily equivalent to the bounded operator L2(N̂ , µ) →
L2(N̂ , µ) : ξ 7→ 1Bξ. This implies that Eπ(B)|Hξ ∈ B(Hξ) is a selfadjoint

projection for every B ∈ B(N̂). By Zorn’s lemma, there exists a family of
unit vectors (ξi)i∈I in Hπ such that Hπ =

⊕
i∈I Hξi . This further implies

that Eπ(B) ∈ B(Hπ) is a selfadjoint projection for every B ∈ B(N̂). For

every ξ ∈ Hπ such that ‖ξ‖ = 1, we have µξ ∈ Prob(N̂) and hence

ξ ∈ (Hπ)N ⇔ ∀h ∈ N, ‖π(h)ξ − ξ‖2 = 0

⇔ ∀h ∈ N,
∫
N̂
|χ(h)− 1|2 dµξ(χ) = 0

⇔ µξ = δ1
N̂

⇔ Eπ({1
N̂
})ξ = ξ.

Uniqueness of the map Eπ : B(N̂)→ B(Hπ) follows from item (i). �

A key step in the proof of Theorem 2.38 is the following intermediate
result.

Theorem 2.40. Let π : SL2(R) n R2 → U(Hπ) be any strongly contin-
uous unitary representation that contains almost invariant vectors. Then
there exists a nonzero π(R2)-invariant vector.

Proof. Set G = SL2(R) n R2 and N = R2. For every g ∈ SL2(R) and
every x ∈ R2, we simply denote by SL2(R) × R2 → R2 : (g, x) 7→ g · x the
action by matrix multiplication. Note that for every g ∈ SL2(R) and every
x ∈ R2, we have g · x = gxg−1 where G y N acts by conjugation. Denote
by ( · | · ) the canonical inner product on R2. We identify the unitary dual
of R2 with R2 via the following topological isomorphism

R2 → R̂2 : x 7→ x̂ = (y 7→ exp(i(x | y))) .

For every g ∈ SL2(R) and every x ∈ R2, we then have ĝ · x = ĝ · x̂ where
ĝ = (tg)−1.

Let π : G → U(Hπ) be any strongly continuous unitary representation
such that 1G ≺ π. Then there exists a sequence (ξn)n∈N of π(G)-almost
invariant unit vectors in Hπ. Applying Theorem 2.39 to π|R2 , there exists a
sequence (µξn)n∈N in Prob(R2) such that

∀n ∈ N,∀x ∈ R2, 〈π(x)ξn, ξn〉 =

∫
R2

exp(i(x | y)) dµξn(y).

Then for every g ∈ SL2(R), every n ∈ N and every x ∈ R2, we have∫
R2

exp(i(x | y)) dµπ(g)ξn(y) = 〈π(x)π(g)ξn, π(g)ξn〉

= 〈π(g−1xg)ξn, ξn〉
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= 〈π(g−1 · x)ξn, ξn〉

=

∫
R2

exp(i(g−1 · x | y)) dµξn(y)

=

∫
R2

exp(i(x | ĝ · y)) dµξn(y)

=

∫
R2

exp(i(x | y)) d(ĝ∗µξn)(y).

By uniqueness, it follows that µπ(g)ξn = ĝ∗µξn for every g ∈ G and every

n ∈ N. For every g ∈ SL2(R) and every B ∈ B(R2), we have

|µξn(tg ·B)− µξn(B)| = |(ĝ∗µξn)(B)− µξn(B)|
= |µπ(g)ξn(B)− µξn(B)|
= |〈Eπ(B)π(g)ξn, π(g)ξn〉 − 〈Eπ(B)ξn, ξn〉| → 0.

Choose a nonprincipal ultrafilter U ∈ β(N) \ N and define the map m :
B(R2)→ R+ by the formula

∀B ∈ B(R2), m(B) := lim
n→U

µξn(B).

Then m(R2) = 1, m is finitely additive and the above reasoning shows that
m(g ·B) = m(B) for every g ∈ G and every B ∈ B(R2).

Consider the following Borel partition of R2 \ {(0, 0)}. Set

V1 :=
{

(t1, t2) ∈ R2 | |t2| ≤ |t1| and t1t2 > 0
}

V2 :=
{

(t1, t2) ∈ R2 | |t1| < |t2| and t1t2 ≥ 0
}

V3 :=
{

(t1, t2) ∈ R2 | |t1| ≤ |t2| and t1t2 < 0
}

V4 :=
{

(t1, t2) ∈ R2 | |t2| < |t1| and t1t2 ≤ 0
}
.

Observe that R2 \ {(0, 0)} = V1 t V2 t V3 t V4. Put g =

(
1 1
0 1

)
. Since

g · (V1 t V2) ⊂ V1, we have

m(V1) + m(V2) = m(V1 t V2) = m(g · (V1 t V2)) ≤ m(V1)

and thus m(V2) = 0. Similarly, we have m(V1) = m(V3) = m(V4) = 0. This
implies that m = δ(0,0). This further implies that

lim
n→U
〈Eπ({(0, 0)})ξn, ξn〉 = lim

n→U
µn({(0, 0)}) = 1.

Therefore Eπ({(0, 0)}) 6= 0 and so π|R2 has nonzero invariant vectors. �

We now have all the tools to prove Theorem 2.38.
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Proof of Theorem 2.38. Let d ≥ 3. Regard SL2(R) n R2 < SLd(R)
as the following subgroup:

SL2(R)nR2 ∼=




A x 03,d−3

0 1

0d−3,3

1
. . .

1



 | A ∈ SL2(R), x ∈ R2


.

Let π : SLd(R)→ U(Hπ) be any strongly continuous unitary representation
such that 1SLd(R) ≺ π. Theorem 2.40 implies that 1R2 ⊂ π|R2 . Since R2 is
not compact, π is not mixing. By Theorem 2.33, we obtain 1G ⊂ π. �

Combining Theorems 1.19, 2.38 and Proposition 2.28, we obtain the
following corollary.

Corollary 2.41 (Kazhdan [Ka67]). For every d ≥ 3, SLd(Z) has prop-
erty (T).

Let us point out that Corollary 2.30 and Theorem 2.38 imply that any
lattice Γ < SLd(R), d ≥ 3, is weakly uniform. More generally, it is proven
in [Be96] that any lattice Γ < G in a semisimple Lie group G with finite
center and no compact factor is weakly uniform.



CHAPTER 3

Stationary measures and Poisson boundaries

In this chapter, we introduce and study the notion of
stationary measure. We construct the (G,µ)-Poisson
boundary associated with any locally compact group G
endowed with an admissible Borel probability measure
µ. We then investigate rigidity properties of the (G,µ)-
Poisson boundary and its relationship with the notion
of amenability.

Introduction

In this chapter, the group G is always assumed to be locally compact
second countable. We endow G with its σ-algebra B(G) of Borel subsets.
We fix a left invariant Haar measure mG on G. Let X be any standard
Borel space and denote by Prob(X) the standard Borel space of all Borel
probability measures on X. We say that the action G y X is Borel if the
action map σX : G × X → X : (g, x) 7→ gx is Borel. Let ν ∈ Prob(X)
and assume that for every g ∈ G, the measures ν and g∗ν are equivalent
on X. In that case, we say that the action G y (X, ν) is nonsingular.
Recall that L∞(X, ν) = L1(X, ν)∗ so that L∞(X, ν) is also endowed with
the weak∗-topology. By [Ru91, Theorem 3.10], we may identify L1(X, ν)
with the space of all weak∗-continuous linear functionals on L∞(X, ν). Any
nonsingular action G y (X, ν) gives rise to an action α : G y L∞(X, ν)
defined by the formula

∀g ∈ G,∀F ∈ L∞(X, ν), α(g)(F ) = F ◦ g−1.

The action map G×L∞(X, ν)→ L∞(X, ν) : (g, F ) 7→ α(g)(F ) is separately
continuous when L∞(X, ν) is endowed with the weak∗-topology. This follows
from the fact that the action Gy L1(X, ν) is ‖·‖1-continuous. We will then
simply say that the action α : Gy L∞(X, ν) is weak∗-continuous. We refer
the reader to [Ta03, Proposition XIII.1.2] for further details. For every
Borel probability measure η ∈ Prob(X) such that η ≺ ν, me may regard η ∈
L1(X, ν) and we simply denote by η : L∞(X, ν) → C : f 7→

∫
X f(x) dη(x)

the corresponding weak∗-continuous positive unital linear functional. When
the context is clear, we will often simply write L∞(X) = L∞(X, ν).

55
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Recall that we always regard function spaces such as Lp(X, ν), for p ∈
[1,+∞], over the field C of complex numbers. The algebra L∞(X) is en-

dowed with the anti-linear involution ∗ defined by f∗(x) = f(x) for every
f ∈ L∞(X) and ν-almost every x ∈ X.

Definition 3.1. We say that A ⊂ L∞(X) is a von Neumann subalgebra
if A is a unital subalgebra of L∞(X) that is stable under the involution ∗
and closed with respect to the weak∗-topology.

Remark 3.2. More generally, one can define the notion of von Neumann
algebra as follows. Let H be any complex Hilbert space and consider the
unital Banach ∗-algebra B(H) of all bounded linear operators on H. We
say that M ⊂ B(H) is a von Neumann algebra if M is a unital ∗-subalgebra
of B(H) that is equal to its own bicommutant M ′′ inside B(H)1. By von
Neumann’s bicommutant theorem, M ⊂ B(H) is a von Neumann algebra if
and only if M is strongly closed (resp. weakly closed).

For instance, if we view L∞(X) ⊂ B(L2(X, ν)) as a unital ∗-subalgebra,
then one can show that L∞(X)′ = L∞(X). In that respect, L∞(X) is an
abelian von Neumann algebra. Moreover, A ⊂ L∞(X) is a von Neumann
subalgebra in the sense of Definition 3.1 if and only if A is equal to its
own bicommutant A′′ inside B(L2(X, ν)). In these notes, we will only be
interested in von Neumann subalgebras A ⊂ L∞(X).

When X is a compact metrizable space, we say that the action Gy X
is continuous if the action map σX : G ×X → X : (g, x) 7→ gx is continu-
ous. The next well-known result shows that when dealing with nonsingular
actions Gy (X, ν), we may always assume that X is a compact metrizable
space and the action Gy X is continuous.

Proposition 3.3. Let Gy (X, ν) be any nonsingular action. Let A ⊂
L∞(X, ν) be any G-invariant von Neumann subalgebra.

Then there exist a compact metrizable space Z, a continuous action
G y Z, a measure ζ ∈ Prob(Z) and a G-equivariant measurable factor
map π : (X, ν) → (Z, ζ) so that the G-equivariant weak∗-continuous unital
∗-homomorphism π∗ : L∞(Z)→ L∞(X) : F 7→ F ◦π satisfies ν ◦π∗ = ζ and

π∗(L∞(Z)) = A.
For a proof, we refer the reader to [Ta03, Proposition XIII.1.2] and

[Zi84, Proposition B.5, Corollary B.6]. Note that by a G-equivariant mea-
surable factor map π : (X, ν)→ (Z, ζ), we mean that there exists a ν-conull
G-invariant measurable subset X0 ⊂ X such that π : X0 → Z is measurable;
for every measurable subset W ⊂ Z, we have ζ(W ) = ν(π−1(W )); and for
every g ∈ G and every x ∈ X0, we have π(gx) = gπ(x).

Applying Proposition 3.3 in the case when A = L∞(X), we then say
that Gy (Z, ζ) is a compact model for the nonsingular action Gy (X, ν).

1The commutant of a subset S ⊂ B(H) is defined as S′ = {T ∈ B(H) | ∀S ∈ S, ST =
TS}. The bicommutant of a subset S ⊂ B(H) is defined as S′′ = (S′)′.
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In that case, using [Zi84, Corollary B.6], we can further choose X0 ⊂ X
so that Z0 = π(X0) ⊂ Z is a ζ-conull G-invariant measurable subset and
π : X0 → Z0 is bijective and π−1 : Z0 → X0 is also measurable. Thus, up
to passing to a compact model, we may assume that (Z, ζ) = (X, ν).

Let G y (X, ν) and G y (Y, η) be any nonsingular actions and π :
(X, ν) → (Y, η) any G-equivariant measurable factor map. We may re-
gard L∞(Y ) ⊂ L∞(X) as a G-invariant von Neumann subalgebra with η =
ν|L∞(X) via the G-equivariant weak∗-continuous unital ∗-homomorphism
π∗ : L∞(Y ) → L∞(X) : F 7→ F ◦ π such that ν ◦ π∗ = η. Recall that
there exists a unique conditional expectation E : L∞(X)→ L∞(Y ) such that
η◦E = ν. Note that E : L∞(X)→ L∞(Y ) is positive meaning that E(f) ≥ 0
for every f ∈ L∞(X) such that f ≥ 0. Moreover, E : L∞(X) → L∞(Y ) is
weak∗-continuous.

Definition 3.4. We say that the factor map π : (X, ν)→ (Y, η) is rela-
tively measure preserving if the unique conditional expectation E : L∞(X)→
L∞(Y ) such that η ◦ E = ν is G-equivariant.

1. Stationary measures

Let µ ∈ Prob(G) be any admissible Borel probability measure on G,
meaning that µ is equivalent to the Haar measure mG on G. Let G y X
be any Borel action on any standard Borel space. Denote by σX : G ×
X → X : (g, x) 7→ gx the Borel action map. Let ν ∈ Prob(X) and set
µ ∗ ν := σX∗(µ⊗ ν) ∈ Prob(X). We say that ν ∈ Prob(X) is µ-stationary if
µ ∗ ν = ν.

Definition 3.5. Keep the same notation as above and assume that
ν ∈ Prob(X) is µ-stationary. Then we simply say that (X, ν) is a (G,µ)-
space.

The first elementary result shows that any stationary measure gives rise
to a nonsingular action.

Lemma 3.6. Let (X, ν) be any (G,µ)-space. Then the action Gy (X, ν)
is nonsingular.

Proof. Let Y ⊂ X be any measurable subset. Firstly, since the ac-
tion map G × X → X is measurable, the map G → C : h 7→ ν(h−1Y ) is

measurable. Secondly, since µ is admissible, we may consider f := dµ
dmG

∈
L1(G,mG) with f ≥ 0 and ‖f‖1 = 1. Since the map G → L1(G,mG) :
h 7→ λ(h)f is ‖ · ‖1-continuous and since the measurable map G→ C : h 7→
ν(h−1Y ) is bounded, Lebesgue’s dominated convergence theorem implies
that the map G→ C : h 7→ ν(h−1Y ) is continuous because

∀h ∈ G, ν(h−1Y ) = (µ ∗ ν)(h−1Y )

=

∫
G
ν(g−1h−1Y )f(g) dmG(g)
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=

∫
G
ν(g−1Y )f(h−1g) dmG(g)

=

∫
G
ν(g−1Y )(λ(h)f)(g) dmG(g).

Assume that ν(Y ) = 0. Then we have

0 = ν(Y ) = (µ ∗ ν)(Y ) =

∫
G
ν(g−1Y ) dµ(g).

Then for µ-almost every g ∈ G, we have ν(g−1Y ) = 0. Since the map
G → C : h 7→ ν(h−1Y ) is continuous and since µ is equivalent to the Haar
measure mG on G, it follows that ν(g−1Y ) = 0 for every g ∈ G. This shows
that the action Gy (X, ν) is nonsingular. �

The second elementary result shows that whenever X is a compact
metrizable space and the action G y X is continuous, there always exists
at least one µ-stationary measure on X.

Lemma 3.7. Let X by any compact metrizable G-space. Then there
always exists ν ∈ Prob(X) such that µ ∗ ν = ν.

Proof. We define the weak∗-continuous affine map P : Prob(X) →
Prob(X) on the convex weak∗-compact space Prob(X) by the formula

Pν = µ ∗ ν =

∫
G
g∗ν dµ(g).

By Markov–Kakutani’s fixed point theorem, P has a fixed point ν ∈ Prob(X)
which is then a µ-stationary measure. Indeed, let η ∈ Prob(X) be any mea-
sure and define the sequence of measures (ηn)n∈N by the formula

∀n ∈ N, ηn :=
1

n+ 1

n∑
k=0

P ◦nη.

Choose a nonprincipal ultrafilter U ∈ β(N) \ N and define ν = limn→U ηn ∈
Prob(X) with respect to the weak∗-topology. Then we have Pν = ν and so
µ ∗ ν = ν. �

Let (X, ν) be any (G,µ)-space. By Lemma 3.6, the action G y (X, ν)
is nonsingular and so we may consider the weak∗-continuous action σ : Gy
L∞(X). We collect functional analytic properties of the (G,µ)-stationary
space (X, ν). We refer to [BBHP20, Proposition 2.7] for a more general
result for arbitrary von Neumann algebras.

Proposition 3.8. Let (X, ν) be any (G,µ)-space. Denote by L∞(X)G ⊂
L∞(X) the von Neumann subalgebra of G-invariant functions and by E :
L∞(X)→ L∞(X)G the unique conditional expectation such that ν ◦ E = ν.
The following assertions hold:

(i) For every f ∈ L∞(X), E(f) belongs to the weak∗-closure of the
convex hull of the set {σg(f) | g ∈ G}.
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(ii) For every µ-stationary Borel probability measure η ∈ Prob(X) such
that η ≺ ν, we have η ◦ E = η.

Proof. (i) Recall that L∞(X) = L1(X, ν)∗ and define the mapping
Tµ : L∞(X)→ L∞(X) by the formula

∀f ∈ L∞(X), ∀ψ ∈ L1(X, ν), ψ(Tµ(f)) =

∫
G
ψ(σ−1

g (f)) dµ(g).

Since µ ∗ ν = ν, we have ν(Tµ(f)) = ν(f) for every f ∈ L∞(X). Observe
that since Tµ is positive, this further implies that Tµ : L∞(X)→ L∞(X) is
weak∗-continuous. Choose a nonprincipal ultrafilter U ∈ β(N) \ N. Denote
by Eµ : L∞(X)→ L∞(X) the mapping defined by the formula

∀f ∈ L∞(X), Eµ(f) := lim
n→U

1

n

n∑
k=1

(Tµ)◦k(f)

where the above limit is taken with respect to the weak∗-topology. For every
f ∈ L∞(X), we have ν(Eµ(f)) = ν(f) and Eµ(f) ∈ L∞(X)G. Indeed, set
a = Eµ(f) ∈ L∞(X). Then we have Tµ(a) = a and so∫

G
‖a− σ−1

g (a)‖2ν dµ(g) = ν(a∗a)− 2<(ν(aTµ(a))) + ν(Tµ(a∗a))

= ν(a∗a)− 2<(ν(a∗a)) + ν(a∗a)

= 0.

This implies that a = σ−1
g (a) for µ-almost every g ∈ G. Since µ is equivalent

to the Haar measure on G and since the map G → L∞(X) : g 7→ σ−1
g (a)

is weak∗-continuous, it follows that σg(a) = a for every g ∈ G. Thus,
Eµ : L∞(X) → L∞(X)G is the unique conditional expectation such that
ν ◦ Eµ = ν.

Denote by C ⊂ L∞(X) the weak∗-closure of the convex hull of the set
{σg(f) | g ∈ G}. By construction and using Hahn–Banach theorem, for
every f ∈ L∞(X), we have Tµ(f) ∈ C. Indeed, otherwise using [Ru91,
Theorem 3.4(b)], there would exist ψ ∈ L1(X, ν) and α ∈ R such that

∀g ∈ G, < (Tµ(ψ(f))) < α ≤ <
(
ψ(σg−1(f))

)
.

This would imply that

< (Tµ(ψ(f))) =

∫
G
<
(
ψ(σg−1(f))

)
dµ(g) ≥ α > < (Tµ(ψ(f))) ,

a contradiction. Then for every f ∈ L∞(X), we have Tµ(f) ∈ C and hence

Eµ(f) = w-∗ lim
n→U

1

n

n∑
k=1

(Tµ)◦k(f) ∈ C.

