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Abstract. These are the lecture notes for the YMC∗A summer school held at KU Leuven
during August 13–17, 2018. In Lecture 1, we review the fullness property for arbitrary factors
and give examples of full factors of type II1 and of type III. In Lecture 2, we review the strong
ergodicity property for nonsingular group actions and we prove the fullness property of group
measure space factors arising from arbitrary strongly ergodic actions of bi-exact groups (e.g.
free groups) due to Houdayer–Isono. In Lecture 3, we give a proof of Connes’ spectral gap
theorem for full factors of type II1 due to Marrakchi and we prove Marrakchi’s spectral gap
theorem for full factors of type III. In Lecture 4, we review Popa’s intertwining theory and we
prove a unique McDuff decomposition theorem due to Houdayer–Marrakchi–Verraedt.
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1. Lecture 1: Introduction to full factors

We introduce the fullness property for type II1 factors in terms of central nets and then for
arbitrary factors in terms of centralizing nets. We provide examples of full factors of type II1

and of type III.

Full factors of type II1. We say that a von Neumann algebra M is tracial if M possesses
a faithful normal tracial state τ . A type II1 factor M is an infinite dimensional tracial von
Neumann algebra with trivial center. A tracial von Neumann algebra (M, τ) is amenable if
there exists a state ϕ ∈ B(L2(M, τ))∗ such that ϕ|M = τ and ϕ(xT ) = ϕ(Tx) for every x ∈M
and every T ∈ B(L2(M, τ)).

Let M be any type II1 factor. Denote by τ its (unique) faithful normal tracial state. Write

‖x‖2 =
√
τ(x∗x)

1/2
for every x ∈ M . Let (xi)i∈I ∈ `∞(I,M) be any uniformly bounded net.

We say that (xi)i∈I is

• central if limi ‖xiy − yxi‖2 = 0 for every y ∈M .
• trivial if limi ‖xi − τ(xi)1‖2 = 0.

We first introduce the fullness property for factors of type II1.

Definition 1.1. Let M be any type II1 factor. We say that M is full if every central uniformly
bounded net is trivial.

Let us point out that when M has separable predual (or equivalently M acts on a separable
Hilbert space), M is full if and only if every central uniformly bounded sequence is trivial.

Denote by R the hyperfinite factor of type II1 defined by

R =

( ⋃
n∈N

M2n(C)

)′′
=
⊗

n∈N
(M2(C), tr2)

where tr2 is the normalized trace on M2(C). By Murray–Neumann’s result [MvN43], R is
the unique hyperfinite factor of type II1. By Connes’ fundamental result [Co75b], R is in fact
the unique amenable factor of type II1 (with separable predual). For every n ∈ N, denote by
πn : M2(C) → R the trace preserving embedding of M2(C) into R corresponding to the nth
position. Define

un = πn

((
1 0
0 −1

))
∈ R.

It is straightforward to see that (un)n∈N is a central uniformly bounded sequence in R. More-
over, for every n ∈ N, we have un ∈ U(R), τ(un) = 0 and so ‖un − τ(un)1‖2 = 1. This shows
that (un)n∈N is not trivial and therefore R is not full. One can then think of the fullness
property for type II1 factors as a strengthening of nonamenability.

In order to give examples of full factors of type II1, we look at von Neumann algebras associ-
ated with countable groups. Let Γ be any countable group and π : Γ → U(Hπ) any unitary
representation. We say that π has almost invariant vectors if there exists a net of unit vectors
(ξi)i∈I in Hπ such that limi ‖πg(ξi)− ξi‖ = 0 for every g ∈ Γ. We say that π has spectral gap if
there exist κ > 0 and g1, . . . , gk ∈ Γ such that

(1.1) ∀ξ ∈ Hπ, ‖ξ‖2 ≤ κ
k∑
j=1

‖πgj (ξ)− ξ‖2.