(ii) Let η ∈ Prob(X) be any µ-stationary Borel probability measure
such that η ≺ ν and regard η ∈ L1(X, ν). Since η is µ-stationary, we have
η ◦ Tµ = η. This further implies that η ◦ Eµ = η. �



60 3. STATIONARY MEASURES AND POISSON BOUNDARIES

The third elementary result deals with the equivalence between ex-
tremality of the stationary measure and ergodicity of the associated nonsin-
gular action. In that respect, we say that a compact metrizable (G,µ)-space
(X, ν) is extremal if ν ∈ Prob(X) is an extremal point in the convex weak∗-
compact subset Probµ(X) of all µ-stationary Borel probability measures in
Prob(X). We say that a nonsingular action G y (X, ν) is ergodic if every
G-invariant measurable subset Y ⊂ X is null or conull. Observe that the
nonsingular action Gy (X, ν) is ergodic if and only if L∞(X)G = C1X (see
the proof of Proposition 2.7).

Lemma 3.9. Let (X, ν) be any compact metrizable (G,µ)-space. The
following assertions are equivalent:

(i) The (G,µ)-space (X, ν) is extremal.
(ii) The nonsingular action Gy (X, ν) is ergodic.

Proof. (i) ⇒ (ii) By contraposition, assume that the nonsingular ac-
tion G y (X, ν) is not ergodic. Choose a G-invariant measurable subset
Y ⊂ X such that 0 < ν(Y ) < 1. Define ν1 ∈ Probµ(X) by ν1 = 1

ν(Y )ν|Y
and ν2 ∈ Probµ(X) by ν2 = 1

ν(Y c)ν|Y c . Then ν = αν1 + (1 − α)ν2 with

α = ν(Y ) > 0 and ν 6= ν1, ν2. Therefore, the (G,µ)-space (X, ν) is not
extremal.

(ii) ⇒ (i) Since the nonsingular action G y (X, ν) is ergodic, we have
L∞(X)G = C1X . Proposition 3.8 implies that Eµ(f) = ν(f)1X for every
f ∈ L∞(X). Assume that ν = αν1 + (1 − α)ν2 with α > 0 and ν1, ν2 ∈
Probµ(X). Since ν1 ≤ 1

αν, we have ν1 ≺ ν. Proposition 3.8(iii) implies
that ν1(f) = ν1(Eµ(f)) = ν1(ν(f)1X) = ν(f) for every f ∈ L∞(X) and so
ν1 = ν. Likewise, we have ν2 = ν. This shows that the (G,µ)-space (X, ν)
is extremal. �

The fourth elementary result deals with stationary measures supported
on countable sets. Whenever X is a compact metrizable space G-space and
ν ∈ Prob(X), we denote by supp(ν) ⊂ X the topological support of the
measure ν. By definition, supp(ν) is the intersection of all closed subsets
Y ⊂ X for which ν(Y ) = 1. Then supp(ν) ⊂ X is closed and ν(supp(ν)) = 1.

Lemma 3.10. Let (X, ν) be any extremal compact metrizable (G,µ)-
space. Assume that ν has an atom. Then ν is G-invariant and supp(ν) ⊂ X
is a finite set.

Proof. Choose x ∈ supp(ν) an atom of maximum mass. Since

ν({x}) =

∫
G
g∗ν({x}) dµ(g) =

∫
G
ν({g−1x}) dµ(g),

it follows that ν({g−1x}) = ν({x}) for µ-almost every g ∈ G. Since µ ∈
Prob(G) is admissible, the map G → C : g 7→ ν({g−1x}) is continuous
(see the proof of Lemma 3.6) and hence we have ν({g−1x}) = ν({x}) for
every g ∈ G. Therefore, Gx is finite and 1

ν(Gx)ν|Gx is a G-invariant finitely
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supported probability measure. Since ν is assumed to be extremal among
µ-stationary measures, it follows that ν = 1

ν(Gx)ν|Gx is G-invariant and

supported on Gx. �

Denote by B(G) the unital ∗-algebra of all bounded Borel functions on
G. Define the Markov operator Pµ : B(G)→ B(G) by

∀g ∈ G, Pµ(F )(g) :=

∫
G
F (gh) dµ(h).

Observe that Pµ is a unital positive linear contraction. Following [Fu62a], a
function F ∈ B(G) is said to be (right) µ-harmonic if Pµ(F ) = F . We denote
by Har(G,µ) = ker(Pµ − id) the space of all bounded (right) µ-harmonic
functions. The next result shows that all bounded µ-harmonic functions are
continuous.

Lemma 3.11. We have Har(G,µ) ⊂ Cb(G).

Proof. Since µ is admissible, we may consider f := dµ
dmG

∈ L1(G,mG)

with f ≥ 0 and ‖f‖1 = 1. Recall that the map G→ L1(G,mG) : h 7→ λ(h)f
is ‖ · ‖1-continuous. For every F ∈ Har(G,µ), we have

F (g) =

∫
G
F (gh) dµ(h)

=

∫
G
F (gh)f(h) dmG(h)

=

∫
G
F (h)f(g−1h) dmG(h)

=

∫
G
F (h)(λ(g)f)(h) dmG(h).

Since F is uniformly bounded, Lebesgue’s dominated convergence theorem
implies that F is continuous. Thus, Har(G,µ) ⊂ Cb(G). �

Let (X, ν) be any (G,µ)-space. Denote by B(X) the unital ∗-algebra
of all bounded Borel functions on X. Define the Poisson transform Φµ :
B(X)→ Har(G,µ) by the formula

∀g ∈ G, Φµ(f)(g) :=

∫
X
f(gx) dν(x).

The function F = Φµ(f) is indeed µ-harmonic, since by Fubini’s theorem,
we have ∫

G
F (gh) dµ(h) =

∫
G

(∫
X
f(ghx) dν(x)

)
dµ(h)

=

∫
G×X

f(g σX(h, x)) d(µ⊗ ν)(h, x)

=

∫
X
f(gy) d(µ ∗ ν)(y)



62 3. STATIONARY MEASURES AND POISSON BOUNDARIES

=

∫
X
f(gy) dν(y) = F (g).

Observe that Φµ is a G-equivariant unital positive linear contraction.

2. The limit probability measures

The main result of this section provides the existence of limit probability
measures associated with any stationary measure.

Let µ ∈ Prob(G) be any admissible Borel probability measure. Set
(Ω,F ,P) = (GN,B(G)⊗N, µ⊗N). Define the forward shift S : Ω → Ω by the
formula

∀(gn)n∈N ∈ Ω, S((gn)n∈N) := (gn+1)n∈N.

Observe that S∗P = P and moreover S is P-ergodic. We simply write
ω = (gn)n∈N ∈ Ω.

Theorem 3.12 (Furstenberg [Fu62b]). Let (X, ν) be a compact metriz-
able (G,µ)-space. Then there exists a measurable map Ω→ Prob(X) : ω 7→
νω that satisfies the following properties:

(i) For P-almost every ω = (gn)n∈N ∈ Ω, the sequence (g0∗ · · · gn∗ν)n∈N
converges to νω ∈ Prob(X) with respect to the weak∗-topology.

(ii) For P-almost every ω = (gn)n∈N ∈ Ω and for µ-almost every g ∈ G,
the sequence (g0∗ · · · gn∗g∗ν)n∈N still converges to νω ∈ Prob(X)
with respect to the weak∗-topology.

(iii) For P-almost every ω = (gn)n∈N ∈ Ω, we have νω = g0∗νS(ω) and

ν =

∫
Ω
νω dP(ω).

Proof. (i) For every f ∈ C(X), we have

(g0∗ · · · gn∗ν)(f) =

∫
X
f(g0 · · · gnx) dν(x) = Φµ(f)(g0 · · · gn).

Define the uniformly bounded sequence Fn ∈ L∞(Ω,P) by the formula

∀ω = (gn)n∈N ∈ Ω, Fn(ω) := Φµ(f)(g0 · · · gn).

Define the increasing sequence of σ-subalgebras Fn ⊂ F by the formula
Fn = σ(X0, . . . , Xn) where Xn : Ω → G : ω 7→ gn is the projection onto
the n-th coordinate for all n ∈ N. Observe that for every n ∈ N, Fn ∈
L∞(Ω,Fn,P) with ‖Fn‖∞ ≤ ‖f‖∞ and

∨
n∈NFn = F . A simple calculation

using µ-harmonicity shows that

∀ω = (gn)n∈N ∈ Ω, E [Fn+1 | Fn] (ω) =

∫
G

Φµ(f)(g0 · · · gng′n+1) dµ(g′n+1)

= Φµ(f)(g0 · · · gn)

= Fn(ω).

It follows that (Fn)n∈N is a uniformly bounded martingale, hence it converges
P-almost everywhere. Set F (ω) = limn Fn(ω) for P-almost every ω ∈ Ω.
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Since X is a compact metrizable space, C(X) is separable with respect to
the uniform norm. Choose a uniformly dense countable subset A ⊂ C(X).
Let Ω0 ⊂ Ω be a Borel subset such that P(Ω0) = 1 and such that for every
ω = (gn)n∈N ∈ Ω0, we have that (g0∗ · · · gn∗ν)(f) is convergent for all f ∈ A.
For every ω = (gn)n∈N ∈ Ω0, define the bounded mapping

A → C : f 7→ lim
n

(g0∗ · · · gn∗ν)(f).

This mapping extends uniquely to a positive norm one bounded linear func-
tional

C(X)→ C : f 7→ lim
n

(g0∗ · · · gn∗ν)(f).

Hence, by Riesz representation theorem, for every ω = (gn)n∈N ∈ Ω0, there
is a unique Borel probability measure νω ∈ Prob(X) such that g0∗ · · · gn∗ν →
νω with respect to the weak∗-topology. We can then define a measurable
map Ω → Prob(X) : ω 7→ νω such that for P-almost every ω ∈ Ω, we have
g0∗ · · · gn∗ν → νω with respect to the weak∗-topology.

(ii) Let f ∈ C(X). For every g ∈ G, define F gn ∈ L∞(Ω,P) by F gn(ω) =
Φµ(f)(g0 · · · gng). For every n ∈ N, let us define and compute

In :=

∫
Ω

∫
G
|Fn(ω)− F gn(ω)|2 dµ(g) dP(ω)

=

∫
G

∫
G
|Φµ(f)(h)− Φµ(f)(hg)|2 dµ(g) dµ∗(n+1)(h)

=

∫
Ω
|Fn(ω)− Fn+1(ω)|2 dP(ω)

= ‖Fn − Fn+1‖2L2(Ω,P)
.

Since (Fn)n∈N is a martingale, we have

In = ‖Fn+1‖2L2(Ω,P)
− ‖Fn‖2L2(Ω,P)

.

This implies that
∑

n∈N In ≤ ‖f‖2∞ and hence(
(ω, g) 7→

∑
n∈N
|Fn(ω)− F gn(ω)|2

)
∈ L1(Ω×G,P⊗ µ).

In particular, for P-almost every ω ∈ Ω and µ-almost every g ∈ G, we have
limn(Fn(ω) − F gn(ω)) = 0. This shows that for P-almost every ω ∈ Ω and
µ-almost every g ∈ G, we have

lim
n

(g0∗ · · · gn∗ν)(f) = νω(f) = lim
n

(g0∗ · · · gn∗g∗ν)(f).

This implies that for P-almost every ω ∈ Ω and µ-almost every g ∈ G, we
have

lim
n
g0∗ · · · gn∗g∗ν = νω.

(iii) For P-almost every ω = (gn)n∈N ∈ Ω, we have

g0∗νS(ω) = lim
n
g0∗g1∗ · · · gn∗ν = νω
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with respect to the weak∗-topology. Moreover, for every f ∈ C(X), using
again µ-harmonicity and Lebesgue’s dominated convergence theorem, we
have ∫

Ω
νω(f) dP(ω) =

∫
Ω

lim
n

(g0∗ · · · gn∗ν)(f) dP(ω)

=

∫
Ω

lim
n

Φµ(f)(g0 · · · gn) dP(ω)

= lim
n

∫
Ω

Φµ(f)(g0 · · · gn) dP(ω)

= lim
n

Φµ(f)(e)

=

∫
X
f(x) dν(x).

This implies that ν =
∫

Ω νω dP(ω). �

Remark 3.13. Let (X, ν) be any compact metrizable (G,µ)-space. We
point out that the integral formula in Theorem 3.12(iii) can be upgraded
to hold for all bounded Borel functions on X. More precisely, for every
f ∈ B(X), the map Ω→ C : ω 7→ νω(f) is measurable and we have

ν(f) =

∫
Ω
νω(f) dP(ω).

We refer to [NZ00, Lemma 2.2] for a proof of this fact.

Any G-invariant measure is necessarily µ-stationary. The converse holds
when the group G is abelian.

Theorem 3.14 (Choquet–Deny [CD60]). Let G be any abelian locally
compact secound countable group and (X, ν) any compact metrizable (G,µ)-
space. Then ν is G-invariant.

Proof. Let S∞ be the countable discrete group of finitely supported
permutations of N. Define the Borel pmp action S∞ y (Ω,P) by

σ · ((gn)n∈N) = (gσ−1(n))n∈N.

By the Hewitt–Savage zero-one law (see [HS53]), the action S∞ y (Ω,P)
is ergodic. Since G is abelian, Theorem 3.12(i) implies that νω = νσ(ω) for
every σ ∈ S∞ and P-almost every ω ∈ Ω. By ergodicity and since X is a
compact metrizable space, the measurable function Ω→ Prob(X) : ω 7→ νω
is P-almost everywhere constant and hence equal to ν by Theorem 3.12(iii).
Since G is abelian, Theorem 3.12(ii) implies that g∗ν = ν for µ-almost every
g ∈ G. Since G y X is continuous, the action G y Prob(X) is weak∗-
continuous. Since µ is equivalent to the Haar measure, we conclude that ν
is G-invariant. �
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3. The Poisson boundary

In this section, we construct the Poisson boundary associated with an
admissible measure µ ∈ Prob(G). As we will see, the Poisson boundary is
the (essentially) unique (G,µ)-space (B, νB) for which the Poisson transform
Φµ : L∞(B, νB) → Har(G,µ) is surjective and isometric. We follow the
exposition given in [BS04, §2].

As in the previous section, set (Ω,F ,P) = (GN,B(G)⊗N, µ⊗N). Define
the Borel action Gy Ω by the formula

∀g ∈ G, ∀ω = (gn)n∈N ∈ Ω, g · (g0, g1, . . . ) = (gg0, g1, . . . ).

Observe that the action G y Ω is moreover nonsingular. Indeed, for every
g ∈ G, we have g∗P = g∗µ⊗P∗ and P = µ⊗P∗ with P∗ =

∏⊗
n≥1 µ. Since

µ is equivalent to the Haar measure mG on G, we have g∗µ ∼ µ and so
g∗P ∼ P. This gives rise to a weak∗-continuous action α : G y L∞(Ω,P).
Likewise, define the nonsingular transformation T : (Ω,P) → (Ω,P) by
T (g0, g1, . . . ) = (g0g1, g2, . . . ). Indeed, we have T∗P = µ∗2 ⊗

∏⊗
n≥2 µ and

µ∗2 ∼ µ so that T∗P ∼ P. Moreover, we have T ◦ g = g ◦ T for all g ∈ G.
Set

L∞(Ω,P)T = {F ∈ L∞(Ω,P) | F ◦ T = F} .

Since the nonsingular transformation T and the nonsingular action of Gy
(Ω,P) commute, L∞(Ω,P)T ⊂ L∞(Ω,P) is a G-invariant von Neumann
subalgebra. Then Proposition 3.3 implies that there exist a standard proba-
bility space (B, νB), a nonsingular action Gy (B, νB) and a G-equivariant
measurable factor map π : (Ω,P) → (B, νB) so that the mapping π∗ :
L∞(B) → L∞(Ω)T : f 7→ f ◦ π is a G-equivariant weak∗-continuous unital
∗-isomorphism such that P ◦ π∗ = νB.

Claim 3.15. The measure νB ∈ Prob(B) is µ-stationary.

Indeed, denote by σΩ : G×Ω→ Ω and σB : G×B → B the Borel maps
given by the nonsingular actions G y Ω and G y B. By definition of the
G-equivariant factor map π, we have π ◦ T = π and π ◦ σΩ = σB ◦ (idG×π).
Moreover, we have T∗P = σΩ∗(µ⊗P). Therefore, we obtain

νB = π∗P = (π ◦ T )∗P = π∗(T∗P)

= π∗(σΩ∗(µ⊗P)) = (π ◦ σΩ)∗(µ⊗P) = σB∗(µ⊗ νB)

= µ ∗ νB.

From now on, we use the identification L∞(Ω,P)T = L∞(B, νB) with
νB = P|L∞(Ω)T . We will simply write ω ∈ B for the image of ω ∈ Ω in

B. Claim 3.15 shows that (B, νB) is a (G,µ)-space. We will prove that for
P-almost every ω ∈ Ω, the sequence (Wn(ω))n∈N = (g0 · · · gn)n∈N converges
“in a certain sense” towards the point ω ∈ B (see (3.1)).
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Theorem 3.16 (Furstenberg [Fu62b]). The Poisson transform

Φµ : L∞(B, νB)→ Har(G,µ) : f 7→
(
g 7→

∫
B
f(gb) dνB(b)

)
is a G-equivariant unital positive surjective linear isometry.

Proof. We know that Φµ : L∞(B, νB)→ Har(G,µ) is a G-equivariant
unital positive linear contraction. It remains to construct the inverse map

of Φµ. Let F ∈ Har(G,µ) and define the sequence (F̂n)n∈N in L∞(Ω,F ,P)
by the formula

∀ω = (gn)n∈N ∈ Ω, F̂n(ω) = F (g0 · · · gn).

Define the increasing sequence of σ-subalgebras Fn ⊂ F by the formula
Fn = σ(X0, . . . , Xn) where Xn : Ω → G : ω 7→ gn is the projection onto

the n-th coordinate for all n ∈ N. Observe that for every n ∈ N, F̂n ∈
L∞(Ω,Fn,P) with ‖F̂n‖∞ ≤ ‖F‖∞ and

∨
n∈NFn = F . A simple calculation

using µ-harmonicity shows that

∀ω = (gn)n∈N, E
[
F̂n+1 | Fn

]
(ω) =

∫
G
F (g0g1 · · · gng′n+1) dµ(g′n+1)

= F (g0g1 · · · gn)

= F̂n(ω).

Thus, (F̂n)n∈N is a uniformly bounded martingale, hence it converges P-

almost everywhere. Set F̂ (ω) := limn F̂n(ω) for P-almost every ω ∈ Ω. It

follows that F̂ ∈ L∞(Ω,P) with ‖F̂‖∞ ≤ ‖F‖∞. Moreover, we have

(F̂n ◦ T )(g0, g1, . . . ) = F̂n(g0g1, . . . ) = F (g0g1 · · · gngn+1) = F̂n+1(ω).

Therefore F̂ ◦ T = F̂ and so F̂ ∈ L∞(Ω,P)T = L∞(B, νB).

The map Ψµ : Har(G,µ) → L∞(B, νB) : F 7→ F̂ is a G-equivariant
unital positive linear contraction. It remains to prove that Ψµ is indeed an
inverse for Φµ. If F ∈ Har(G,µ), using Lebesgue’s dominated convergence

theorem and regarding F̂ ∈ L∞(B, νB) = L∞(Ω,P)T , for every g ∈ G, we
obtain

Φµ(F̂ )(g) =

∫
B
F̂ (gω) dνB(ω)

=

∫
Ω
F̂ (g · ω) dP(ω)

= lim
n

∫
Ω
F̂n(g · ω) dP(ω)

= lim
n

∫
Ω
F (gg0 · · · gn) dP(ω)

= lim
n
F (g) = F (g).



3. THE POISSON BOUNDARY 67

Conversely, let f ∈ L∞(B, νB) = L∞(Ω,P)T . Then for every n ∈ N and for
P-almost every ω ∈ Ω, we have

E
[
Φ̂µ(f) | Fn

]
(ω) = Φ̂µ(f)n(ω)

= Φµ(f)(g0 · · · gn)

=

∫
B
f(g0 · · · gnω′) dνB(ω′)

=

∫
Ω
f(g0 · · · gn · ω′) dP(ω′)

=

∫
Ω
f ◦ Tn+1(g0, . . . , gn, ω

′) dP(ω′)

=

∫
Ω
f(g0, . . . , gn, ω

′) dP(ω′)

= E [f | Fn] (ω).

It follows that Φ̂µ(f) = f . Therefore, the Poisson transform

Φµ : L∞(B, νB)→ Har(G,µ)

and the mapping

Ψµ : Har(G,µ)→ L∞(B, νB) : F 7→ F̂

are inverse of one another. Moreover, for every f ∈ Har(G,µ), we have
‖Φµ(f)‖∞ = ‖f‖∞. �

Definition 3.17. The (G,µ)-space (B, νB) is called the (G,µ)-Poisson
boundary.

Even though we will not use it, we state a fundamental result due to
Furstenberg that provides an explicit description of the Poisson boundary
of semisimple Lie groups. We will only state it in the special case of G =
SLd(R), d ≥ 2.

Theorem 3.18 (Furstenberg [Fu62a]). Let d ≥ 2 and G := SLd(R). De-
note by P < G the cocompact closed subgroup of upper triangular matrices.
Then for every admissible measure µ ∈ Prob(G), there exists a unique µ-
stationary Borel probability measure ν ∈ Prob(G/P ) and moreover (G/P, ν)
is the (G,µ)-Poisson boundary.

In what follows, we will identify the function space L∞(B, νB) of the
(G,µ)-Poisson boundary (B, νB) with the space of bounded harmonic func-
tions Har(G,µ). We now investigate various qualitative and rigidity prop-
erties of the nonsingular action Gy (B, νB).

Corollary 3.19. The nonsingular action Gy (B, νB) is ergodic.

Proof. Let Y ⊂ B be any G-invariant measurable subset. Then

Φµ(1Y ) = νB(Y )1G = Φµ(νB(Y )1B)
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is a constant harmonic function. By injectivity of Φµ, we have 1Y =
νB(Y )1B. This implies that Y ⊂ B is null or conull. Thus, Gy (B, νB) is
ergodic. �

We say that a (G,µ)-space (C, νC) is a (G,µ)-boundary if there exists a
G-equivariant measurable factor map π : (B, νB)→ (C, νC). We character-
ize (G,µ)-boundaries in the next result.

Theorem 3.20. Let (C, νC) be any (G,µ)-space. The following asser-
tions are equivalent:

(i) (C, νC) is a (G,µ)-boundary.
(ii) For every compact model of Gy (C, νC), the limit probability mea-

sures (νC)ω in Theorem 3.12 are Dirac masses for P-almost every
ω ∈ Ω.

(iii) There exists a compact model of G y (C, νC) such that the limit
probability measures (νC)ω in Theorem 3.12 are Dirac masses for
P-almost every ω ∈ Ω.

Proof. (i)⇒ (ii) Abusing notation, we assume that (C, νC) is already
a compact metrizable (G,µ)-boundary. Let π : (B, νB) → (C, νC) be any
G-equivariant measurable factor map.

Claim 3.21. For P-almost every ω ∈ Ω, the limit probability measure
(νC)ω arising in Theorem 3.12 satisfies (νC)ω = δπ(ω).

Indeed, the proof of Theorem 3.12 shows that for P-almost every ω =
(gn)n∈N ∈ Ω, with respect to the weak∗-topology, we have

(νC)ω = lim
n
g0∗ · · · gn∗νC

= lim
n
g0∗ · · · gn∗(π∗νB)

= lim
n
π∗g0∗ · · · gn∗νB.

Combining with the proof of Theorem 3.16, this further implies that for
P-almost every ω = (gn)n∈N ∈ Ω and every f ∈ C(C), we have

(νC)ω(f) = lim
n

(g0∗ · · · gn∗νB)(f ◦ π)

= lim
n

Φµ(f ◦ π)(g0 · · · gn)

= ̂Φµ(f ◦ π)(ω)

= (f ◦ π)(ω)

= (f ◦ π)(ω) = δπ(ω)(f).

This finishes the proof of Claim 3.21.
(ii)⇒ (iii) This implication follows from Proposition 3.3.
(iii) ⇒ (i) Abusing notation, we assume that (C, νC) is already a com-

pact metrizable (G,µ)-space for which the limit probability measures (νC)ω
arising in Theorem 3.12 are Dirac masses for P-almost every ω ∈ Ω. Define
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the G-equivariant measurable map π : B → C so that for P-almost every
ω ∈ Ω, we have (νC)ω = δπ(ω). Then

π∗νB =

∫
Ω
δπ(ω) dP(ω) =

∫
Ω

(νC)ω dP(ω) = νC .

Then π : (B, νB) → (C, νC) is a G-equivariant measurable factor map and
so (C, νC) is a (G,µ)-boundary. �

Let us point out that for any (G,µ)-boundary (C, νC), Claim 3.21 shows
that there exists an essentially unique G-equivariant measurable factor map
πC : (B, νB)→ (C, νC). Applying Theorem 3.20 to the case when (C, νC) =
(B, νB), for every compact model of G y (B, νB) and for P-almost every
ω ∈ Ω, we have

(3.1) (νB)ω = lim
n
g0∗ · · · gn∗νB = δω.

In the next result, we show that the Poisson boundary behaves well with
respect to factor groups. Let N CG be any normal closed subgroup and let
p : G → G/N be the factor map. Denote by µ = p∗µ ∈ Prob(G/N) and
observe that µ ∈ Prob(G/N) is admissible. Using Proposition 3.3, denote
by (B, νB) the (G/N, µ)-space that satisfies L∞(B, νB) = L∞(B, νB)N .

Proposition 3.22. Keep the same notation as above. Then (B, νB) is
the (G/N, µ)-Poisson boundary.

Proof. Denote by Har(G,µ)N ⊂ Har(G,µ) the G-invariant closed sub-
space of N -invariant bounded µ-harmonic functions. In view of Theorem
3.16, it suffices to prove that the well-defined G-equivariant unital positive
linear contraction Ψ : Har(G/N, µ) → Har(G,µ)N : F 7→ F ◦ p is bijective.
Indeed, Ψ is clearly injective. Next, let F ∈ Har(G,µ)N . For every h ∈ N
and every g ∈ G, we have F (g) = (λ(h)F )(g) = F (h−1g) = F (g g−1h−1g).
Thus we may define the bounded function F : G/N → C by the formula
F (gN) = F (g) for every g ∈ G. Then F ∈ Har(G/N, µ) and F = F ◦ p.
This shows that Ψ is surjective and finishes the proof. �

4. Furstenberg boundary map

The next fundamental result provides the existence and the uniqueness
of Furstenberg boundary maps. As usual, we fix an admissible measure
µ ∈ Prob(G) and we denote by (B, νB) the (G,µ)-Poisson boundary. We
follow the exposition given in [BS04, §2].

Theorem 3.23 (Furstenberg [Fu62b]). Let (X, ν) be a compact metriz-
able (G,µ)-space. Then there exists an essentially unique G-equivariant
measurable boundary map βν : (B, νB)→ Prob(X) : b 7→ βν(b) such that

ν =

∫
B
βν(b) dνB(b).
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Proof. By Theorem 3.12, there is a measurable map Ω → Prob(X) :
ω 7→ νω so that g0∗νS(ω) = νω for P-almost every ω = (gn)n∈N ∈ Ω and

ν =
∫

Ω νω dP(ω). Note that for every g ∈ G and P-almost every ω =
(gn)n∈N ∈ Ω, with respect to the weak∗-topology, we have

νT (ω) = lim
n

(g0g1)∗ · · · gn∗ν = lim
n
g0∗g1∗ · · · gn∗ν = νω

and

g∗νω = lim
n
g∗g0∗g1∗ · · · gn∗ν = lim

n
(gg0)∗g1∗ · · · gn∗ν = νg·ω.

These properties imply that the G-equivariant measurable map βν : B →
Prob(X) : b 7→ βν(b) where βν(b) := νω with b = ω ∈ B is well-defined.
Moreover, we have

ν =

∫
Ω
νω dP(ω) =

∫
B
βν(b) dνB(b).

This proves the existence of the boundary map βν : B → Prob(X).
Let now β : B → Prob(X) : b 7→ β(b) be any G-equivariant measurable

map such that ν =
∫
B β(b) dνB(b). Then the (G,µ)-space (Prob(X), β∗νB) is

a (G,µ)-boundary. Recall that the barycenter map Bar : Prob(Prob(X))→
Prob(X) is defined by the formula

∀ψ ∈ Prob(Prob(X)), Bar(ψ) :=

∫
Prob(X)

η dψ(η).

Since G y Prob(X) is weak∗-continuous affine, the barycenter map Bar :
Prob(Prob(X)) → Prob(X) is G-equivariant. By assumption, we have
Bar(β∗νB) =

∫
B β(b) dνB = ν. Theorem 3.20 implies that for P-almost

every ω ∈ Ω, with respect to the weak∗-topology, we have

β(ω) = Bar(δβ(ω)) = Bar
(

lim
n
g0∗g1∗ · · · gn∗(β∗νB)

)
= lim

n
Bar (g0∗g1∗ · · · gn∗(β∗νB))

= lim
n
g0∗g1∗ · · · gn∗Bar(β∗νB)

= lim
n
g0∗g1∗ · · · gn∗ν

= νω = βν(ω).

This proves the uniqueness of the boundary map βν : B → Prob(X). �

Recall that for any (G,µ)-boundary (C, νC), there exists an essentially
unique G-equivariant measurable factor map πC : (B, νB) → (C, νC). We
give the following functional analytic interpretation of the above result. As
before, we may regard L∞(C) ⊂ L∞(B) as a G-invariant von Neumann
subalgebra such that νC = νB|L∞(C) via the G-equivariant weak∗-continuous
unital ∗-homomorphism π∗C : L∞(C) → L∞(B) : f 7→ f ◦ πC that satisfies
νB ◦ π∗C = νC .
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Corollary 3.24. Let Φ : L∞(C)→ L∞(B) be any G-equivariant weak∗-
continuous unital positive map such that νB ◦ Φ = νC . Then for every
f ∈ L∞(C), we have Φ(f) = f .

Proof. Using Proposition 3.3, we may assume that (C, νC) is a compact
metrizable (G,µ)-space. Regard C(C) ⊂ L∞(C) and consider the restriction
Φ|C(C) : C(C) → L∞(B). By duality, we obtain the G-equivariant measur-

able boundary map βνC : B → Prob(C) such that νC =
∫
B βνC (b) dνB(b).

By Theorems 3.20 and 3.23 and Claim 3.21, we know that for P-almost
every ω ∈ Ω, we have βνC (ω) = (νC)ω = δπC(ω). This implies that for ev-
ery f ∈ C(C) and P-almost every ω ∈ Ω, we have Φ(f)(ω) = βνC (ω)(f) =
δπC(ω)(f) = f(πC(ω)) = f(ω) and so Φ(f) = f . Since Φ is weak∗-continuous
and since C(C) ⊂ L∞(C) is weak∗-dense, it follows that for every f ∈
L∞(C), we have Φ(f) = f . �

The next corollary allows to identify conditional measures and limit
measures.

Corollary 3.25. Let (Y, η) be any compact metrizable (G,µ)-space,
(C, νC) any (G,µ)-boundary and π : (Y, η)→ (C, νC) any relatively measure
preserving G-equivariant measurable factor map. Denote by πC : (B, νB)→
(C, νC) the essentially unique G-equivariant measurable factor map. Regard
L∞(C) ⊂ L∞(Y ) as a G-invariant von Neumann algebra such that νC =
η|L∞(C).

Then the unique conditional expectation E : L∞(Y )→ L∞(C) such that
νC ◦ E = η satisfies that for P-almost every ω ∈ Ω and every f ∈ C(Y ), we
have E(f)(πC(ω)) = ηω(f).

Proof. Consider the restriction E |C(Y ) : C(Y ) → L∞(C). By dual-
ity, we obtain the G-equivariant measurable map β : C → Prob(Y ) such
that η =

∫
C β(c) dνC(c). Then β ◦ πC : B → Prob(Y ) is a G-equivariant

measurable map such that η =
∫
B(β ◦ πC)(b) dνB(b). By uniqueness in

Theorem 3.23, it follows that β ◦ πC = βη. This implies that for P-almost
every ω ∈ Ω, we have β(πC(ω)) = ηω. By definition of β, this further
implies that for P-almost every ω ∈ Ω and every f ∈ C(Y ), we have
E(f)(πC(ω)) = β(πC(ω))(f) = ηω(f). �

The next corollary provides a useful criterion to deduce equality between
(G,µ)-boundaries.

Corollary 3.26. For every i ∈ {1, 2}, let (Ci, νCi) be any (G,µ)-
boundary and denote by πCi : (B, νB) → (Ci, νCi) the essentially unique G-
equivariant measurable factor map. Assume that there exists a G-equivariant
measurable factor map π : (C1, νC1)→ (C2, νC2).

If π : (C1, νC1) → (C2, νC2) is relatively measure preserving, then π :
(C1, νC1)→ (C2, νC2) is an isomorphism.

Proof. By essential uniqueness in Theorem 3.20, we necessarily have
πC2 = π◦πC1 . As before, regard L∞(C2) ⊂ L∞(C1) ⊂ L∞(B) as G-invariant
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von Neumann subalgebras. By assumption, the conditional expectation E :
L∞(C1) → L∞(C2) is G-equivariant. Since L∞(C2) ⊂ L∞(B), we may
regard E : L∞(C1) → L∞(B) as a G-equivariant weak∗-continuous unital
positive map such that νB ◦ E = νC1 . By Corollary 3.24, we have E(f) = f
for every f ∈ L∞(C1). This implies that π : (C1, νC1) → (C2, νC2) is an
isomorphism. �

As a straightforward consequence of Theorem 3.23 and Corollary 3.26,
we obtain that any (G,µ)-boundary (C, νC) for which the measure νC ∈
Prob(C) is G-invariant is necessarily trivial. In particular, we infer the
following characterization of triviality of the Poisson boundary.

Corollary 3.27. The following assertions are equivalent:

(i) The Poisson boundary (B, νB) is trivial.
(ii) For every compact metrizable (G,µ)-space (X, ν), the measure ν is

G-invariant.

Proof. (i)⇒ (ii) By Theorem 3.23, since (B, νB) ∼= ({∗}, δ{∗}) is trivial,
for every compact metrizable (G,µ)-space (X, ν), the boundary map βν :
B → Prob(X) is essentially constant and its unique essential value is equal
to ν, which is necessarily G-invariant.

(ii)⇒ (i) We may assume that (B, νB) is already a compact metrizable
(G,µ)-space. By assumption, the measure νB is G-invariant. Then the G-
equivariant map π{∗} : (B, νB)→ ({∗}, δ{∗}) is relatively measure preserving.
Corollary 3.26 implies that (B, νB) ∼= ({∗}, δ{∗}) is trivial. �

The next corollary shows that the limit probability measures from The-
orem 3.12 behave well under equivariant measurable factor maps.

Corollary 3.28. Let (X, ν) and (Y, η) be compact metrizable (G,µ)-
spaces and π : (X, ν) → (Y, η) any G-equivariant measurable factor map.
Then for P-almost every ω ∈ Ω, we have π∗νω = ηω.

Proof. Up to modifying π on a ν-conull measurable subset, we may
assume that π : X → Y is Borel. Denote by π∗ : Prob(X) → Prob(Y )
the corresponding Borel map. By [Zi84, Proposition B.5]), there exists a
ν-conull G-invariant Borel subset X0 ⊂ X such that π|X0 : X0 → Y is
strictly G-equivariant. By Theorem 3.23, there exists an essentially unique
G-equivariant measurable boundary map βν : B → Prob(X) : ω 7→ νω
(resp. βη : B → Prob(Y ) : ω 7→ ηω) so that ν = Bar(βν∗νB) (resp. η =
Bar(βη∗νB)). Since ν(X \X0) = 0, Remark 3.13 implies that for P-almost
every ω ∈ Ω, we have νω(X \ X0) = 0. Then we may consider the G-
equivariant measurable map π∗ ◦ βν : B → Prob(Y ) : ω 7→ π∗νω. For every
f ∈ C(Y ), we have f ◦ π ∈ B(X) and Remark 3.13 implies that∫

Ω
ηω(f) dP(ω) = η(f) = (π∗ν)(f) = ν(f ◦ π)

=

∫
Ω
νω(f ◦ π) dP(ω)
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=

∫
Ω

(π∗νω)(f) dP(ω).

This implies that ∫
Ω
ηω dP(ω) =

∫
Ω
π∗νω dP(ω).

By uniqueness in Theorem 3.23, it follows that for P-almost every ω ∈ Ω,
we have π∗νω = ηω. �

The next corollary provides a strengthening of the ergodicity property
of the Poisson boundary obtained in Corollary 3.19.

Corollary 3.29. Let Gy (X, ν) be any ergodic pmp action. Then the
nonsingular action Gy (B ×X, νB ⊗ ν) is ergodic.

Proof. We may assume that both (B, νB) and (X, ν) are compact
metrizable (G,µ)-spaces. Then (B × X, νB ⊗ ν) is a compact metrizable
(G,µ)-space. Denote by pX : B×X → X and pB : B×X → B the canonical
G-equivariant factor maps. Let Z ⊂ B ×X be any G-invariant measurable
subset such that (νB ⊗ ν)(Z) > 0. Define η = 1

(νB⊗ν)(Z)(νB ⊗ ν)|Z . Then

(B × X, η) is still a compact metrizable (G,µ)-space. Since G y (B, νB)
is ergodic, Lemma 3.9 implies that pB : (B × X, η) → (B, νB) is a G-
equivariant measurable factor map. Likewise, since G y (X, ν) is er-
godic, pX : (B × X, η) → (X, ν) is a G-equivariant measurable factor
map. Then Corollary 3.28 implies that for P-almost every ω ∈ Ω, we have
pB∗ηω = (νB)ω = δω and pX∗ηω = νω = ν and so ηω = δω ⊗ ν. This implies
that

η =

∫
Ω
ηω dP(ω) =

∫
Ω
δω ⊗ ν dP(ω) = νB ⊗ ν.

This further implies that (νB ⊗ ν)(Z) = 1 and so the nonsingular action
Gy (B ×X, νB ⊗ ν) is ergodic. �

5. Amenability and the Poisson boundary

For every p ∈ [1,+∞], we simply denote by Lp(G) = Lp(G,B(G),mG)
and by λ : G y Lp(G) the left translation action. Let G y (X, ν) be any
nonsingular action and denote by σ : Gy L∞(X) the corresponding weak∗-
continuous action. Simply write L∞(G×X) = L∞(G×X,mG⊗ ν). Denote
by λ ⊗ σ : G y L∞(G × X) the weak∗-continuous action arising from the
diagonal nonsingular action Gy (G×X,mG ⊗ ν).

Definition 3.30. We say that a nonsingular action G y (X, ν) is
amenable if there exists a unital positive linear contractive mapping Φ :
L∞(G×X)→ L∞(X) such that

• For every f ∈ L∞(X), we have Φ(1G ⊗ f) = f .
• For every g ∈ G and every F ∈ L∞(G×X), we have

Φ((λ⊗ σ)(g)F ) = σ(g)Φ(F ).

We simply say that Φ : L∞(G×X)→ L∞(X) is a G-equivariant projection.
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Recall that P(G) = {µ ∈ L1(G) | µ ≥ 0 and ‖µ‖1 = 1}. For every
µ ∈ L1(G) and every F ∈ L∞(G×X), we denote by (µ⊗ idX)(F ) ∈ L∞(X)
the unique element that satisfies

∀ψ ∈ L1(X, ν), ψ((µ⊗ idX)(F )) = (µ⊗ ψ)(F ).

If µ ∈ P(G), then µ⊗ idX : L∞(G×X)→ L∞(X) is a unital positive linear
contractive mapping. If (µi)i∈I is a net in L1(G) such that limi ‖µi‖1 = 0,
then for every F ∈ L∞(G×X), we have (µi ⊗ idX)(F )→ 0 with respect to
the weak∗-topology.

Proposition 3.31. The following assertions hold:

(i) The nonsingular translation action Gy (G,mG) is amenable.
(ii) If G is amenable, then every nonsingular action G y (X, ν) is

amenable.
(iii) For every amenable nonsingular action G y (X, ν) and every lat-

tice Γ < G, the nonsingular action Γ y (X, ν) is amenable.