Observe that (1.1) is equivalent to saying that the spectrum of the positive selfadjoint bounded

operator T =
∑k

j=1 |πgj − 1|2 is contained in [ 1
κ ,+∞). It is easy to check that π does not have

almost invariant vectors if and only if π has spectral gap. The proof is left to the reader.
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Denote by λ : Γ → U(`2(Γ)) (resp. ρ : Γ → U(`2(Γ))) the left (resp. right) regular repre-
sentation. Recall that the left (resp. right) group von Neumann algebra L(Γ) (resp. R(Γ)) is
defined by L(Γ) = {λg | g ∈ Γ}′′ ⊂ B(`2(Γ)) (resp. R(Γ) = {ρg | g ∈ Γ}′′ ⊂ B(`2(Γ))). We
have L(Γ) = R(Γ)′. A countable group Γ is ICC or has infinite conjugacy classes if for every
g ∈ Γ \ {e}, the conjugacy class {sgs−1 | s ∈ Γ} is infinite. It is well-known that whenever Γ
is an ICC countably infinite group, the group von Neumann algebra L(Γ) is a type II1 factor
(with separable predual).

Recall that Γ is amenable if the left regular representation λ : Γ → U(`2(Γ)) has almost
invariant vectors. Then Γ is amenable if and only if L(Γ) is amenable. Denote by Ad : Γ →
U(`2(Γ)) : g 7→ λgρg the conjugation representation. Since the unit vector δe is always Ad-

invariant, we rather consider the conjugation representation Ad0 on the Ad-invariant subspace
`2(Γ)	Cδe = `2(Γ \ {e}). The next definition is due to Effros [Ef73].

Definition 1.2. Let Γ be any countable group. We say that Γ is inner amenable if Ad0 : Γ→
U(`2(Γ \ {e})) has almost invariant vectors.

Observe that a non-inner amenable countably infinite group is necessarily ICC. Indeed, if Γ
is not ICC, then there exists g ∈ Γ \ {e} such that Cg = {sgs−1 | s ∈ Γ} is finite. Then the

nonzero vector η =
∑

h∈Cg δh ∈ `
2(Γ \ {e}) is Ad0-invariant.

Example 1.3. Here are some well-known examples of non-inner amenable groups.

(i) Free product groups Γ = Γ1 ∗ Γ2 where |Γ1| ≥ 3 and |Γ2| ≥ 2 (in particular free groups
Fn where n ≥ 2);

(ii) ICC property (T) groups;
(iii) ICC Gromov-word hyperbolic groups.

The following proposition shows in particular that free groups are not inner amenable.

Proposition 1.4. For every i ∈ {1, 2}, let Γi be any countable group. Assume that |Γ1| ≥ 3
and |Γ2| ≥ 2. Then Γ = Γ1 ∗ Γ2 is not inner amenable.

Proof. Put H = `2(Γ \ {e}). For every i ∈ {1, 2}, denote by Hi ⊂ H the closure of the linear
span of all δg’s where g is a reduced word in Γ that begins with a letter in Γi \ {e} and denote
by Pi : H → Hi the corresponding orthogonal projection. Observe that H = H1 ⊕H2. Choose
a, b ∈ Γ1 \ {e} such that a 6= b and c ∈ Γ2 \ {e}. For simplicity, write Ad0

g(ξ) = gξg−1 for every

g ∈ Γ and every ξ ∈ H. Observe that aH2a
−1 ⊂ H1, bH2b

−1 ⊂ H1, aH2a
−1 ⊥ bH2b

−1 and
cH1c

−1 ⊂ H2. Then, for every ξ ∈ H, we have

‖P2(a−1ξa)‖2 + ‖P2(b−1ξb)‖22 = ‖PaH2a−1(ξ)‖2 + ‖PbH2b−1(ξ)‖22(1.2)

≤ ‖P1(ξ)‖22
‖P1(c−1ξc)‖22 = ‖PcH1c−1(ξ)‖22

≤ ‖P2(ξ)‖22.