Proof. (i) Fix µ ∈ P(G). Define the unital positive linear contractive
mapping Ψ = µ⊗ idG : L∞(G×G)→ L∞(G). Then the following properties
hold:

• For every f ∈ L∞(G), we have Ψ(1G ⊗ f) = µ(1G) f = f .
• For every g ∈ G and every F ∈ L∞(G×G), we have

Ψ((idG⊗λ)(g)F ) = (µ⊗ λ(g))(F ) = λ(g)Ψ(F ).

Next consider the nonsingular automorphism θ : G×G→ G×G : (h, k) 7→
(kh, k) and define the unital positive linear contractive mapping Φ : L∞(G×
G)→ L∞(G) by the formula Φ(F ) = Ψ(F ◦θ). Then the following properties
hold:

• For every f ∈ L∞(G), we have

Φ(1G ⊗ f) = Ψ((1G ⊗ f) ◦ θ) = Ψ(1G ⊗ f) = f.

• For every g ∈ G and every F ∈ L∞(G×G), we have

Φ((λ⊗ λ)(g)F ) = Ψ(F ◦ (g−1 ⊗ g−1) ◦ θ)
= Ψ(F ◦ θ ◦ (idG⊗g−1))

= Ψ((idG⊗λ)(g)(F ◦ θ))
= λ(g)Ψ(F ◦ θ)
= λ(g)Φ(F ).

Thus, Φ : L∞(G × G) → L∞(G) is a G-equivariant projection and so the
nonsingular translation action Gy (G,mG) is amenable.

(ii) Since G is amenable, there exists a net of elements (µi)i∈I in P(G)
such that ‖λ(g)µi − µi‖1 → 0 uniformly on compact sets (see the proof of
Theorem 2.20(iii) ⇒ (i)). Choose a nonprincipal ultrafilter U on I. Define
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the unital positive linear contractive mapping Φ : L∞(G×X)→ L∞(X) by
the formula

∀F ∈ L∞(G×X), Φ(F ) = lim
i→U

(µi ⊗ idX)(F )

where the above limit is taken with respect to the weak∗-topology in L∞(X).

• For every f ∈ L∞(X), we have

Φ(1G ⊗ f) = lim
i→U

(µi ⊗ idX)(1G ⊗ f) = lim
i→U

µi(1G) f = f.

• For every g ∈ G and every F ∈ L∞(G×X), we have

Φ((λ⊗ σ)(g)F ) = lim
i→U

(µi ⊗ idX)((λ⊗ σ)(g))F )

= lim
i→U

(λ(g−1)µi ⊗ σ(g))(F )

= lim
i→U

(µi ⊗ σ(g))(F )

= σ(g)

(
lim
i→U

(µi ⊗ idX)(F )

)
= σ(g)Φ(F )

where in the third line we used the fact that ‖λ(g−1)µi−µi‖1 → 0.

Thus, Φ : L∞(G × X) → L∞(X) is a G-equivariant projection and so the
nonsingular action Gy (X, ν) is amenable.

(iii) Denote by Φ : L∞(G ×X) → L∞(X) the G-equivariant projection
witnessing amenability of the nonsingular action G y (X, ν). Choose a
Borel fundamental domain F ⊂ G so that G = F · Γ. Then F−1 ⊂ G is a
Borel fundamental domain for the left translation action Γ y G. We may
assume that mG(F−1) = 1 so that η := mG|F−1 ∈ Prob(F−1). Then θ :
(Γ×F−1,mΓ⊗η)→ (G,mG) : (γ, y) 7→ γy is a measure space isomorphism.
Moreover, for all γ, s ∈ Γ and all y ∈ F , we have θ(γs, y) = γθ(s, y). This
implies that the canonical inclusion L∞(Γ × X) ⊂ L∞(Γ × F−1 × X) ∼=
L∞(G×X) is Γ-equivariant. Thus Ψ := Φ|L∞(Γ×X) : L∞(Γ×X)→ L∞(X)
is a Γ-equivariant projection. This shows that the nonsingular action Γ y
(X, ν) is amenable. �

As usual, let µ ∈ Prob(G) be any admissible measure. Denote by (B, νB)
the (G,µ)-Poisson boundary. The following theorem and its corollary will
be very useful in Section 5.

Theorem 3.32 (Zimmer [Zi76]). The nonsingular action Gy (B, νB)
is amenable.

Proof. Recall the construction of the Poisson boundary. We have
(Ω,F ,P) = (GN,B(G)⊗N, µ⊗N) and the nonsingular action G y (Ω,P) is
given by g · (gn)n∈N = (gg0, g1, . . . ) for every g ∈ G and every (gn)n∈N ∈ Ω.
By Proposition 3.31(i) and since µ is admissible, it follows that the nonsin-
gular action Gy (Ω,P) is amenable. Denote by Φ : L∞(G× Ω)→ L∞(Ω)
a G-equivariant projection.
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Next, the nonsingular transformation T : (Ω,P) → (Ω,P) is given by
T ((gn)n∈N) = (g0g1, . . . ) for every (gn)n∈N ∈ Ω. Note that the nonsin-
gular action G y (Ω,P) commutes with the nonsingular transformation
T : (Ω,P)→ (Ω,P). By construction, we have a G-equivariant measurable
factor map (Ω,P) → (B, νB) : ω 7→ ω such that L∞(B, νB) = L∞(Ω,P)T .
Choose a nonprincipal ultrafilter U ∈ β(N)\N and define the unital positive
linear mapping E : L∞(Ω,P)→ L∞(Ω,P) by the formula

∀F ∈ L∞(Ω,P), E(F ) := lim
n→U

1

n+ 1

n∑
k=0

F ◦ T k

where the above limit is taken with respect to the weak∗-topology. Since
the action Gy L∞(Ω) is weak∗-continuous and commutes with T : Ω→ Ω,
it follows that E : L∞(Ω,P) → L∞(Ω,P)T is a G-equivariant projection.
Define Ψ : L∞(G × B) → L∞(B) by the formula Ψ(F ) = E(Φ(F )) for
every F ∈ L∞(G × B) ⊂ L∞(G × Ω). Then Ψ : L∞(G × B) → L∞(B) is
a G-equivariant projection and so the nonsingular action G y (B, νB) is
amenable. �

Corollary 3.33. For every lattice Γ < G, the nonsingular action Γ y
(B, νB) is amenable.

Proof. The proof is simply a combinination of Proposition 3.31(iii) and
Theorem 3.32. �

We conclude this section by stating an important characterization of
amenable groups involving the Poisson boundary.

Theorem 3.34 (Kaimanovich–Vershik [KV82], Rosenblatt [Ro81]).
Let G be any locally compact second countable group. Then G is amenable
if and only if there exists an admissible measure µ ∈ Prob(G) for which the
Poisson boundary (B, νB) is trivial.

Proof. Assume that there exists an admissible measure µ ∈ Prob(G)
for which the Poisson boundary (B, νB) = {∗} is trivial. Then L∞(B, νB) =
L∞({∗}) = C. Since G y (B, νB) is amenable by Theorem 3.32, there
exists a G-equivariant projection m : L∞(G × {∗}) → C. In other words,
m : L∞(G)→ C is a left invariant mean. By Theorem 2.20, G is amenable.
For the converse implication, we refer the reader to [KV82] and [Ro81]. �



CHAPTER 4

Reduced 1-cohomology and applications

We introduce 1-cohomology theory for unitary repre-
sentations. We explain the relationship between re-
duced 1-cohomology and harmonic cocycles. We prove
Shalom’s characterization of property (T) in terms of
reduced 1-cohomology. We show that induction is in-
jective in both usual and reduced 1-cohomology.

1. 1-cohomology theory for unitary representations

Definition 4.1. Let π : G→ U(Hπ) be any strongly continuous unitary
representation. We say the a map b : G → Hπ is a 1-cocycle for π if b is
continuous and satisfies the 1-cocycle relation

(4.1) ∀g, h ∈ Hπ, b(gh) = b(g) + π(g)b(h).

We denote by Z1(G, π) the space of all 1-cocycles for π. We say that a
map b : G → Hπ is a 1-coboundary for π if there exists ξ ∈ Hπ such that
b(g) = π(g)ξ − ξ for every g ∈ G. We denote by B1(G, π) the space of all
1-coboundaries for π.

It is clear from the definition that any 1-coboundary for π is a 1-cocycle
for π and so B1(G, π) ⊂ Z1(G, π). We denote by

H1(G, π) := Z1(G, π)/B1(G, π)

the 1-cohomology space for π. In what follows, since we will be mainly
interested in 1-cohomology theory, we will simply use the terminology cocycle
(resp. coboundary, cohomology) instead of 1-cocycle (resp. 1-coboundary, 1-
cohomology).

Observe that whenever b : G → Hπ is a map that satisfies the cocycle
relation (4.1) and that is continuous at e ∈ G, then b is continuous on G
and so b ∈ Z1(G, π). The next result provides a useful criterion for a map
b : G→ Hπ to be a cocycle.

Lemma 4.2. Let π : G → U(Hπ) be any strongly continuous unitary
representation. Let b : G → Hπ be any map that satisfies the following
conditions:

• The map b satisfies the cocycle relation (4.1).
• The function G→ C : g 7→ ‖b(g)‖ is measurable.
• The subset b(G) ⊂ Hπ is separable.

77
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Then b ∈ Z1(G, π).

Proof. The proof is somewhat similar to the one of Lemma 2.2. It
suffices to show that the map b : G→ Hπ : g 7→ b(g) is continuous at e ∈ G.
Let Q ⊂ G be any symmetric compact neighborhood of e ∈ G. Consider the
compactly generated open subgroup H :=

⋃
n≥1Q

n < G. It further suffices

to show that the map b|H : H → Hπ : g 7→ b(g) is continuous at e ∈ H.
Thus, we may as well assume that G is σ-compact.

As usual, we denote by mG a left invariant Haar measure on G. Fix
ε > 0 and define the measurable subset B := {g ∈ G | ‖b(g)‖ < ε/2}. By
the cocycle relation (4.1), we have B−1 = B and B2 ⊂ {g ∈ G | ‖b(g)‖ < ε}.
Take a sequence (gn)n∈N in G such that {b(gn) | n ∈ N} is dense in b(G).
For every g ∈ G, there exists n ∈ N such that ‖b(g)− b(gn)‖ < ε/2 and so

‖b(g−1
n g)‖ = ‖π(gn)b(g−1

n g)‖ = ‖b(g)− b(gn)‖ < ε/2.

This implies that G =
⋃
n∈N gnB and hence mG(B) > 0. Arguing as in the

proof of Lemma 2.2, this further implies that B2 contains an open neigh-
borhood of e ∈ G and so does {g ∈ G | ‖b(g)‖ < ε}. This implies that
b ∈ Z1(G, π). �

Observe that when G is σ-compact and b ∈ Z1(G, π), the subset b(G) ⊂
Hπ is separable. Indeed, write G =

⋃
n∈NQn with Qn ⊂ G a compact subset

for every n ∈ N. Then b(G) =
⋃
n∈N b(Qn). Since b : G→ Hπ is continuous,

b(Qn) is a compact subset of the metric space Hπ and so b(Qn) ⊂ Hπ is
separable. This implies that b(G) ⊂ Hπ is separable.

We will often use the following elementary result.

Lemma 4.3. Let π : G → U(Hπ) be any strongly continuous unitary
representation and b ∈ Z1(G, π) any cocycle. If b is bounded, then b ∈
B1(G, π).

Proof. Since the subset b(G) ⊂ Hπ is bounded, we may consider its
circumcenter ξ ∈ Hπ. By uniqueness of the circumcenter, using G-invariance
and the cocycle relation (4.1), we obtain ξ = b(g) + π(g)ξ for every g ∈ G.
Thus, we have b ∈ B1(G, π). �

There is a useful geometric interpretation of cocycles that goes as follows.
Regard Hπ as an affine Hilbert space and denote by Aff(Hπ) the group of
continuous affine transformations. Define the continuous map απ,b : G →
Aff(Hπ) by the formula απ,b(g)(ξ) = π(g)ξ + b(g). The cocycle relation
(4.1) implies that απ,b : G→ Aff(Hπ) is a continuous group homomorphism
and hence defines a continuous affine isometric action of G on Hπ. Then π
corresponds to the linear part of απ,b and b corresponds to the translation
part of απ,b. It is straightforward to see that b is a coboundary if and only
if απ,b admits a fixed point.

Endowed with the topology of uniform convergence on compact subsets
of G, the space Z1(G, π) is a Hausdorff locally convex topological vector
space.
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• Assume moreover that G is σ-compact and choose an increasing
sequence of compact subsets Qn ⊂ G such that G =

⋃
n∈NQn. The

family of seminorms pQn : Z1(G, π) → R+ defined by pQn(b) :=
sup {‖b(g)‖ | g ∈ Qn} is separating. Moreover, the metric d defined
on Z1(G, π) by the formula

∀b, c ∈ Z1(G, π), d(b, c) :=
∑
n∈N

1

2n+1

pQn(b− c)
1 + pQn(b− c)

is complete. Thus, Z1(G, π) is a Fréchet space.
• Assume moreover that G is compactly generated and choose a com-

pact subset Q ⊂ G such that e ∈ Q and G =
⋃
n≥1Q

n. Then pQ is

a complete norm on Z1(G, π) and so Z1(G, π) is a Banach space.

The subspace B1(G, π) ⊂ Z1(G, π) need not be closed. In that respect,
we introduce the reduced cohomology space for π by

H
1
(G, π) := Z1(G, π)/B1(G, π).

The following result clarifies when B1(G, π) ⊂ Z1(G, π) is closed.

Proposition 4.4 (Guichardet [Gu72]). Let π : G → U(Hπ) be any
strongly continuous unitary representation.

(i) If π does not have almost invariant vectors, then B1(G, π) is closed

in Z1(G, π). In that case, we have H1(G, π) = H
1
(G, π).

(ii) Assume that G is σ-compact and that π is ergodic. If B1(G, π) is
closed in Z1(G, π), then π does not have almost invariant vectors.

Proof. Define the continuous linear mapping

∂ : Hπ → B1(G, π) : ξ 7→ (g 7→ π(g)ξ − ξ).
(i) Since π does not have almost invariant vectors, there exists a compact
subset Q ⊂ G and ε > 0 such that

(4.2) ∀ξ ∈ Hπ, pQ(∂ξ) ≥ ε‖ξ‖.

Let b ∈ Z1(G, π) and (ξi)i∈I be a net in Hπ such that ∂ξi → b in Z1(G, π).
There exists i0 ∈ I such that for every i ≥ i0, we have pQ(∂ξi−b) ≤ 1. Then
(4.2) implies that

(4.3) ∀i ≥ i0, ‖ξi‖ ≤
1

ε
(pQ(∂ξi − b) + pQ(b)) ≤ 1

ε
(1 + pQ(b)) := κ.

For every compact subset C ⊂ G, we may choose iC ≥ i0 so that pC(∂ξiC −
b) ≤ 1. Combining with (4.3), we obtain

pC(b) ≤ pC(b− ∂ξiC ) + pC(∂ξiC ) ≤ 1 + 2κ.

Since b is bounded on G, it follows that b ∈ B1(G, π) by Lemma 4.3. This
shows that B1(G, π) ⊂ Z1(G, π) is closed.

(ii) Since π is ergodic, the linear mapping ∂ : Hπ → B1(G, π) is bijective.
Since G is σ-compact and since B1(G, π) ⊂ Z1(G, π) is closed, B1(G, π) is a
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Fréchet space. By the open mapping theorem (see [Ru91, Corollaries 2.12]),
the inverse linear mapping ∂−1 : B1(G, π) → Hπ is continuous. Assume by
contradiction that π has almost invariant vectors. Choose an increasing
sequence of compact subsets Qn ⊂ G such that G =

⋃
n∈NQn. Then for

every n ∈ N, there exists a unit vector ξn ∈ Hπ such that pQn(∂ξn) ≤ 2−n.

This implies that d(∂ξn, 0) ≤ 2−(n−1) → 0 (where d is the complete metric
defined using (Qn)n∈N). Thus, we have ξn = ∂−1(∂ξn) → 0, which is a
contradiction. �

In the next result, we obtain a characterization of property (T) in terms
of 1-cohomology theory.

Theorem 4.5 (Delorme–Guichardet [De76, Gu72]). The following as-
sertions hold:

(i) If G has property (T), then for every strongly continuous unitary
representation π, we have H1(G, π) = 0.

(ii) Assume that G is σ-compact. If H1(G, π) = 0 for every strongly
continuous unitary representation π, then G has property (T).

Proof. (i) Let π : G → U(Hπ) be any strongly continuous unitary
representation and b ∈ Z1(G, π) any cocycle such that b 6∈ B1(G, π). We will
show that G does not have property (T). Then b is not bounded on G (see
Lemma 4.3). Set H⊗0

π = CΩ with ‖Ω‖ = 1 and

exp(Hπ) :=
⊕
n∈N
H⊗nπ and ∀ξ ∈ Hπ, exp(ξ) :=

∑
n∈N

1√
n!
ξ⊗n ∈ exp(Hπ).

Note that Ω = exp(0). Denote by K the closure in exp(Hπ) of the linear
span of {exp(ξ) | ξ ∈ Hπ}. For every t > 0, define the strongly continuous
unitary representation ρt : G→ U(K) by the formula

(4.4) ρt(g)exp(ξ) := exp(− t
2

2
‖b(g)‖2 −<〈π(g)ξ, tb(g)〉) exp(π(g)ξ + tb(g))

for every g ∈ G and every ξ ∈ Hπ. One easily checks that for every g ∈ G,
the mapping ρt(g) : Vect {exp(ξ) | ξ ∈ Hπ} → K extends to a well-defined
unitary operator ρt(g) ∈ U(K). Moreover, ρ : G → U(K) is a group homo-
morphism using the cocycle relation (4.1). Finally, ρ : G→ U(K) is strongly
continuous by (4.4) and by density of Vect {exp(ξ) | ξ ∈ Hπ} in K. Then for
every g ∈ G, we have

(4.5) exp(− t
2

2
‖b(g)‖2) = 〈ρt(g)Ω,Ω〉.

Denote by Kt the closure in K of the linear span of ρt(G)Ω. We still denote
by ρt : G → U(Kt) the strongly continuous unitary representation defined
on the ρt(G)-invariant subspace Kt ⊂ K. Since b is not bounded on G, there
exists a sequence (gn)n∈N in G such that limn ‖b(gn)‖ = +∞. Then (4.1)
and (4.5) imply that for every g ∈ G, we have

〈ρt(gn)Ω, ρt(g)Ω〉 = 〈ρt(g−1gn)Ω,Ω〉
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= exp(− t
2

2
‖π(g)b(g−1gn)‖2)

= exp(− t
2

2
‖b(g)− b(gn)‖2)→ 0.

This implies that ρt(gn)Ω → 0 weakly in Kt. This further implies that ρt
is ergodic. Indeed, let ζ ∈ (Kt)G be any ρt(G)-invariant vector. Then for
every g ∈ G, we have

〈ζ, ρt(g)Ω〉 = 〈ρt(gng−1)ζ, ρt(gng
−1)ρt(g)Ω〉 = 〈ζ, ρt(gn)Ω〉 → 0.

It follows that ζ = 0 and so ρt is ergodic.
DefineKρ :=

⊕
n≥1K1/n and ρ :=

⊕
n≥1 ρ1/n. Note that ρ is still ergodic.

Define Ωn ∈ Kρ the unit vector whose n-th component is equal to Ω ∈ K1/n.
Then (4.5) implies that (Ωn)n≥1 is a sequence of almost invariant vectors
for ρ and so 1G ≺ ρ. This implies that G does not have property (T).

(ii) If G does not have property (T), then there exists an ergodic strongly
continuous unitary representation π that has almost invariant vectors. Then

Proposition 4.4(ii) implies that B1(G, π) 6= B1(G, π). In particular, we have
B1(G, π) 6= Z1(G, π) and so H1(G, π) 6= 0. �

2. Reduced cohomology and harmonic cocycles

From now on and for the rest of this chapter, we will assume that the
locally compact second countable group G is compactly generated. More
precisely, we use the following setup.

Terminology 4.6. Let G be any compactly generated lcsc group. Fix a
symmetric compact neighborhood Q ⊂ G of e ∈ G such that G =

⋃
n≥1Q

n.
Define the word length `Q : G→ N on G associated with Q by the formula

∀g ∈ G, `Q(g) := min{n ∈ N | g ∈ Qn}.

We say that a symmetric Borel probability measure µ ∈ Prob(G) is coho-
mologically adapted if

(i) µ is absolutely continuous with respect to the Haar measure on G.
(ii) The support supp(µ) generates G as a semigroup, that is, G =⋃

n≥1 supp(µ)n.

(iii) µ has a finite second moment, that is,
∫
G `Q(g)2 dµ(g) < +∞.

Let π : G → U(Hπ) be any strongly continuous unitary representation.
We do not assume that Hπ is separable. Let b ∈ Z1(G, π) be any cocycle.
Then for every g ∈ G, we have ‖b(g)‖ ≤ `Q(g) pQ(b). It follows that the

continuous function G → R+ : g 7→ ‖b(g)‖ belongs to L2(G,µ) and hence
we may consider the element b(µ) ∈ Hπ defined by the formula

∀ξ ∈ Hπ, 〈b(µ), ξ〉 =

∫
G
〈b(h), ξ〉 dµ(h).



82 4. REDUCED 1-COHOMOLOGY AND APPLICATIONS

We will simply write b(µ) =
∫
G b(h) dµ(h). We say that b is µ-harmonic if

b(µ) = 0. Using the cocycle relation (4.1), b is µ-harmonic if and only if

∀g ∈ G, b(g) =

∫
G
b(gh) dµ(h).

Denote by Harµ(G, π) ⊂ Z1(G, π) the closed subspace of all µ-harmonic
cocycles.

Recall that (Z1(G, π), pQ) is a Banach space. We may also endow the

space Z1(G, π) with the sesquilinear form 〈 · , · 〉µ defined by the formula

∀b, c ∈ Z1(G, π), 〈b, c〉µ :=

∫
G
〈b(h), c(h)〉dµ(h).

Since G =
⋃
n≥1 supp(µ)n, it is easy to see that ‖ · ‖µ is a norm on Z1(G, π).

More generally, we prove the following useful result.

Theorem 4.7. The space Z1(G, π) endowed with the sesquilinear form
〈 · , · 〉µ is a Hilbert space. For every compact subset K ⊂ G such that Q ⊂ K,
there exists a constant κ > 0 such that

1

κ
pK ≤ ‖ · ‖µ ≤ κ pK .

Moreover, we have the following orthogonal decomposition

(4.6) Z1(G, π) = B1(G, π)⊕Harµ(G, π).

We may and will identify H
1
(G, π) ∼= Harµ(G, π).

Proof. Firstly, we prove that Z1(G, π) is a Hilbert space. Let (bn)n be
any ‖·‖µ-Cauchy sequence in Z1(G, π). We want to show that (bn)n admits a
limit in Z1(G, π) with respect to ‖ · ‖µ. Up to taking a subsequence, we may

assume that ‖bn+1−bn‖µ ≤ 2−(n+1) for every n ∈ N. Using Cauchy–Schwarz
inequality, we have∫

G

∑
n∈N
‖bn+1(h)− bn(h)‖ dµ(h) =

∑
n∈N

∫
G
‖bn+1(h)− bn(h)‖dµ(h)

≤
∑
n∈N
‖bn+1 − bn‖µ

≤ 1.

Since Hπ is complete, it follows that limn bn(g) exists in Hπ for µ-almost
every g ∈ G. Observe that for every c ∈ Z1(G, π), we have

‖c‖2µ∗µ =

∫
G×G

‖c(gh)‖2 dµ(g)dµ(h)

=

∫
G×G

‖c(g) + π(g)c(h)‖2 dµ(g)dµ(h)

≤ 2‖c‖2µ + 2‖c‖2µ = 4‖c‖2µ.
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More generally, for every k ≥ 1 and every c ∈ Z1(G, π), we have

‖c‖2µ∗k ≤ k
2‖c‖2µ.

The exact same reasoning as before shows that for every k ≥ 1, limn bn(g)
exists in Hπ for µ∗k-almost every g ∈ G.

Next, set

Λ :=
{
g ∈ G | lim

n
bn(g) exists in Hπ

}
.

Claim 4.8. We have Λ = G.

Indeed, the previous reasoning shows that the Borel subset Λ ⊂ G is
not empty and µ∗k(G \ Λ) = 0 for every k ≥ 1. Moreover, the cocycle rela-
tion (4.1) implies that Λ ⊂ G is a subgroup. By contradiction, assume that
Λ 6= G. Then there exists g ∈ G such that gΛ ⊂ G\Λ. Since for every k ≥ 1,
we have supp(µ)k ⊂ supp(µ∗k) and since G =

⋃
k≥1 supp(µ)k, there exists

` ≥ 1 such that g ∈ supp(µ∗`). Since µ is absolutely continuous with respect

to mG, we may consider f := dµ
dmG

∈ L1(G,mG) with f ≥ 0 and ‖f‖1 = 1.

Since the map G → L1(G) : h 7→ λ(h)f is ‖ · ‖1-continuous and since the
measurable map G → R+ : x 7→ µ(x−1gΛ) is bounded, Lebesgue’s domi-
nated convergence theorem implies that the map G→ R+ : h 7→ µ∗2(h−1gΛ)
is continuous because

∀h ∈ G, µ∗2(h−1gΛ) = (µ ∗ µ)(h−1gΛ)

=

∫
G
µ(x−1h−1gΛ) dµ(x)

=

∫
G
µ(x−1h−1gΛ)f(x) dmG(x)

=

∫
G
µ(x−1gΛ)f(h−1x) dmG(x)

=

∫
G
µ(x−1gΛ)(λ(h)f)(x) dmG(x).

Since µ∗(2+`)(G \ Λ) = 0 and gΛ ⊂ G \ Λ, we have µ∗(2+`)(gΛ) = 0. This
further implies that∫

G
µ∗2(h−1gΛ) dµ∗`(h) = µ∗(2+`)(gΛ) = 0.

Then for µ∗`-almost every h ∈ G, we have µ∗2(h−1gΛ) = 0. By continuity,
we infer that µ∗2(h−1gΛ) = 0 for every h ∈ supp(µ∗`). In particular, for h =
g ∈ supp(µ∗`), we infer that µ∗2(g−1gΛ) = µ∗2(Λ) = 0. Since µ∗2(G\Λ) = 0,
we obtain µ∗2(G) = µ(Λ) + µ(G \ Λ) = 0, which is absurd. Therefore, we
have Λ = G, which means that limn bn(g) exists in Hπ for every g ∈ G. This
finishes the proof of Claim 4.8.

Set b(g) = limn bn(g) ∈ Hπ for every g ∈ G. We now prove that b ∈
Z1(G, π). It is clear that the map b : G → Hπ satisfies the cocycle relation
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(4.1). The function G → R+ : g 7→ ‖b(g)‖ is measurable as pointwise limit
of the continuous functions G → R+ : g 7→ ‖bn(g)‖. Since for every n ∈ N,

bn(G) is separable and since b(G) ⊂
⋃
n∈N bn(G), it follows that b(G) is

separable. Then Lemma 4.2 implies that b ∈ Z1(G, π).
For every p ≥ n, we have

‖bp − bn‖µ ≤
p−1∑
k=n

‖bk+1 − bk‖µ ≤
p−1∑
k=n

2−(k+1) ≤ 2−n.

Fatou’s lemma further implies that

‖b− bn‖2µ =

∫
G
‖b(g)− bn(g)‖2 dµ(g)

=

∫
G

lim inf
p
‖bp(g)− bn(g)‖2 dµ(g)

≤ lim inf
p

∫
G
‖bp(g)− bn(g)‖2 dµ(g)

= lim inf
p
‖bp − bn‖2µ

≤ (2−n)2.

Therefore limn ‖b − bn‖µ = 0. This shows that the norm ‖ · ‖µ is complete
on Z1(G, π) and so (Z1(G, π), 〈 · , · 〉µ) is indeed a Hilbert space.

Let now K ⊂ G be any compact subset such that Q ⊂ K. Then we have
G =

⋃
n≥1K

n and hence pK is a complete norm on Z1(G, π). Since Q ⊂ K,

we have pQ ≤ pK . Observe that for every b ∈ Z1(G, π), we have

‖b‖2µ =

∫
G
‖b(h)‖2 dµ(h) ≤

∫
G
`Q(h)2 dµ(h)·pQ(b) ≤

∫
G
`Q(h)2 dµ(h)·pK(b).

In particular, we have ‖ · ‖µ ≤ κ1 pK where κ1 = (
∫
G `Q(h)2 dµ(h))1/2. This

further implies that the identity linear mapping

ι : (Z1(G, π), pK)→ (Z1(G, π), ‖ · ‖µ) : b 7→ b

is continuous and bijective. Since both (Z1(G, π), pK) are (Z1(G, π), ‖ · ‖µ)
are Banach spaces, the open mapping theorem (see [Ru91, Corollaries 2.12])
implies that ι−1 is continuous. This further implies that there exists a
constant κ2 > 0 such that pK ≤ k2 ‖ · ‖µ.

Secondly, we prove the orthogonal decomposition (4.6). Indeed,

b ∈ (B1(G, π))⊥ ⇔ ∀ξ ∈ Hπ, 〈b, ∂ξ〉µ = 0

⇔ ∀ξ ∈ Hπ,
∫
G
〈b(h), π(h)ξ − ξ〉 dµ(h) = 0

⇔ ∀ξ ∈ Hπ,
∫
G
〈π(h)∗b(h)− b(h), ξ〉 dµ(h) = 0

⇔ ∀ξ ∈ Hπ,
∫
G
〈−b(h−1)− b(h), ξ〉 dµ(h) = 0
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⇔ ∀ξ ∈ Hπ, 〈−2 b(µ), ξ〉 = 0

⇔ b(µ) = 0

⇔ b ∈ Harµ(G, π).

Then (B1(G, π))⊥ = Harµ(G, π). �

Remark 4.9. The proof of Theorem 4.7 actually shows the following
more general result. Let µ ∈ Prob(G) be any symmetric Borel proba-
bility measure on G that satisfies conditions (i) and (ii) in Terminology
4.6. Assume that for every b ∈ Z1(G, π), we have ‖b‖µ < +∞. Then
(Z1(G, π), 〈 · , · 〉µ) is a Hilbert space.

3. Shalom’s characterization of property (T)

The main result of this section is the following characterization of prop-
erty (T) for compactly generated lcsc groups due to Shalom [Sh99] (see also
[Mo95, KS96] for the case of finitely generated discrete groups).

Theorem 4.10 (Shalom [Sh99]). Let G be any compactly generated lcsc
group. If G does not have property (T), then there exists a strongly contin-

uous unitary representation π : G→ U(Hπ) such that H
1
(G, π) 6= 0.

Before proving Theorem 4.10, we discuss the ultraproduct construction in
the setting of strongly continuous unitary representations. Let U ∈ β(N)\N
be any nonprincipal ultrafilter and π : G→ U(Hπ) any strongly continuous
unitary representation. Set

IU :=

{
(ξn)n ∈ `∞(N,Hπ) | lim

n→U
‖ξn‖ = 0

}
HU := `∞(N,Hπ)/IU .

For every (ξn)n ∈ `∞(N,Hπ), we simply denote by (ξn)U its image in HU .
Endowed with the sesquilinear form 〈(ξn)U , (ηn)U 〉HU = limn→U 〈ξn, ηn〉, the
vector space HU is a Hilbert space. We call HU the ultraproduct Hilbert
space.

When G is discrete, it is straightforward to define the ultraproduct uni-
tary representation πU : G→ U(HU ) by the formula

∀g ∈ G, ∀(ξn)U ∈ HU , πU (g)(ξn)U = (π(g)ξn)U .

When G is not discrete, the above formula still makes sense but πU need
not be continuous on HU . We will now define a πU -invariant closed subspace
HU ,π ⊂ HU on which the unitary representation πU is strongly continuous.

We say that a sequence (ξn)n ∈ `∞(N,Hπ) is (U , π)-equicontinuous if
for every ε > 0, there exists a neighborhood O ⊂ G of e ∈ G such that
{n ∈ N | ∀h ∈ O, ‖π(h)ξn − ξn‖ < ε} ∈ U . Set

EU ,π := {(ξn)n ∈ `∞(N,Hπ) | (ξn)n is (U , π)-equicontinuous}
HU ,π := EU ,π/IU .
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Observe that HU ,π ⊂ HU is a closed subspace.

Lemma 4.11. For every g ∈ G and every (ξn)n ∈ EU ,π, (π(g)ξn)n ∈
EU ,π. Then the closed subspace HU ,π ⊂ HU is πU -invariant and the unitary
representation πU : G→ U(HU ,π) is strongly continuous.

Proof. Let g ∈ G and (ξn)n ∈ EU ,π. For every ε > 0, there exists a
neighborhood O ⊂ G of e ∈ G such that {n ∈ N | ∀h ∈ O, ‖π(h)ξn − ξn‖ <
ε} ∈ U . Set Og = gOg−1 and observe that Og ⊂ G is still a neighborhood
of e ∈ G. We have

{n ∈ N | ∀h ∈ Og, ‖π(h)π(g)ξn − π(g)ξn‖ < ε}
= {n ∈ N | ∀h ∈ Og, ‖π(g)∗π(h)π(g)ξn − ξn‖ < ε}
= {n ∈ N | ∀h ∈ O, ‖π(h)ξn − ξn‖ < ε} ∈ U .

This shows that (π(g)ξn)n ∈ EU ,π. This further implies that πU : G →
U(HU ,π) is a well-defined unitary representation.

Secondly, we prove that πU : G → U(HU ,π) is strongly continuous. Let
(ξn)n ∈ EU ,π and set ξ = (ξn)U ∈ HU ,π. For every ε > 0, there exists a
neighborhood O ⊂ G of e ∈ G such that {n ∈ N | ∀h ∈ O, ‖π(h)ξn − ξn‖ <
ε} ∈ U . This implies that for every h ∈ O, we have

‖πU (h)ξ − ξ‖ = lim
n→U
‖π(h)ξn − ξn‖ ≤ ε.

This shows that πU : G → U(HU ,π) is strongly continuous at e ∈ G and so
πU : G→ U(HU ,π) is strongly continuous. �

We are now ready to prove Theorem 4.10.

Proof of Theorem 4.10. We follow the lines of the proof given by
Erschler–Ozawa [EO16, Section 4]. Fix a cohomologically adapted sym-
metric Borel probability measure µ ∈ Prob(G) as in Terminology 4.6. We
moreover assume that µ is compactly supported, µ = µ0 ∗ µ0 for some sym-
metric Borel probability measure µ0 ∈ Prob(G) and e ∈ supp(µ). Using
Theorem 4.7, it suffices to show that there exists a nonzero µ-harmonic
cocycle for some strongly continuous unitary representation.

Since G does not have property (T), there exists a strongly continuous
unitary representation π : G → U(Hπ) that is ergodic and that has almost
invariant vectors. Since G is compactly generated, we may assume that Hπ
is separable. Consider the bounded operator π(µ) ∈ B(Hπ) defined by the
formula

(4.7) ∀ξ, η ∈ Hπ, 〈π(µ)ξ, η〉 =

∫
G
〈π(g)ξ, η〉 dµ(g).

We will simply write π(µ) =
∫
G π(g) dµ(g). Since µ0 is symmetric and since

µ = µ0 ∗µ0, we have π(µ) = π(µ0)π(µ0) = π(µ0)∗π(µ0). It follows that π(µ)
is a positive selfadjoint bounded operator such that ‖π(µ)‖ ≤ 1. Then its
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spectrum satisfies σ(π(µ)) ⊂ [0, 1]. Since π is ergodic, 1 is not an eigenvalue
for π(µ). Indeed, if η ∈ Hπ satisfies π(µ)η = η, then (4.7) implies that∫

G
‖π(g)η − η‖2 dµ(g) = 2− 2<〈π(µ)η, η〉 = 0.

This implies that π(g)η = η for µ-almost every g ∈ G. Since π is strongly
continuous, we obtain π(g)η = η for every g ∈ supp(µ). Since G =⋃
n≥1 supp(µ)n, it follows that π(g)η = η for every g ∈ G and so η = 0.

Since π has almost invariant vectors, (4.7) and Lebesgue’s dominated con-
vergence theorem imply that 1 ∈ σ(π(µ)). More precisely, we have the
following useful result.

Claim 4.12. Set T = π(µ). Then there exists a unit vector ξ ∈ Hπ
and a Borel probability measure ν ∈ Prob([0, 1]) such that 1 ∈ supp(ν),
ν({1}) = 0, and

(4.8) ∀f ∈ B([0, 1]),

∫ 1

0
f(t) dν(t) = 〈f(T )ξ, ξ〉.

Indeed, using the assumptions, for every n ≥ 1, the spectral projec-
tion pn = 1[1−1/n,1](T ) is nonzero. Then for every n ≥ 1, p⊥n (Hπ) is
a proper closed subspace with empty interior. Baire’s theorem implies
that

⋃
n≥1 p

⊥
n (Hπ) is a proper subspace of Hπ. Choose a unit vector ξ ∈

Hπ \
⋃
n≥1 p

⊥
n (Hπ). Then we have pnξ 6= 0 for every n ≥ 1. Denote

by ν ∈ Prob([0, 1]) the unique Borel probability measure satisfying (4.8).
Then ν([1 − 1/n, 1]) = 〈pnξ, ξ〉 = ‖pnξ‖2 6= 0 and so 1 ∈ supp(ν). Since
1{1}(T ) = 0, we have ν({1}) = 0. This finishes the proof of Claim 4.12.

Next, for every n ∈ N, consider the coboundary cn : G → Hπ : g 7→
Tn/2ξ − π(g)Tn/2ξ. We have

‖cn‖2µ =

∫
G
‖cn(g)‖2 dµ(g)

= 2
(
‖Tn/2ξ‖2 − 〈Tn/2ξ, T (n+2)/2ξ〉

)
= 2〈Tn(1− T )ξ, ξ〉

= 2

∫ 1

0
tn(1− t) dν(t) := 2 γ(n).

We will need the following elementary technical result.

Claim 4.13. The following assertions hold:

(i) The sequence (γ(n))n is decreasing and limn γ(n) = 0.

(ii) The sequence (γ(n+1)
γ(n) )n is increasing and limn

γ(n+1)
γ(n) = 1.

Indeed, item (i) follows from Lebesgue’s dominated convergence theo-
rem. For item (ii), first note that for every n ∈ N, γ(n) > 0. Indeed,



88 4. REDUCED 1-COHOMOLOGY AND APPLICATIONS

otherwise ν would be supported on {0, 1}, which is absurd by construction.
Next, Cauchy–Schwarz’s inequality implies

γ(n+ 1) =

∫ 1

0
tn/2(1− t)1/2 · t(n+2)/2(1− t)1/2 dν(t) ≤ γ(n)1/2 · γ(n+ 2)1/2

and so the sequence (γ(n+1)
γ(n) )n is increasing. Denote by ` = limn

γ(n+1)
γ(n) . By

contradiction, assume that ` < 1. Then every n ∈ N, we have γ(n) ≤ `n

and the monotone convergence theorem implies that∫ 1

0
tn dν(t) =

∞∑
k=n

γ(k) ≤ 1

1− `
`n.

This implies that ν(]`, 1]) = 0, which contradicts the assumption that 1 ∈
supp(ν). This finishes the proof of Claim 4.13.

Next, for every n ∈ N, consider the normalized coboundary bn : G →
Hπ : g 7→ 1

‖cn‖µ cn(g). We would like to define the map bU : G→ HU ,π : g 7→
(bn(g))U and show that it is a cocycle for the ultraproduct representation πU .
When G is discrete, this is straightforward and the reader can skip Claims
4.14 and 4.15. When G is arbitrary, we need to show that bU is well-defined,
namely that (bn(g))n ∈ EU ,π for every g ∈ G, and that bU : G → HU ,π is
continuous. As an intermediate step, we prove the following equicontinuity
result for the family (bn)n.

Claim 4.14. For every compact subset C ⊂ G such that Q ⊂ C, there
exists a continuous function δC : G→ R+, that is bounded on C, such that
δ(e) = 0 and for which

∀n ∈ N,∀g ∈ C, ‖bn(g)‖ ≤ δC(g).