Let now (ξn)n be any ‖ · ‖2-bounded Ad-invariant sequence in H. Then (1.2) implies that
√

2 · lim sup
n
‖P2(ξn)‖2 ≤ lim sup

n
‖P1(ξn)‖2

lim sup
n
‖P1(ξn)‖2 ≤ lim sup

n
‖P2(ξn)‖2.

Thus, we have lim supn ‖P1(ξn)‖2 = lim supn ‖P2(ξn)‖2 = 0 and so limn ‖ξn‖2 = 0. This shows
that Γ is not inner amenable. �
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Murray–von Neumann showed in [MvN43] that the free group factor L(F2) is full and deduced
that L(F2) is not isomorphic to the hyperfinite type II1 factor R. The following result due to
Effros [Ef73, Theorem] provides plenty of examples of full factors of type II1.

Theorem 1.5. Let Γ be any non-inner amenable countably infinite group. Then L(Γ) is a full
factor of type II1.

Proof. Since Ad0 : Γ → U(`2(Γ \ {e})) has spectral gap, there exist κ > 0 and g1, . . . , gk ∈ Γ
such that

(1.3) ∀ξ ∈ `2(Γ \ {e}), ‖ξ‖2 ≤ κ
k∑
j=1

‖Ad0
gj (ξ)− ξ‖

2.

Put M = L(Γ). For every j ∈ {1, . . . , k}, put uj = λgj . For every x ∈ M and every g ∈ Γ,
we have Adg(xδe) = λgρg xδe = λgxρgδe = λgxλ

∗
gδe. Applying (1.3) to ξ = (x − τ(x)1)δe ∈

`2(Γ)	Cδe = `2(Γ \ {e}), we obtain

(1.4) ∀x ∈M, ‖x− τ(x)1‖22 ≤ κ
k∑
j=1

‖ujx− xuj‖22.

Then (1.4) clearly implies that every central uniformly bounded sequence in M is trivial. Thus,
L(Γ) = M is full. �

The converse to Effros’ theorem does not hold. Indeed, Vaes [Va09] constructed an example of
an inner amenable ICC countably infinite group Λ such that L(Λ) is a full factor.

Full factors. Let M be any von Neumann algebra. We denote by M∗ its predual, by Z(M)
its center, by U(M) its group of unitaries, by Mh its subspace of selfadjoint elements and by
Ball(M) its unit ball with respect to the uniform norm. We denote by (M,L2(M), J,L2(M)+)
the standard form of M . More precisely, we have M ⊂ B(L2(M)), J : L2(M) → L2(M) is a
conjugate linear isometry such that J2 = 1 and L2(M)+ ⊂ L2(M) is a closed convex cone that
satisfies

L2(M)+ =
{
ζ ∈ L2(M) | 〈ζ, ξ〉 ≥ 0,∀ξ ∈ L2(M)+

}
.

Furthermore, we have JMJ = M ′; Jξ = ξ for every ξ ∈ L2(M)+; xJxJξ ∈ L2(M)+ for every
x ∈M and every ξ ∈ L2(M)+; JzJ = z∗ for every z ∈ Z(M). By [Ha73], the standard form of
M always exists and is unique in an appropriate sense. The Hilbert space L2(M) is naturally
endowed with a structure of M -M -bimodule defined as follows:

∀x, y ∈M,∀η ∈ L2(M), xηy = xJy∗Jη.

Observe that for every b ∈ Mh and every ζ ∈ L2(M) such that Jζ = ζ, we have ‖ζb‖ =
‖Jb∗Jζ‖ = ‖bζ‖. To any element ϕ ∈ (M∗)+ corresponds a unique element ξϕ ∈ L2(M)+

such that ϕ = 〈 · ξϕ, ξϕ〉. For every ϕ ∈ (M∗)+ and every x ∈ M , we simply write ‖x‖ϕ =

ϕ(x∗x)1/2 = ‖xξϕ‖ and ‖x‖]ϕ = ϕ(x∗x+ xx∗)1/2 = (‖xξϕ‖2 + ‖ξϕx‖2)1/2.

Example 1.6. Let M be any tracial von Neumann algebra with a distinguished faithful normal
tracial state τ . Denote by (πτ ,L

2(M, τ), ξτ ) the GNS construction. Regard M ⊂ B(L2(M, τ)).
Define J : L2(M, τ) → L2(M, τ) : xξτ 7→ x∗ξτ . Then J extends to a well-defined conjugate
linear isometry such that J2 = 1. Moreover, one checks that (M,L2(M, τ), J,L2(M+, τ)) is the
standard form of M .
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We say that M is σ-finite if M possesses a faithful normal state. For every faithful state

ϕ ∈M∗, the norm ‖ · ‖ϕ (resp. ‖ · ‖]ϕ) induces the strong (resp. ∗-strong) operator topology on
Ball(M). For every faithful state ϕ ∈M∗, the centralizer of ϕ in M is defined by

Mϕ = {x ∈M | xξϕ = ξϕx}
= {x ∈M | ∀y ∈M,ϕ(xy) = ϕ(yx)} .

It is straightforward to check that Mϕ ⊂ M is a von Neumann subalgebra. We say that M
is amenable if there exists a conditional expectation Φ : B(L2(M)) → M . Note that when M
is a tracial von Neumann algebra, this definition coincides with the one we introduced in the
previous subsection.

Let M be any factor. Recall that

• M is of type I if M has a minimal projection. In that case, we have M ∼= B(`2(I))
for some nonempty index set I.
• M is of type II if M has no minimal projection and M possesses a faithful normal

semifinite trace Tr. If Tr(1) < +∞, we say that M is of type II1. If Tr(1) = +∞, we
say that M is of type II∞.
• M is of type III otherwise. When M is σ-finite and of type III, all nonzero projections

in M are Murray-von Neumann equivalent to 1.

The classification of type III factors into subtypes was obtained by Connes in [Co72]. Since we
will not use those classification results, we will not dwell further on that.

To define the fullness property for arbitrary factors, it is more appropriate to use the M -M -
bimodule structure of L2(M) rather than the M -M -bimodule structure of M . This is because
the right multiplication on M does not extend to a representation by bounded operators on
L2(M). Let (xi)i∈I ∈ `∞(I,M) be any uniformly bounded net. We say that (xi)i∈I is

• central if xiy − yxi → 0 ∗-strongly for every y ∈M .
• centralizing if limi ‖xiη − ηxi‖ = 0 for every η ∈ L2(M).
• trivial if there exists a bounded net (λi)i∈I in C such that xi − λi1→ 0 ∗-strongly.

We now introduce the fullness property for arbitrary factors.

Definition 1.7. Let M be any factor. We say that M is full if every centralizing uniformly
bounded net is trivial.

Let us point out that when M has separable predual, M is full if and only if every centralizing
uniformly bounded sequence is trivial. One next checks that Definition 1.7 coincides with
Definition 1.1 when M is a type II1 factor. This is a consequence of the following useful
lemma.

Lemma 1.8. Let M be any σ-finite von Neumann algebra and (xi)i∈I any uniformly bounded
net in M . The following assertions are equivalent:

(i) The net (xi)i∈I is centralizing.
(ii) The net (xi)i∈I is central and for some (or any) faithful state ϕ ∈ M∗, we have

limi ‖xiξϕ − ξϕxi‖ = 0.

Proof. (i)⇒ (ii) Fix any faithful state ϕ ∈M∗. Since (xi)i∈I is centralizing, for η = ξϕ we have
limi ‖xiξϕ − ξϕxi‖ = 0. For every y ∈M , since (xi)i∈I is centralizing, for η = yξϕ we have

lim sup
i
‖(xiy − yxi)ξϕ‖ ≤ lim sup

i
‖xiη − ηxi‖+ lim sup

i
‖y(ξϕxi − xiξϕ)‖ = 0.
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Likewise, for η = ξϕy we have

lim sup
i
‖(xiy − yxi)∗ξϕ‖ = lim sup

i
‖ξϕ(xiy − yxi)‖

≤ lim sup
i
‖(ξϕxi − xiξϕ)y‖+ lim sup

i
‖xiη − ηxi‖ = 0.