Indeed, set f := dµ
dmG

∈ L1(G,mG) with f ≥ 0 and ‖f‖1 = 1. Observe

that for every n ≥ 2 and every g ∈ G, we have

−
∫
G

(
f(h)− f(g−1h)

)
cn−2(h) dmG(h)

= −
∫
G
cn−2(h) dµ(h) +

∫
G
cn−2(gh) dµ(h)

= (1− π(g))

∫
G
π(h)T (n−2)/2ξ dµ(h)

= cn(g).

Set K = C · supp(µ) and observe that K ⊂ G is a compact subset such that
Q ⊂ K. By Theorem 4.7, there exists κ > 0 such that pK(c) ≤ κ ‖c‖µ for
every c ∈ Z1(G, π). Then for n ≥ 2 and every g ∈ Q, we have

‖bn(g)‖ =
‖cn(g)‖
‖cn‖µ

≤ pK(cn−2)

‖cn‖µ
· ‖f − λ(g)f‖1

≤ κ ‖cn−2‖µ
‖cn‖µ

· ‖f − λ(g)f‖1
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= κ

(
γ(n− 2)

γ(n)

)1/2

· ‖f − λ(g)f‖1.

Claim 4.13 implies that the sequence (
(
γ(n−2)
γ(n)

)1/2
)n is bounded. Moreover,

the left translation action λ : G y L1(G) is continuous. This finishes the
proof of Claim 4.14.

Claim 4.15. The following assertions hold:

(i) For every g ∈ G, (bn(g))n ∈ EU ,π.
(ii) The well-defined map bU : G → HU ,π : g 7→ (bn(g))U is continuous

and is a cocycle for the ultraproduct representation πU .

Indeed, for item (i), let g ∈ G be any element and ε > 0. Claim 4.14
implies that (bn(g))n ∈ `∞(N,Hπ) and that there exists a compact neigh-
boorhood O ⊂ G of e ∈ G such that

sup
{
‖bn(h)‖+ ‖bn(g−1hg)‖ | n ∈ N, h ∈ O

}
< ε.

For every n ∈ N and every h ∈ O, we have

‖π(h)bn(g)− bn(g)‖ = ‖bn(hg)− bn(h)− bn(g)‖
= ‖bn(g g−1hg)− bn(h)− bn(g)‖
= ‖bn(g g−1hg)− bn(h)− bn(g)‖
= ‖π(g)bn(g−1hg)− bn(h)‖
≤ ‖bn(g−1hg)‖+ ‖bn(h)‖ < ε.

This implies that (bn(g))n ∈ EU ,π.
For item (ii), it is clear that bU satisfies the 1-cocycle relation (4.1) for

πU . Moreover, Claim 4.14 implies that bU is continuous at e ∈ G. Thus, bU
is continuous and is a cocycle for the ultraproduct representation πU . This
finishes the proof of Claim 4.15.

Claim 4.16. The cocycle bU : G→ HU ,π is nonzero and µ-harmonic.

Indeed, applying Claim 4.14 to C := Q · supp(µ), we have

‖bU‖2µ =

∫
G
‖bU (h)‖2 dµ(h)

=

∫
G

lim
n→U
‖bn(h)‖2 dµ(h)

= lim
n→U

∫
G
‖bn(h)‖2 dµ(h) (by Claim 4.14)

= 1.

This shows that bU is nonzero. Moreover, using Claim 4.13, we have

‖
∫
G
bn(h) dµ(h)‖2 =

1

2γ(n)
‖
∫
G
cn(h) dµ(h)‖2
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=
1

2γ(n)
‖Tn/2ξ − T (n+2)/2ξ‖2

=
1

2γ(n)

∫ 1

0
(tn − 2tn+1 + tn+2) dν(t)

=
γ(n)− γ(n+ 1)

2γ(n)
→ 0.

Then for every (ξn)n ∈ EU ,π, applying Claim 4.14 to C := Q · supp(µ), we
obtain

〈
∫
G
bU (h) dµ(h), (ξn)U 〉 =

∫
G
〈bU (h), (ξn)U 〉dµ(h)

=

∫
G

lim
n→U
〈bn(h), ξn〉dµ(h)

= lim
n→U

∫
G
〈bn(h), ξn〉dµ(h) (by Claim 4.14)

= lim
n→U
〈
∫
G
bn(h) dµ(h), ξn〉 = 0.

This shows that bU is µ-harmonic and finishes the proof of Claim 4.16.

Combining Theorem 4.7 and Claim 4.16, we obtain H
1
(G, πU ) 6= 0. This

finishes the proof of Theorem 4.10. �

4. Induction and reduced cohomology

Let G be any compactly generated lcsc group and Γ < G any lattice.
Set X := G/Γ and denote by ν ∈ Prob(X) the unique G-invariant Borel
probability measure on X. For every Borel fundamental domain F ⊂ G, we
may choose a Borel section σ : X → F as in Corollary 1.12. For every g ∈ G
and every x ∈ G/Γ, denote by τ(g, x) ∈ Γ the unique element in Γ such that
gσ(x) = σ(gx) τ(g, x). The map τ : G × X → Γ is Borel and satisfies the
1-cocycle relation (2.1). Denote by mG the unique Haar measure on G such
that σ∗ν = mG|F .

From now on, we assume that the lattice Γ < G is finitely generated.
This is always the case when Γ < G is uniform (see Proposition 1.14) or
when G has property (T) (see Propositions 2.26 and 2.28). Fix a finite
symmetric generating set S ⊂ Γ and define the word length `S : Γ → N on
Γ associated with S by the formula

∀γ ∈ Γ, `S(γ) := min{n ∈ N | γ ∈ Sn}.

Definition 4.17 (Shalom [Sh99]). We say that the lattice Γ < G is L2-
integrable if there exists a Borel fundamental domain F ⊂ G for which the
associated 1-cocycle τ : G×X → Γ satisfies the L2-integrability condition:

(4.9) ∀g ∈ G,
∫
X
`S(τ(g, g−1x))2 dν(x) < +∞.
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Any uniform lattice Γ < G is L2-integrable. Indeed, in that case, using
Proposition 1.11(ii) we may choose a relatively compact Borel fundamental
domain F ⊂ G. Then for every g ∈ G, the subset F−1gF is relatively
compact in G and so τ(g,X) ⊂ F−1gF ∩ Γ is finite. Then (4.9) is satisfied.

The next theorem due to Shalom provides examples of nonuniform L2-
integrable lattices in locally compact groups.

Theorem 4.18 (Shalom [Sh99]). The following examples of nonuniform
lattices are L2-integrable:

(i) For every d ≥ 3, SLd(Z) < SLd(R).
(ii) For every d ≥ 2 and every square-free integer q ≥ 2,

SLd(Z[
√
q]) < SLd(R)× SLd(R).

(iii) For every d ≥ 2 and every prime p ∈ P,

SLd(Z[p−1]) < SLd(R)× SLd(Qp).

More generally, it is proven in [Sh99, §2] that irreducible lattices in
higher rank semisimple algebraic groups are L2-integrable.

Proof. We only explain the proof of item (i). We refer to [Sh99, §2] for
the proof in the general case of irreducible lattices in higher rank semisimple
algebraic groups that covers items (ii) and (iii).

Let d ≥ 3 and set Γ := SLd(Z) < SLd(R) := G and X := G/Γ. Following
Theorem 1.19, choose t ≥ 2√

3
and u ≥ 1

2 so that G = St,u ·Γ where St,u ⊂ G
is a Siegel domain of finite Haar measure. Then we may choose a Borel
fundamental domain F ⊂ St,u ⊂ G (see [Zi84, Corollary A.6]).

Denote by S ⊂ Γ the finite symmetric set of all elementary matrices
defined as follows

S := {Eij(±1) | 1 ≤ i 6= j ≤ d} .

Note that S is a generating set for Γ. Consider the length function `S : Γ→
N on Γ associated with S. On Rd, consider the canonical L2-norm ‖ · ‖2 and
define

∀g ∈ G, ‖g‖ := sup
{
‖gv‖2 | v ∈ Rd, ‖v‖2 ≤ 1

}
.

Using the Cartan decomposition G = K ·A+ ·K from Lemma 2.37, we have
‖g‖ ≥ 1 and ‖g−1‖ ≤ ‖g‖d−1 for every g ∈ G.

The main result of [LMR96] implies that the lengths `S and log(‖·‖) are
coarse Lipschitz equivalent on Γ. In particular, there are constants a, b > 0
such that `S(γ) ≤ a log(‖γ‖) + b for every γ ∈ Γ. Then for every g ∈ G and
every x ∈ X, we have

`S(τ(g, g−1x)) ≤ a log(‖τ(g, g−1x)‖) + b

≤ a log(‖σ(x)−1‖) + a log(‖g‖) + log(‖σ(g−1x)‖) + b

≤ a(d− 1) log(‖σ(x)‖) + a log(‖g‖) + log(‖σ(g−1x)‖) + b.
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Next observe that for every g ∈ G, we have∫
X

log(‖σ(g−1x)‖)2 dν(x) =

∫
X

log(‖σ(x)‖)2 dν(x) =

∫
F

log(‖y‖)2 dmG(y).

In order to prove that Γ < G is L2-integrable, it suffices to prove that∫
F

log(‖y‖)2 dmG(y) < +∞.

For this, recall that F ⊂ St,u and that St,u = K ·At ·Nu where t ≥ 2√
3

and

u ≥ 1
2 . Since K and Nu are both compact in SLd(R) and since for every

a = diag(λ1, . . . , λd) ∈ At, we have 1 ≤ ‖a‖ ≤ td−1λd, using Lemma 1.21, it
suffices to prove that∫

At

(log λd)
2
∏

1≤i<j≤d

λi
λj

da < +∞.

Observe that the map

Θ : A→ Rd−1 : diag(λ1, . . . , λd) 7→
(

log
λ2

λ1
, . . . , log

λd
λd−1

)
is a topological group isomorphism. We may choose the Haar measure da
on A that is the pushforward of the Lebesgue measure on Rd−1 by Θ−1. For
every a = diag(λ1, . . . , λd) ∈ At, letting(

log
λ2

λ1
, . . . , log

λd
λd−1

)
= (s1, . . . , sd−1)

we have

(log λd)
2 =

1

d2

(
log

λd
λ1

+ · · ·+ log
λd
λd−1

)2

=
1

d2

(
d−1∑
k=1

ksk

)2

≤ d− 1

d2

d−1∑
k=1

k2s2
k.

A simple calculation as in Claim 1.22 shows that for every 1 ≤ k ≤ d − 1,
we have∫
Rd−1

s2
k

∏
1≤i<j≤d

exp(−(si + · · ·+ sj−1))1{s1,...,sd−1≥− log t} ds1 · · · dsd−1

=

∫ +∞

− log t
s2
k exp(−k(d− k)sk) dsk ·

∏
j 6=k

∫ +∞

− log t
exp(−j(d− j)sj) dsj < +∞.

Altogether, this implies that
∫
F log(‖y‖)2 dmG(y) < +∞ and hence Γ < G

is L2-integrable. �
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Remark 4.19. We point out that the assumption that d ≥ 3 in Theorem
4.18(i) is necessary. Indeed, when d = 2, the lengths `S and log(‖ · ‖) are
not Lipschitz equivalent on SL2(Z) < SL2(R). Indeed, set

γ :=

(
1 1
0 1

)
∈ SL2(Z) < SL2(R).

Then for every n ≥ 1, `S(γn) = n while log(‖γn‖) = O(log(n)) since

γn =

(
n 0
0 n−1

)(
1 n−1

0 1

)(
n−1 0

0 n

)
.

Remark 4.20. The proof of Theorem 4.18(i) actually shows the follow-
ing stronger L2-integrability condition:

(4.10) ∀C ⊂ G compact subset, sup
g∈C

∫
X
`S(τ(g, g−1x))2 dν(x) < +∞.

From now on, we fix a finitely generated L2-integrable lattice Γ < G.
For every unitary representation π : Γ → U(Hπ) with Hπ separable, we
denote by π̂ : G → U(Hπ̂) the induced representation (see Chapter 2). We
define the induction from Γ to G for cocycles using the first viewpoint on
induction.

Definition 4.21 (Shalom [Sh99]). Let b ∈ Z1(Γ, π) be any cocycle.

Define the induced cocycle b̂ : G→ Hπ̂ by the formula

∀g ∈ G, ∀x ∈ X, b̂(g)(x) = b(τ(g, g−1x)) ∈ Hπ.

We need to check that the map b̂ : G → Hπ̂ is indeed a cocycle for π̂,
that is, b ∈ Z1(G, π̂). As before, set pS(b) := sup {‖b(γ)‖ | γ ∈ S}. Note

that for every g ∈ G, we have b̂(g) ∈ Hπ̂ since

‖b̂(g)‖2ν =

∫
X
‖b(τ(g, g−1x))‖2 dν(x)

≤
∫
X
`S(τ(g, g−1x))2 dν(x) · pS(b)2 < +∞.

Moreover, b̂ satisfies the cocycle relation (4.1) for π̂. Indeed, for all g, h ∈ G
and every x ∈ X, we have

b̂(gh)(x) = b(τ(gh, h−1g−1x))

= b(τ(g, g−1x) τ(h, h−1g−1x))

= b(τ(g, g−1x)) + π(τ(g, g−1x))b(τ(h, h−1g−1x))

=
(
b̂(g) + π̂(g)̂b(h)

)
(x).

By Fubini’s theorem, the function G → R+ : g 7→ ‖b̂(g)‖ν is measurable.

SinceHπ̂ = L2(X, ν)⊗Hπ is separable, Lemma 4.2 implies that b̂ ∈ Z1(G, π̂).
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As it will be useful later on, we also define the induced cocycle using the
second viewpoint on induction. With respect to the second viewpoint, the

induced cocycle b̂ : G→ Hπ̂ is defined by the formula

∀g, h ∈ G, b̂(g)(h) = π(τ(h−1, hΓ)) b(τ(g, g−1hΓ))

= b(τ(h−1g, g−1hΓ))− b(τ(h−1, hΓ)).

The main result of this section due to Shalom shows that the induction
from Γ to G for cocycles yields an injective map in (reduced) cohomology.

Theorem 4.22 (Shalom [Sh99, Sh03]). The induction map

I : Z1(Γ, π)→ Z1(G, π̂) : b 7→ b̂

is continuous and satisfies

I(B1(Γ, π)) ⊂ B1(G, π̂) and I(B1(Γ, π)) ⊂ B1(G, π̂).

Moreover, the canonical well-defined mappings

H1(Γ, π)→ H1(G, π̂) and H
1
(Γ, π)→ H

1
(G, π̂)

are both injective.

Proof. First, we prove that the induction map I : Z1(Γ, π)→ Z1(G, π̂)
is continuous. This is immediate if the lattice Γ < G satisfies the stronger
L2-integrability condition as in (4.10). Indeed, in that case, for every b ∈
Z1(Γ, π), we have

pQ(̂b)2 = sup
g∈Q
‖b̂(g)‖2ν

= sup
g∈Q

∫
X
‖b̂(g)(x)‖2 dν(x)

= sup
g∈Q

∫
X
‖b(τ(g, g−1x))‖2 dν(x)

≤ sup
g∈Q

∫
X
`S(τ(g, g−1x))2 dν(x) · pS(b).

This shows that the induction map I : (Z1(Γ, π), pS) → (Z1(G, π̂), pQ) is
continuous.

In general, choose a cohomologically adapted symmetric Borel probabil-
ity measure µ ∈ Prob(G) as in Terminology 4.6 such that we moreover have
µ ∼ mG. Fix a symmetric compact neighborhood Q ⊂ G of e ∈ G such
that G =

⋃
n≥1Q

n. By Theorem 4.7, we know that (Z1(G, π̂), 〈 · , · 〉µ) is a
Hilbert space and for every compact subset K ⊂ G such that Q ⊂ K, the
norms pK and ‖ · ‖µ are equivalent on Z1(G, π̂).

Denote by µ0 ∈ Prob(Γ) the pushforward measure of µ⊗ν ∈ Prob(G×X)
under the Borel map G×X → Γ : (g, x) 7→ τ(g, g−1x).

Claim 4.23. The measure µ0 ∈ Prob(Γ) is symmetric and supp(µ0) = Γ.
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Indeed, using Fubini’s theorem and the facts that µ is symmetric and
that ν is G-invariant, for every γ ∈ Γ, we have

µ0(γ) = (µ⊗ ν)({(g, x) ∈ G×X | τ(g, g−1x) = γ})
= (µ⊗ ν)({(g, x) ∈ G×X | τ(g−1, x) = γ−1})
= (µ⊗ ν)({(g, x) ∈ G×X | τ(g, x) = γ−1})
= (µ⊗ ν)({(g, x) ∈ G×X | τ(g, g−1x) = γ−1})
= µ0(γ−1).

Then µ0 is symmetric.
Next, let γ ∈ Γ be any element. Since µ ∼ mG, the left translation

action Gy (G,µ) is nonsingular and transitive. Choose a countable dense
subgroup Λ < G and set B = Λ ·F ⊂ G. Then µ(B) > 0 and µ(hB4B) = 0
for every h ∈ Λ. Since G → R+ : h 7→ µ(hB4B) is continuous, it follows
that µ(hB4B) = 0 for every h ∈ G. Then we have µ(B) = 1 and so
µ(B∩Fγ) = µ(Fγ) > 0. Thus, there exists g ∈ Λ such that µ(gF∩Fγ) > 0.
By continuity, we may choose a neighborhood U ⊂ G of g ∈ G such that
µ(hF ∩ Fγ) > 0 for every h ∈ U . Then we have mG(F ∩ h−1Fγ) > 0 for
every h ∈ U and so

µ0(γ) = µ0(γ−1) = (µ⊗ ν)({(g, x) ∈ G×X | τ(g, x) = γ})
= (µ⊗ ν)({(g, x) ∈ G×X | gσ(x) ∈ Fγ})
≥ (µ⊗ ν)({(g, x) ∈ U ×X | σ(x) ∈ g−1Fγ})

=

∫
U
ν({x ∈ X | σ(x) ∈ g−1Fγ}) dµ(g)

=

∫
U
mG(F ∩ g−1Fγ) dµ(g) > 0.

This finishes the proof of Claim 4.23.
For every b ∈ Z1(Γ, π), we obtain

‖b‖2µ0 =

∫
Γ
‖b(γ)‖2 dµ0(γ)

=

∫
G×X

‖b(τ(g, g−1x))‖2 dµ(g)dν(x)

=

∫
G

(∫
X
‖b̂(g)(x)‖2 dν(x)

)
dµ(g)

=

∫
G
‖b̂(g)‖2ν dµ(g)

= ‖b̂‖2µ < +∞.

From the above equality, we infer the following crucial fact. For every b ∈
Z1(Γ, π), we have ‖b‖µ0 < +∞. The proof of Theorem 4.7 then shows
that the space (Z1(Γ, π), 〈 · , · 〉µ0) is a Hilbert space (see Remark 4.9). Since
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supp(µ0) = Γ and since S ⊂ Γ is finite, there exists κ1 > 0 such that
pS ≤ κ1 ‖ · ‖µ0 . This means that the identity linear mapping

ι : (Z1(Γ, π), ‖ · ‖µ0)→ (Z1(Γ, π), pS) : b 7→ b

is continuous and bijective. Since both (Z1(Γ, π), ‖ · ‖µ0) and (Z1(Γ, π), pS)
are Banach spaces, the open mapping theorem (see [Ru91, Corollaries 2.12])
implies that exists a constant κ2 such that ‖ · ‖µ0 ≤ κ2 pS . In other words,
the norms ‖ · ‖µ0 and pS are equivalent on Z1(Γ, π). As we have seen, the
induction map I : (Z1(Γ, π), ‖ · ‖µ0) → (Z1(G, π̂), ‖ · ‖µ) is an isometry.
The previous reasoning implies that the induction map I : (Z1(Γ, π), pS)→
(Z1(G, π̂), pK) is continuous for every compact subset K ⊂ G such that
Q ⊂ K.