This implies that (xi)i∈I is central.

(ii)⇒ (i) Since ξϕ is M -cyclic and since (xi)i∈I is uniformly bounded, it suffices to prove that
limi ‖xiη − ηxi‖ = 0 for every η ∈ L2(M) of the form η = yξϕ for y ∈M . For every y ∈M , we
have

lim sup
i
‖xi yξϕ − yξϕ xi‖ ≤ lim sup

i
‖(xiy − yxi)ξϕ‖+ lim sup

i
‖y(xiξϕ − ξϕxi)‖ = 0.

Thus, (xi)i∈I is centralizing. �

When M is a type II1 factor with faithful normal tracial state τ , since any element x ∈ M
commutes with ξτ ∈ L2(M), Lemma 1.8 implies that any central uniformly bounded net is
centralizing. Therefore, Definition 1.7 coincides with Definition 1.1 for type II1 factors.

For every λ ∈ (0, 1), denote by Rλ the Powers factor of type IIIλ defined by

(Rλ, ϕλ) =
⊗

n∈N
(M2(C), ψλ) where ψλ = tr2

(
·
( 1

1+λ 0

0 λ
1+λ

))
.

For every n ∈ N, denote by πn : M2(C)→ Rλ the state preserving embedding of M2(C) into
Rλ corresponding to the nth position, meaning that ϕλ ◦ πn = ψλ. Define

un = πn

((
1 0
0 −1

))
∈ Rλ.

Using Lemma 1.8, it is straightforward to see that (un)n∈N is a centralizing uniformly bounded
sequence in Rλ. Moreover, for every n ∈ N, we have un ∈ U(Rλ), ϕλ(un) = 0 and so ‖un −
ϕλ(un)1‖ϕλ = 1. This shows that (un)n∈N is not trivial and therefore Rλ is not full. More
generally, it follows from the work and Connes and Haagerup on the classification of amenable
factors (see [Co75b, Co85, Ha85]) that any non-type I amenable factor with separable predual
is never full. One can then think of the fullness property for arbitrary factors as a strengthening
of nonamenability.

Example 1.9. Here are some examples of full factors (possibly of type III):

(i) For every nonamenable group Γ and every von Neumann algebra B 6= C1 endowed
with a faithful normal state ψ, the Bernoulli crossed product(⊗

g∈Γ
(B,ψ)

)
o Γ

is a full factor (see [Co74, VV14]). It is a type III factor if and only if ψ is not tracial.
(ii) For every orthogonal representation U : R y HR such that dimHR ≥ 2, Shlyakht-

enko’s free Araki–Woods factor Γ(HR, U)′′ is a full factor (see [Sh96, Sh97, Va04]). It is
a type III factor if and only if U 6= id. When U = id, we have Γ(HR, id)′′ ∼= L(FdimHR

).
(iii) For every bi-exact group Γ (e.g. free group) and every strongly ergodic free nonsingular

action Γ y (X,µ), the group measure space factor L(Γ y X) is full (see [HI15b]). It is
a type III factor if and only if there is no σ-finite Γ-invariant measure that is equivalent
to µ on X. We will prove this result in Lecture 2.

Finally, let us point out that there is a subtle difference between central nets and centralizing
nets. For instance, one can show that in the Powers factor Rλ, there exist central uniformly
bounded sequences that are not centralizing. We refer to [AH12, Example 5.1] and the refer-
ences therein for further details.
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2. Lecture 2: Full group measure space factors

We introduce the strong ergodicity property for nonsingular group actions and we provide
examples of strongly ergodic actions. We prove Choda’s result stating that strongly ergodic
free probability measure preserving actions of non-inner amenable groups give rise to full factors
of type II1. We finally prove Houdayer–Isono’s result stating that arbitrary strongly ergodic
free nonsingular actions of bi-exact groups give rise to full factors.