We use the notation ∂π : Hπ → B1(Γ, π) (resp. ∂π̂ : Hπ̂ → B1(G, π̂))
for the coboundary map. For every ξ ∈ Hπ, we have I(∂πξ) = ∂π̂(1X ⊗
ξ). This shows that I(B1(Γ, π)) ⊂ B1(G, π̂). Since I is continuous, this

further implies that I(B1(Γ, π)) ⊂ B1(G, π̂). This shows that the canonical
mappings

H1(Γ, π)→ H1(G, π̂) and H
1
(Γ, π)→ H

1
(G, π̂)

are well-defined. It remains to prove that they are both injective.
In order to do that, we introduce the following transfer operator that

was suggested to us by Narutaka Ozawa (see also [Sh03, p. 144]). We use
the second viewpoint on induction for cocycles. Choose a relatively compact

subset C ⊂ F such that mG(C) > 0. Set K := Q ∪
⋃
γ∈S CγC

−1 ⊂ G and
note that K ⊂ G is a compact subset such that Q ⊂ K. Define the mapping
T : Z1(G, π̂)→ Z1(Γ, π) by the formula

∀c ∈ Z1(G, π̂),∀γ ∈ Γ, T (c)(γ) :=
1

mG(C)2

∫
C2

c(gγh−1)(g) dm⊗2
G (g, h).

Claim 4.24. The following assertions hold:

(i) The transfer operator T : (Z1(G, π̂), pK) → (Z1(Γ, π), pS) is well-
defined and continuous.

(ii) For every b ∈ Z1(Γ, π), we have

T (̂b) = b.

(iii) For every η ∈ Hπ̂, we have

T (∂π̂η) = ∂πξ where ξ =
1

mG(C)

∫
C
η(g) dmG(g) ∈ Hπ.

Proof of Claim 4.24. Keep the same notation as before.
(i) Let c ∈ Z1(G, π̂) and γ ∈ Γ. Firstly, note that the map G × G →

Hπ : (g, h) 7→ c(gγh−1)(g) is measurable. Next, we have

1

mG(C)2

∫
C

∫
C
‖c(gγh−1)(g)‖2 dmG(g)dmG(h)
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=
1

mG(C)2

∫
C

(∫
Cγ−1g−1

‖c(h−1)(g)‖2 dmG(h)

)
dmG(g)

≤ 1

mG(C)2

∫
Cγ−1C−1

(∫
C
‖c(h−1)(g)‖2 dmG(g)

)
dmG(h)

≤ 1

mG(C)2

∫
Cγ−1C−1

‖c(h−1)‖2Hπ̂ dmG(h)

≤ mG(Cγ−1C−1)

mG(C)2
p
CγC

−1(c)2 < +∞.

This implies that T (c)(γ) ∈ Hπ. Letting

κ :=
1

mG(C)2
sup

{
mG(Cγ−1C−1) | γ ∈ S

}
< +∞,

we have ‖T (c)(γ)‖ ≤ κ pK(c) for every γ ∈ S. This shows that pS(T (c)) ≤
κ pK(c) for every c ∈ Z1(G, π̂).

We next prove that T (c) ∈ Z1(Γ, π). Indeed, using Fubini’s theorem, for
almost every (g1, g2, g3) ∈ G×G×G, we have

c(g1g2)(g3) = c(g1)(g3) + (π̂(g1)c(g2))(g3) = c(g1)(g3) + c(g2)(g−1
1 g3).

Moreover, using Fubini’s theorem, for every γ ∈ Γ and almost every (g1, g2) ∈
G×G, we have

c(g1)(g2γ
−1) = π(γ) c(g1)(g2).

These facts imply that for every (γ1, γ2) ∈ Γ×Γ and almost every (g, h, k) ∈
G×G×G, we have

c(gγ1γ2h
−1)(g) = c(gγ1k

−1 kγ2h
−1)(g)

= c(gγ1k
−1)(g) + c(kγ2h

−1)(kγ−1
1 )

= c(gγ1k
−1)(g) + π(γ1) c(kγ2h

−1)(k).

This further implies that for every (γ1, γ2) ∈ Γ× Γ, we have

T (c)(γ1γ2) =
1

mG(C)2

∫
C2

c(gγ1γ2h
−1)(g) dm⊗2

G (g, h)

=
1

mG(C)3

∫
C3

(c(gγ1k
−1)(g) + π(γ1)c(kγ2h

−1)(k))dm⊗3
G (g, h, k)

= T (c)(γ1) + π(γ1)T (c)(γ2).

It follows that the transfer operator T : (Z1(G, π̂), pK) → (Z1(Γ, π), pS) is
well-defined and continuous.

(ii) Let b ∈ Z1(Γ, π). Recall that with the second viewpoint on induction,

the induced cocycle b̂ : G→ Hπ̂ is given by the formula

∀s, t ∈ G, b̂(s)(t) = b(τ(t−1s, s−1tΓ))− b(τ(t−1, tΓ)).
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Set γs = τ(s−1, sΓ) ∈ Γ for every s ∈ G. It follows that for every γ ∈ Γ, we
have

T (̂b)(γ) =
1

mG(C)2

∫
C2

b̂(gγh−1)(g) dm⊗2
G (g, h)

=
1

mG(C)2

∫
C2

(b(γγh)− b(γg)) dm⊗2
G (g, h)

=
1

mG(C)2

∫
C2

(b(γ) + π(γ)b(γh)− b(γg)) dm⊗2
G (g, h).

Observe that for every g ∈ C ⊂ F , we have γg = τ(g−1, gΓ) = g−1σ(gΓ) = e.

Then we have T (̂b) = b.
(iii) Let η ∈ Hπ̂. For every γ ∈ Γ, we have

T (∂π̂η)(γ) =
1

mG(C)2

∫
C2

(∂π̂η)(gγh−1)(g) dm⊗2
G (g, h)

=
1

mG(C)2

∫
C2

((π̂(gγh−1)η)(g)− η(g)) dm⊗2
G (g, h)

=
1

mG(C)2

∫
C2

(η(hγ−1)− η(g)) dm⊗2
G (g, h)

=
1

mG(C)2

∫
C2

(π(γ)η(h)− η(g)) dm⊗2
G (g, h)

= π(γ)ξ − ξ

where ξ = 1
mG(C)

∫
C η(g) dmG(g) ∈ Hπ. Then T (∂π̂η) = ∂πξ. This finishes

the proof of Claim 4.24. �

Let b ∈ Z1(Γ, π) such that b̂ ∈ B1(G, π̂). By combining items (ii) and (iii)
in Claim 4.24, we obtain that b ∈ B1(Γ, π). This proves that the canonical
map H1(Γ, π)→ H1(G, π̂) is injective.

Let b ∈ Z1(Γ, π) such that b̂ ∈ B1(G, π̂). By combining items (i), (ii)

and (iii) in Claim 4.24, we obtain that b ∈ B1(Γ, π). This proves that the

canonical map H
1
(Γ, π)→ H

1
(G, π̂) is injective. �



CHAPTER 5

Bader–Shalom’s normal subgroup theorem

In this chapter, we prove Bader–Shalom’s normal sub-
group theorem (NST) for irreducible lattices in product
groups [BS04]. The proof follows Margulis’s strategy
that consists in proving a “property (T) half” and a
“amenability half” and relies on the main results from
Chapters 3 and 4.

Introduction

Definition 5.1. Let G be any locally compact group. We say that G is

• topologically simple if any proper closed normal subgroup is trivial.
• abstractly simple if any proper normal subgroup is trivial.

Moreover, let Γ be any discrete group. We say that Γ is just infinite if Γ is
infinite and every nontrivial normal subgroup N C Γ has finite index.

For every d ≥ 1 and every unital commutative ring R, we define the
projective special linear group

PSLd(R) := SLd(R)/Z(SLd(R))

as the quotient of the special linear group SLd(R) by its center Z(SLd(R)).
For instance, we have

PSLd(Z) = SLd(Z)/{±1d} and PSLd(R) = SLd(R)/{±1d}.
Theorem 5.2 (Iwasawa). For every field k and every d ≥ 2, if |k| > 3

or d > 2, then PSLd(k) is abstractly simple.

Theorem 5.2 implies that for every d ≥ 2, the locally compact group
PSLd(R) is topologically simple. More generally, every simple real Lie group
with trivial center is topologically simple.

The main result of this chapter is the following normal subgroup theorem
(NST) due to Bader–Shalom.

Theorem 5.3 (Bader–Shalom [BS04]). For every i ∈ {1, 2}, let Gi be a
topologically simple nondiscrete noncompact compactly generated lcsc group.

Let Γ < G1×G2 be any finitely generated L2-integrable irreducible lattice.
Then Γ is just infinite.

Theorem 5.3 applies to all uniform lattices Γ < G1 × G2. Indeed, such
uniform lattices Γ < G1×G2 are finitely generated by Proposition 1.14 and
L2-integrable.

99
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Examples 5.4. We give examples of finitely generated L2-integrable ir-
reducible lattices Γ < G1×G2 in products of topologically simple compactly
generated lcsc groups to which Theorem 5.3 applies.

(i) For every d ≥ 2 and every square-free integer q ≥ 2,

PSLd(Z[
√
q]) < PSLd(R)× PSLd(R)

is just infinite.
(ii) For every d ≥ 2 and every prime p ∈ P,

PSLd(Z[p−1]) < PSLd(R)× PSLd(Qp)

is just infinite.

Theorem 5.3 extends Margulis’s celebrated normal subgroup theorem
(NST) for irreducible lattices in semisimple algebraic groups.

Theorem 5.5 (Margulis [Ma91, Chapter IV]). Let G be any higher
rank semisimple algebraic group and Γ < G any irreducible lattice. For
every normal subgroup N C Γ, either N ⊂ Z(Γ) and N is finite or N < Γ
has finite index.

Let us point out that Bader–Shalom’s NST 5.3 generalizes Margulis’s
NST 5.5 for irreducible lattices in higher rank nonsimple semisimple alge-
braic groups. Bader–Shalom’s NST 5.3 also generalizes Burger–Mozes’s NST
[BM00a, BM00b] for irreducible uniform lattices in product of trees. On
the other hand, Margulis’s NST 5.5 applies to all lattices Γ < G in higher
rank simple algebraic groups such as G = SLd(R), d ≥ 3. In that respect,
Bader–Shalom’s NST 5.3 and Margulis’s NST 5.5 are complementary.

The strategy of the proof of Theorem 5.3 follows Margulis’s remarkable
idea. Let N C Γ be any nontrivial normal subgroup. In order to show that
N has finite index in Γ, we will prove that the quotient group Γ/N has
property (T) (see Theorem 5.6) and is amenable (see Theorem 5.8). Using
Proposition 2.27, it will follow that Γ/N is finite. The rest of this chapter
is devoted to proving the “property (T) half” and the “amenability half” of
Theorem 5.3.

1. Property (T) half

The main result of this section provides a sufficient condition to ensure
that factors of irreducible lattices in product groups have property (T). This
is the “property (T) half” of Theorem 5.3 which is due to Shalom. For any
lcsc group G, denote by [G,G] the closure of the subgroup generated by the
set of commutators {ghg−1h−1 | g, h ∈ G}. Then [G,G] C G is a closed
normal subgroup and G/[G,G] is abelian.

Theorem 5.6 (Shalom [Sh99]). For every i ∈ {1, 2}, let Gi be any
compactly generated lcsc group. Set G = G1×G2 and denote by pi : G→ Gi
the canonical factor map. Assume that G/[G,G] is compact.
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Let Γ < G be any finitely generated L2-integrable irreducible lattice and
N C Γ any normal subgroup. Assume that pi(N) < Gi is dense for every
i ∈ {1, 2}. Then Γ/N has property (T).

The following dichotomy result will be one of the key ingredients in the
proof of Theorem 5.6.

Proposition 5.7 (Shalom [Sh99]). For every i ∈ {1, 2}, let Gi be any
compactly generated lcsc group and set G = G1×G2. Let π : G→ U(Hπ) be
any strongly continuous unitary representation. At least one of the following
assertions holds:

(i) H
1
(G, π) = 0.

(ii) There exists i ∈ {1, 2} such that π|Gi is not ergodic.

Proof. For every i ∈ {1, 2}, choose a Borel probability measure µi ∈
Prob(Gi) as in Terminology 4.6. Set µ = µ1 ⊗ µ2 ∈ Prob(G). Assume that

π|Gi is ergodic for every i ∈ {1, 2}. In order to show that H
1
(G, π) = 0,

using Theorem 4.7, it suffices to show that any µ-harmonic 1-cocycle b ∈
Harµ(G, π) is identically zero.

Let b ∈ Harµ(G, π) be any µ-harmonic 1-cocycle. Recall that we have
b(µ) :=

∫
G b(g) dµ(g) = 0. For every i ∈ {1, 2}, set b(µi) :=

∫
Gi
b(gi) dµi(gi) ∈

Hπ and π(µi) :=
∫
Gi
π(gi) dµi(gi) ∈ B(Hπ). Since G = G1 × G2 and

µ = µ1 ⊗ µ2, we have

π(µ) :=

∫
G
π(g) dµ(g) =

∫
G1×G2

π(g1)π(g2) d(µ1⊗µ2)(g1, g2) = π(µ1)π(µ2).

Using the 1-cocycle relation, for every (g1, g2) ∈ G1 ×G2, we have

(5.1) b(g1) + π(g1) b(g2) = b(g1g2) = b(g2g1) = b(g2) + π(g2) b(g1).

By integrating (5.1) against µ = µ1 ⊗ µ2 ∈ Prob(G) and since b(µ) = 0, we
obtain

b(µ1) + π(µ1) b(µ2) = 0 = b(µ2) + π(µ2) b(µ1).

This implies that

b(µ1) = −π(µ1) b(µ2) = −π(µ1) (−π(µ2) b(µ1)) = π(µ) b(µ1).

Since π is ergodic, we have ker(1− π(µ)) = {0} and so b(µ1) = 0. Likewise,
we have b(µ2) = 0.

Next, for every (g1, g2) ∈ G1 ×G2, rewriting (5.1) as

(5.2) (1− π(g1)) b(g2) = (1− π(g2)) b(g1).

By integrating (5.2) against µ1 ∈ Prob(G1), for every g2 ∈ G2, we obtain

(1− π(µ1)) b(g2) = (1− π(g2)) b(µ1) = 0.

Since π|G1 is ergodic, we have ker(1 − π(µ1)) = {0} and so b(g2) = 0 for
every g2 ∈ G2. Likewise, we have b(g1) = 0 for every g1 ∈ G1. The 1-cocycle
relation implies that b ≡ 0. �

We are ready to prove Theorem 5.6.
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Proof of Theorem 5.6. By contradiction, assume that Γ/N does not
have property (T). Choose a symmetric finitely supported probability mea-
sure µ ∈ Prob(Γ) whose support supp(µ) generates Γ. Denote by µ ∈
Prob(Γ/N) the pushforward measure under the factor map Γ→ Γ/N . Then
µ ∈ Prob(Γ/N) satisfies the assumption of Terminology 4.6 for the factor
group Γ/N . By Theorems 4.7 and 4.10, there exist a unitary representation
π : Γ/N → U(Hπ) and a nonzero µ-harmonic cocycle b ∈ Harµ(Γ/N, π).
Replacing Hπ with the closure of the linear span of b(Γ/N), we may as-
sume that Hπ is separable. We regard π as a Γ-unitary representation such
that π|N = 1Hπ and b ∈ Harµ(Γ, π) as a nonzero µ-harmonic cocycle for
π : Γ→ U(Hπ) such that b|N = 0.

Consider the induced representation π̂ : G → U(Hπ̂) and the induced

cocycle b̂ : G → Hπ̂. We claim that for every i ∈ {1, 2}, we have (Hπ̂)Gi =
(Hπ̂)G. We prove it for i = 1, the proof for i = 2 being analogous. Let
η ∈ (Hπ̂)G1 . Using the second viewpoint on induction and [Ma91, Lemma
I.4.1.1], we may regard η : G → Hπ as a measurable function such that for
every γ ∈ Γ, every g1 ∈ G1 and every h ∈ G, we have η(g1h) = η(h) and
η(hγ−1) = π(γ)η(h). Then η is right N -invariant and right G1-invariant
since G1 C G is a normal subgroup. By assumption, N · G1 is dense in
G and [Ma91, Lemma I.4.1.1] implies that η is right G-invariant and left
G-invariant. Thus, η ∈ (Hπ̂)G.

Denote by p : Hπ̂ → (Hπ̂)G (resp. q : Hπ̂ → Hπ̂	 (Hπ̂)G) the orthogonal

projection. On the one hand, p ◦ b̂ : G → (Hπ̂)G is a continuous additive
group homomorphism. Since G/[G,G] is compact, we have Hom(G,C) =

{0}. This further implies that p◦ b̂ = 0. On the other hand, a combination of

the previous paragraph and Proposition 5.7 implies that q ◦ b̂ ∈ B
1
(π̂,Hπ̂ 	

(Hπ̂)G). Thus, we have b̂ = p ◦ b̂+ q ◦ b̂ ∈ B
1
(π̂,Hπ̂) and hence b ∈ B

1
(Γ, π)

by Theorem 4.22. Since b is µ-harmonic, we have b ≡ 0, a contradiction.
Therefore, Γ/N has property (T). �

2. Amenability half

The main result of this section provides a complete characterization of
when factors of irreducible lattices in product groups are amenable. This is
the “amenability half” of Theorem 5.3 which is due to Bader–Shalom.

Theorem 5.8 (Bader–Shalom [BS04]). For every i ∈ {1, 2}, let Gi be
any lcsc group. Set G = G1 ×G2 and denote by pi : G → Gi the canonical
factor map. Let Γ < G be any irreducible lattice and N C Γ any normal
subgroup.

Then Γ/N is amenable if and only if for every i ∈ {1, 2}, Gi/pi(N) is
amenable.

We will use results from Chapter 3. Before proving Theorem 5.8, we
need some preparation. For every i ∈ {1, 2}, let Gi be any lcsc group
and set G = G1 × G2. For every i ∈ {1, 2}, choose an admissible Borel
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probability measure µi ∈ Prob(Gi) and denote by (Bi, νBi) the (Gi, µi)-
Poisson boundary. Set µ = µ1 ⊗ µ2 ∈ Prob(G) and denote by (B, νB) the
(G,µ)-Poisson boundary. The next proposition describes any ergodic (G,µ)-
space in terms of a canonical relatively measure preserving extension. For
every i ∈ {1, 2}, denote by j ∈ {1, 2} the unique element so that {1, 2} =
{i, j}.

Proposition 5.9 (Bader–Shalom [BS04]). Let (Y, η) be any ergodic
(G,µ)-space. The following assertions hold:

(i) For every i ∈ {1, 2}, (Y, η) is a (Gi, µi)-space.
(ii) For every i ∈ {1, 2}, the Gi-equivariant measurable factor map πi :

(Y, η) → (Yi, ηi) arising from the inclusion L∞(Y )Gj ⊂ L∞(Y ) is
relatively measure preserving.

(iii) We have that π1 ⊗ π2 : (Y, η) → (Y1 × Y2, η1 ⊗ η2) is a relatively
measure preserving G-equivariant measurable factor map.

Proof. (i) Let i ∈ {1, 2}. Set ζi = µi ∗ η ∈ Prob(Y ) and observe that
ζi ≺ η (by Lemma 3.6). Since G = G1 × G2 and µ = µ1 ⊗ µ2 and since
µ ∗ η = η, we have

µ ∗ ζi = µ ∗ µi ∗ η = µi ∗ µ ∗ η = µi ∗ η = ζi.

Since (Y, η) is an ergodic (G,µ)-space, Proposition 3.8(ii) implies that ζi = η.
This shows that (Y, η) is a (Gi, µi)-space.

(ii) Observe that L∞(Y )Gj ⊂ L∞(Y ) is a Gi-invariant von Neumann
subalgebra. Denote by πi : (Y, η) → (Yi, ηi) the Gi-equivariant measurable
factor map such that L∞(Yi) = L∞(Y )Gj . We have ηi = η|

L∞(Y )Gj
. Since

(Y, η) is a (Gi, µi)-space, (Yi, ηi) is also a (Gi, µi)-space. Denote by Ei :
L∞(Y )→ L∞(Y )Gj the unique conditional expectation such that η◦Ei = η.
By Proposition 3.8, we have

∀f ∈ L∞(Y ), Tµj (f) =

∫
Gj

σ−1
gj (f) dµj(gj)

Ei(f) = lim
n→U

1

n

n∑
k=1

(Tµj )
◦k(f).