Strongly ergodic actions. Let Γ be any countable group, (X,µ) any standard probability
space and Γ y X any measurable action. We say that the action Γ y X is nonsingular and
write Γ y (X,µ) if for every g ∈ Γ, the pushforward measure g∗µ has the same null measurable
subsets as the measure µ. Moreover, we say that the nonsingular action Γ y X is

• probability measure preserving (pmp for short) if for every g ∈ Γ, we have g∗µ = µ.
• essentially free (free for short) if for µ-almost every x ∈ X, we have StabΓ(x) = {e}.
• ergodic if every Γ-invariant measurable subset U ⊂ X (meaning that µ(U4gU) = 0 for

every g ∈ Γ) is trivial (meaning that µ(U)(1− µ(U)) = 0).
• amenable if there exists a Γ-equivariant conditional expectation Φ : L∞(Γ × X) →

L∞(X) where we view L∞(X) ⊂ L∞(Γ×X) as a von Neumann subalgebra.

Let us point out that any infinite group Γ admits an ergodic free pmp action, namely the
Bernoulli action Γ y ([0, 1],Leb⊗Γ). For every amenable countable group Γ, every nonsingular
action Γ y (X,µ) is amenable. Every nonamenable countable group admits at least one
amenable ergodic nonsingular action, namely the Poisson boundary action.

Let Γ be any countable group, (X,µ) any standard probability space and Γ y (X,µ) any
ergodic nonsingular action. Recall that

• Γ y (X,µ) is of type I if Γ y (X,µ) is essentially transitive. In that case, we have
(Γ y X) ∼= (Γ y I) where I is a countable set and Γ y I is a transitive action.
• Γ y (X,µ) is of type II if Γ y (X,µ) is not essentially transitive and there exists

a σ-finite Γ-invariant measure ν on X that is equivalent to µ. If ν(X) < +∞, we say
that Γ y (X,µ) is of type II1. If ν(X) = +∞, we say that Γ y (X,µ) is of type II∞.
• Γ y (X,µ) is of type III otherwise.

Let now (Un)n∈N be any sequence of measurable subsets of X. We say that (Un)n∈N is

• invariant if limn µ(Un4gUn) = 0 for every g ∈ Γ.
• trivial if limn µ(Un)(1− µ(Un)) = 0.

The following definition due to Schmidt [Sc79] is central in this lecture.

Definition 2.1. Let Γ be any countable group, (X,µ) any standard probability space and
Γ y (X,µ) any nonsingular action. We say that Γ y (X,µ) is strongly ergodic if every
invariant sequence is trivial.

Any strongly ergodic nonsingular action is obviously ergodic. It is easy to show that the notion
of strong ergodicity does not depend on the measure µ but only on the measure class of µ. We
leave the details to the reader.

Let Z yT (X,µ) be any ergodic free pmp action. By Rokhlin’s lemma, for every n ∈ N,
there exists a measurable subset Vn ⊂ X such that Vn, T (Vn), . . . , Tn(Vn) are pairwise disjoint

and µ(X \
⊔n
j=0 T

j(Vn)) < 1/(n + 1). Put Un =
⊔bn/2c
j=0 T j(Vn). Then the sequence (Un)n∈N

is invariant and nontrivial since limn µ(Un) = 1/2. Thus, the action Z yT (X,µ) is not
strongly ergodic. More generally, it follows from Connes–Feldman–Weiss result [CFW81] that
any amenable nonsingular action Γ y (X,µ) on a diffuse standard probability space is never
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strongly ergodic. Therefore, like the fullness property for non-type I factors, one can think of
strong ergodicity as a strengthening of nonamenability.

Example 2.2. Here are some examples of strongly ergodic free nonsingular actions (possibly
of type III).