Since G1 and G2 commute in G and since the action Gy L∞(Y ) is weak∗-
continuous, Tµj : L∞(Y ) → L∞(Y ) is Gi-equivariant. This further implies

that Ei : L∞(Y ) → L∞(Y )Gj is Gi-equivariant. Thus, πi : (Y, η) → (Yi, ηi)
is relatively measure preserving.

(iii) Set A = L∞(Y ) and Ai = L∞(Y )Gj = L∞(Yi) for every i ∈ {1, 2}.
We have ηi = η|Ai and η ◦Ei = η for every i ∈ {1, 2}. Denote by σ : Gy A
the weak∗-continuous action. Since E1 : A → AG2 is G1-equivariant and
since AG = C1Y , it follows that E1|AG1 = η( · ) 1Y . Then for every f1 ∈ A1

and every f2 ∈ A2, we have

η(f1 · f2) = η(E1(f1 · f2)) = η(E1(f1) · f2) = η(f1) η(f2).
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This shows that A1 and A2 are η-independent in A and so we write A1⊗A2 =
A1 ∨A2 ⊂ A for the G-invariant von Neumann subalgebra generated by A1

and A2. Denote by E : A → A1 ⊗ A2 the unique conditional expectation
such that η ◦ E = η. Let i ∈ {1, 2}. Since Ei ◦E : A → Ai is a conditional
expectation such that η ◦ Ei ◦E = η, we have Ei ◦E = Ei. Let gi ∈ Gi be
any element. We have

η ◦ σgi ◦ E ◦σ−1
gi = η ◦ Ei ◦σgi ◦ E ◦σ−1

gi

= η ◦ σgi ◦ Ei ◦E ◦σ−1
gi (since Ei is Gi-equivariant)

= η ◦ σgi ◦ Ei ◦σ−1
gi

= η ◦ Ei (since Ei is Gi-equivariant)

= η.

Since σgi ◦ E ◦σ−1
gi : A→ Ai is a conditional expectation such that η ◦ σgi ◦

E ◦σ−1
gi = η, we have σgi ◦ E ◦σ−1

gi = E. This shows that E : A → A1 ⊗ A2

is Gi-equivariant. Likewise, E : A→ A1⊗A2 is Gj-equivariant. Altogether,
E : A→ A1 ⊗A2 is G-equivariant.

Observe that the inclusion A1⊗A2 ⊂ A corresponds to the G-equivariant
measurable factor map π1 ⊗ π2 : (Y, η)→ (Y1 × Y2, η1 ⊗ η2). Since E : A→
A1 ⊗ A2 is G-equivariant, π1 ⊗ π2 : (Y, η) → (Y1 × Y2, η1 ⊗ η2) is relatively
measure preserving. �

The following corollary describes all possible (G,µ)-boundaries in terms
of (Gi, µi)-boundaries.

Corollary 5.10 (Bader–Shalom [BS04]). Let (C, νC) be any (G,µ)-
boundary. For every i ∈ {1, 2}, there exists a unique (Gi, µi)-boundary
(Ci, νCi) such that (C, νC) ∼= (C1 × C2, νC1 ⊗ νC2) as (G,µ)-spaces.

In particular, we have (B, νB) ∼= (B1 ×B2, νB1 ⊗ νB2) as (G,µ)-spaces.

Proof. By Proposition 3.22, we have L∞(Bi) = L∞(B)Gj . Let (C, νC)
be any (G,µ)-boundary and denote by πC : (B, νB) → (C, νC) the essen-
tially unique G-equivariant measurable factor map. By Proposition 5.9, for
every i ∈ {1, 2}, denote by πi : (C, νC) → (Ci, νCi) the relatively measure
preserving Gi-equivariant measurable factor map arising from L∞(Ci) =
L∞(C)Gj . Since L∞(Ci) = L∞(C)Gj ⊂ L∞(B)Gj = L∞(Bi), (Ci, νCi) is
a (Gi, µi)-boundary. Proposition 5.9(iii) implies that π1 ⊗ π2 : (C, νC) →
(C1 × C2, νC1 ⊗ νC2) is a relatively measure preserving G-equivariant mea-
surable factor map. Then Corollary 3.26 implies that π1 ⊗ π2 : (C, νC) →
(C1×C2, νC1⊗νC2) is an isomorphism and so (C, νC) ∼= (C1×C2, νC1⊗νC2)
as (G,µ)-spaces.

Applying the above reasoning to (C, νC) = (B, νB), we have (B, νB) ∼=
(B1 ×B2, νB1 ⊗ νB2) as (G,µ)-spaces. �

Let now Γ < G be any irreducible lattice. The key result to prove
Theorem 5.8 is the following factor theorem that describes all possible Γ-
factors of the (G,µ)-Poisson boundary (B, νB).
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Theorem 5.11 (Bader–Shalom [BS04]). Let Γ y (Z, ζ) be any non-
singular action so that there exists a Γ-equivariant measurable factor map
π : (B, νB) → (Z, ζ). Then there exists a (G,µ)-boundary (C, νC) and
a Γ-equivariant measurable isomorphism ϕ : (Z, ζ) → (C, νC) such that
ϕ ◦ π = πC almost everywhere.

We say that a pmp action G y (X, ν) is irreducible if for every i ∈
{1, 2}, the restriction Gi y (X, ν) is ergodic. Before proving Theorem 5.11,
we prove the following general intermediate factor theorem that describes
all possible intermediate G-factors associated with irreducible pmp actions
Gy (X, ν).

Theorem 5.12 (Bader–Shalom [BS04]). Let G y (X, ν) be any irre-
ducible pmp action. Let (Y, η) be any (G,µ)-space so that there exist G-
equivariant measurable factor maps

(B ×X, νB ⊗ ν) (Y, η) (X, ν)Ψ ρ

such that ρ ◦Ψ = pX : B ×X → X.
Then there exist a (G,µ)-boundary (C, νC) with its essentially unique

G-equivariant measurable factor map πC : (B, νB) → (C, νC) and a G-
equivariant measurable isomorphism Φ : (Y, η)→ (C ×X, νC ⊗ ν) such that
Φ ◦Ψ = πC ⊗ idX and pX ◦ Φ = ρ almost everywhere.

Proof. Using Proposition 3.3, we may and will assume that all G-
spaces considered in the proof are compact metrizable G-spaces. The G-
equivariant measurable factor maps

(B ×X, νB ⊗ ν) (Y, η) (X, ν)Ψ ρ

such that ρ ◦ Ψ = pX : B ×X → X give rise to the following inclusions of
G-invariant von Neumann subalgebras

L∞(X) ⊂ L∞(Y ) ⊂ L∞(B ×X)

such that ν = η|L∞(X) and η = (νB ⊗ ν)|L∞(Y ) and the inclusion

C1B ⊗ L∞(X) = L∞(X) ⊂ L∞(B ×X) = L∞(B)⊗ L∞(X)

is the diagonal inclusion.
Since Gy (X, ν) is irreducible, we have L∞(X)G1 = L∞(X)G2 = C1X .

By Corollary 5.10, we have (B, νB) ∼= (B1 × B2, νB1 ⊗ νB2) as (G,µ)-
spaces. Moreover, Corollary 3.29 implies that L∞(B×X)G1 = L∞(B2) and
L∞(B×X)G2 = L∞(B1). Following Proposition 5.9, denote by ϕ : (Y, η)→
(C, νC) the relatively measure preserving G-equivariant measurable factor
map corresponding to the inclusion L∞(C) = L∞(Y )G1⊗L∞(Y )G2 ⊂ L∞(Y )
where νC = η|L∞(C). Since

L∞(C) = L∞(Y )G1 ⊗ L∞(Y )G2 ⊂ L∞(B ×X)G1 ⊗ L∞(B ×X)G2 = L∞(B)

and νC = νB|L∞(C), it follows that (C, νC) is a (G,µ)-boundary. Denote
by πC : (B, νB) → (C, νC) the essentially unique G-equivariant measurable
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factor map. We obtain the following commutative diagram of G-equivariant
measurable factor maps:

(B ×X, νB ⊗ ν) (Y, η) (X, ν)

(B, νB) (C, νC) {∗}

Ψ

pB

ρ

ϕ

πC

where the vertical arrows are relatively measure preserving G-equivariant
measurable factor maps. In particular, we obtain the following inclusions of
G-invariant von Neumann subalgebras

L∞(C)⊗ L∞(X) ⊂ L∞(Y ) ⊂ L∞(B)⊗ L∞(X)

such that νC ⊗ ν = η|L∞(C)⊗L∞(X) and η = (νB ⊗ ν)|L∞(Y ). We obtain

that ϕ ⊗ ρ : (Y, η) → (C ×X, νC ⊗ ν) is a G-equivariant measurable factor
map. It remains to prove that Ψ : (B ×X, νB ⊗ ν)→ (Y, η) factors through
Ψ : (C×X, νC⊗ν)→ (Y, η) and that (ϕ⊗ρ)◦Ψ = idC×X almost everywhere.

Using Theorem 3.20 and the naturality of limit measures as in Corol-
lary 3.28, for P-almost every ω ∈ Ω, we obtain the following commutative
diagram of measurable factor maps:

(B ×X, δω ⊗ ν) (Y, ηω) (X, ν)

(B, δω) (C, δπC(ω)) {∗}

Ψ

pB

ρ

ϕ

πC

Denote by E : L∞(Y ) → L∞(C) the unique conditional expectation such
that νC ◦ E = η and consider the restriction E |C(Y ) : C(Y ) → L∞(C). By
duality, we obtain the G-equivariant measurable map β : C → Prob(Y )
such that η =

∫
C β(c) dνC(c). Using Corollary 3.25, for P-almost every

ω ∈ Ω, we have β(πC(ω)) = ηω. Thus, we may consider the well-defined
G-equivariant measurable map C → Prob(Y ) : πC(ω) 7→ ηω := ηπC(ω). The
above commutative diagram implies that for P-almost every ω ∈ Ω, we have
the following isomorphisms:

({ω} ×X, δω ⊗ ν) (ϕ−1({πC(ω)}), ηπC(ω)) (X, ν)Ψ ρ

Then for P-almost every ω ∈ Ω and ν-almost every x ∈ X, we have
Ψ(ω, x) = (ρ|ϕ−1(πC(ω)))

−1(x) := Ψ(πC(ω), x). This implies that Ψ : (B ×
X, νB ⊗ ν) → (Y, η) factors through Ψ : (C ×X, νC ⊗ ν) → (Y, η) and that
(ϕ⊗ ρ) ◦Ψ = idC×X almost everywhere. �

We now combine Theorem 5.12 and the induction procedure to prove
Theorem 5.11.

Proof of Theorem 5.11. Set X := G/Γ and denote by ν ∈ Prob(X)
the unique G-invariant Borel probability measure on X. Choose a Borel
section σ : X → G as in Corollary 1.12. Since Γ < G is irreducible, the pmp
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action Gy (X, ν) is irreducible. For every g ∈ G and every x ∈ X, denote
by τ(g, x) ∈ Γ the unique element in Γ such that gσ(x) = σ(gx) τ(g, x).
Then τ : G×X → Γ is a Borel 1-cocycle.

Let Γ y (Z, ζ) be any nonsingular action and π : (B, νB) → (Z, ζ) any
Γ-equivariant measurable factor map. Up to discarding a νB-null invari-
ant measurable subset, we may assume that π is strictly Γ-equivariant (see
[Zi84, Proposition B.5]). Define the induced space IndGΓ (Z) = Z ×X and
the induced action Gy IndGΓ (Z) by the formula

∀g ∈ G, ∀x ∈ X,∀z ∈ Z, g · (z, x) = (τ(g, x)z, gx).

Define the G-equivariant measurable map

Ψ : B ×X → IndGΓ (Z) : (b, x) 7→ (π(σ(x)−1b), x).

and set η = Ψ∗(νB ⊗ ν) ∈ Prob(IndGΓ (Z)). Observe that η ∼ ζ ⊗ ν. Define
the G-equivariant measurable map

ρ : IndGΓ (Z)→ X : (z, x) 7→ x.

We obtain the following (strictly) G-equivariant measurable factor maps

(B ×X, νB ⊗ ν) (IndGΓ (Z), η) (X, ν)Ψ ρ

such that ρ ◦Ψ = pX : B ×X → X.
Using Theorem 5.12, there exist a (G,µ)-boundary (C, νC) with its essen-

tially unique G-equivariant measurable factor map πC : (B, νB) → (C, νC)
and a G-equivariant measurable isomorphism Φ : (IndGΓ (Z), η) → (C ×
X, νC⊗ν) such that Φ◦Ψ = πC⊗idX and pX ◦Φ = ρ almost everywhere. We
may choose conull G-invariant measurable subsets Y0 ⊂ IndGΓ (Z) and Y1 ⊂
C×X so that Φ : Y0 → Y1 is measurable bijective and strictly G-equivariant,
pX(Φ(z, x)) = x for every (z, x) ∈ Y0 and Φ(Ψ(b, x)) = (πC(b), x) for every
(b, x) ∈ Ψ−1(Y0).

Define the measurable map ϕ : Y0 → C such that for every (z, x) ∈ Y0,
we have Φ(z, x) = (ϕ(z, x), x). Then by G-equivariance, for every g ∈ G
and every (z, x) ∈ Y0, we have

ϕ(τ(g, x)z, gx) = gϕ(z, x).

Then for every (z, x) ∈ Y0, we have

(z,Γ) = (τ(σ(x)−1, x)z, σ(x)−1x) = σ(x)−1 · (z, x) ∈ Y0

and ϕ(z,Γ) = σ(x)−1ϕ(z, x). Define the measurable subset Z0 = {z ∈ Z |
(z,Γ) ∈ Y0} and note that Y0 ⊂ Z0 × X. Conversely, for every z ∈ Z0

and every x ∈ X, we have (z, x) = σ(x) · (z,Γ) ∈ Y0. This shows that
Z0 × X ⊂ Y0. Thus, we have Y0 = Z0 × X. Then Z0 ⊂ Z is ζ-conull.
Moreover, for every γ ∈ Γ and every z ∈ Z0, we have (γz,Γ) = γ ·(z,Γ) ∈ Y0

and ϕ(γz,Γ) = γϕ(z,Γ). This implies that Z0 ⊂ Z is Γ-invariant and the
measurable map ψ : Z0 → C : z 7→ ϕ(z,Γ) is Γ-equivariant. For every
(z, x) ∈ Z0 × X, we have Φ(z, x) = (σ(x)ψ(z), x). Since Φ is injective, it
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follows that ψ : Z0 → C is injective and so ψ : Z0 → ψ(Z0) is a measurable
isomorphism.

For every (b, x) ∈ Ψ−1(Z0 ×X), we have

(σ(x)ψ(π(σ(x)−1b)), x) = Φ(π(σ(x)−1b), x) = Φ(Ψ(b, x)) = (πC(b), x).

Define the conull Γ-invariant measurable subset B0 = π−1(Z0) ⊂ B. In
particular, for every b ∈ B0, we have Ψ(b,Γ) = (π(b),Γ) ∈ Z0 × X and
ψ(π(b)) = πC(b). This further implies that ψ∗ζ = ψ∗π∗νB = πC∗νB = νC .
This finishes the proof of Theorem 5.11. �

We now have all the tools available to prove Theorem 5.8.

Proof of Theorem 5.8. Firstly, assume that Γ/N is amenable. Let

i ∈ {1, 2}. SinceNCΓ is normal and since pi(Γ) < Gi is dense, pi(N)CGi is a
closed normal subgroup. Moreover, the well-defined group homomorphism
Γ/N → Gi/pi(N) has dense range. Therefore, Gi/pi(N) is amenable by
Proposition 2.18.

Conversely, assume that for every i ∈ {1, 2}, Gi/pi(N) is amenable.
To prove that Γ/N is amenable, we use Theorem 2.20 and we show that
`∞(Γ/N) has a left invariant mean. Let i ∈ {1, 2}. Using Theorem 3.34, we

may choose an admissible Borel probability measure µi ∈ Prob(Gi/pi(N)) so

that the (Gi/pi(N), µi)-Poisson boundary is trivial. Choose an admissible
Borel probability measure µi ∈ Prob(Gi) so that µi is the pushforward

measure of µi under the quotient map Gi → Gi/pi(N). Denote by (Bi, νBi)
the (Gi, µi)-Poisson boundary. Set µ = µ1 ⊗ µ2 ∈ Prob(G) and (B, νB) =
(B1×B2, νB1⊗νB2). Then Corollary 5.10 implies that (B, νB) is the (G,µ)-
Poisson boundary.

Consider the nonsingular action Γ y (B, νB). Denote by L∞(B)N ⊂
L∞(B) the Γ-invariant weak∗-closed unital ∗-subalgebra of all N -invariant
essentially bounded measurable functions.

Claim 5.13. We have L∞(B)N = C1B.

Indeed, by Corollary 5.10 and Theorem 5.11, for every i ∈ {1, 2}, there
exists a (Gi, µi)-boundary (Ci, νCi) and there exists a Γ-equivariant weak∗-
continuous unital ∗-isomorphism L∞(B)N ∼= L∞(C) where (C, νC) = (C1 ×
C2, νC1⊗νC2). Since N acts trivially on L∞(B)N , it follows that for every i ∈
{1, 2}, pi(N) acts trivially on (Ci, νCi) and so (Ci, νCi) is a (Gi/pi(N), µi)-

space. Since by construction the (Gi/pi(N), µi)-Poisson boundary is trivial,
Corollary 3.27 implies that the probability measure νCi ∈ Prob(Ci) is Gi-
invariant. This further implies that the probability measure νC ∈ Prob(C)
is G-invariant. Since (C, νC) is a (G,µ)-boundary, Corollary 3.26 implies
that (C, νC) is trivial. This further implies that L∞(B)N = L∞(C) = C1B.

By Corollary 3.33, the nonsingular action Γ y (B, νB) is amenable.
Then there exists a Γ-equivariant projection Φ : L∞(Γ × B) → L∞(B).
Observe that `∞(Γ/N) = `∞(Γ)N ⊂ L∞(Γ×B)N and Claim 5.13 shows that
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Φ(L∞(Γ×B)N ) ⊂ L∞(B)N = C1B. The restriction of Φ to `∞(Γ/N) yields
a left Γ-invariant mean m : `∞(Γ/N) → C : F 7→ Φ(F ⊗ 1B). Therefore,
Γ/N is amenable by Theorem 2.20. �

3. Proof of Bader–Shalom’s normal subgroup theorem

We combine Theorems 5.6 and 5.8 to prove Theorem 5.3.

Proof of Theorem 5.3. Let {e} 6= N C Γ be a nontrivial normal
subgroup. We show that Γ/N is finite by proving that Γ/N has property
(T) and is amenable.

We claim that for every i ∈ {1, 2}, pi(N) 6= {e} and so Gi = pi(N).
Indeed, by contradiction, up to permuting the indices, assume that p1(N) =
{e}. Then N = {e} × p2(N). Since p2(Γ) < G2 is dense, p2(N) C G2 is
a nontrivial closed normal subgroup. Since G2 is topologically simple, it
follows that G2 = p2(N) and so G2 is discrete. This is a contradiction.

Next, we claim that [G,G] = G. Indeed, write q : G → G/[G,G] for
the continuous factor map. Let i ∈ {1, 2} and set qi = q|Gi . Since Gi is
topologically simple, we have ker(qi) = {e} or ker(qi) = Gi. If ker(qi) = {e},
then qi : Gi → G/[G,G] is a continuous injective group homomorphism
and so Gi is abelian. Using the structure theory of locally compact abelian
groups (see [HR79, Chapter VI, §24]), it follows that Gi ∼= Z/pZ for some
prime p ∈ P. This is a contradiction. Therefore, q|Gi = 0 for every i ∈ {1, 2}
and so q = 0. This implies that G = [G,G].

Therefore, Theorem 5.6 implies that Γ/N has property (T) and Theorem
5.8 implies that Γ/N is amenable. Therefore, Γ/N is finite by Proposition
2.27. �
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