(i) For every nonamenable countable group Γ, the Bernoulli action Γ y ([0, 1]Γ,Leb⊗Γ) is
a strongly ergodic free pmp action.

(ii) For every connected simple Lie group G and every countable dense subgroup Γ < G
with algebraic entries, the translation action Γ y G is a strongly ergodic free measure
preserving action (see [BG06, BG10, BdS14, BISG15]).

(iii) For every connected simple Lie group G with finite center, every lattice Γ < G and
every nonamenable closed subgroup H < G, the homogeneous action Γ y G/H is a
strongly ergodic free nonsingular action (see [Oz16]).

Full group measure space factors. We introduce the group measure space construction
due to Murray–von Neumann [MvN43]. Let Γ be any countable group, (X,µ) any standard
probability space and Γ y (X,µ) any nonsingular action. Denote by σ : Γ y L∞(X) the
action defined by σg(f)(x) = f(g−1 · x) for every f ∈ L∞(X). Put H = L2(X,µ) ⊗ `2(Γ).
Define the unital ∗-representation πσ : L∞(X)→ B(H) by πσ(f)(ξ⊗δh) = σh(f)⊗δh for every
f ∈ L∞(X), every ξ ∈ L2(X,µ) and every h ∈ Γ. For every g ∈ Γ, put ug = 1⊗ λg. Then we
have the following covariance relation:

∀g ∈ Γ, ∀f ∈ L∞(X), ugπσ(f)u∗g = πσ(σg(f)).

Definition 2.3. The group measure space von Neumann algebra associated with Γ y (X,µ)
is defined by

L(Γ y X) = {πσ(f), ug | f ∈ L∞(X), g ∈ Γ}′′ ⊂ B(H).

For simplicity, we identify L∞(X) with its image πσ(L∞(X)) in B(H) and regard A = L∞(X) ⊂
L(Γ y X) = M . The mapping EA : M → A : fug 7→ fδe,g extends to a well-defined faithful
normal conditional expectation. Write τ =

∫
X · dµ and ϕ = τ ◦ EL∞(X). Then ϕ ∈ M∗ is a

faithful state and A ⊂ Mϕ. We write x =
∑

g∈Γ x
gug for the Fourier expansion of x ∈ M .

Note that for all measurable subsets U, V ⊂ X, we have ‖1U − 1V ‖2ϕ = µ(U4V ). This shows
that for every measurable subset U ⊂ X, U is invariant if and only if 1U ∈ Z(M). Moreover,
for every sequence of measurable subsets (Un)n∈N in X, (Un)n∈N is invariant if and only if
(1Un)n∈N is centralizing. If the nonsingular action Γ y (X,µ) is free, then A ⊂M is maximal
abelian, meaning that A′ ∩M = A. In that case, Γ y (X,µ) is ergodic if and only if M is a
factor. The nonsingular action Γ y (X,µ) is amenable if and only if M is amenable.

Proposition 2.4. Let Γ be any countable group, (X,µ) any standard probability space and
Γ y (X,µ) any nonsingular action. Put A = L∞(X) and M = L(Γ y X). The following
assertions are equivalent:

(i) Γ y (X,µ) is strongly ergodic.
(ii) For every uniformly bounded sequence (an)n ∈ `∞(N, A), if limn ‖an−σg(an)‖2 = 0 for

every g ∈ Γ, then limn ‖an − τ(an)1‖2 = 0.

Proof. (ii)⇒ (i) Let (Un)n∈N be any invariant sequence of measurable subsets of X. For every
n ∈ N, put pn = 1Un ∈ A. Since (Un)n∈N is invariant, we have limn ‖pn − σg(pn)‖2 = 0 for
every g ∈ Γ. Then we have

lim
n
µ(Un)(1− µ(Un)) = lim

n
‖pn − τ(pn)1‖22 = 0.

(i) ⇒ (ii) We use ultraproduct techniques. Let (an)n ∈ `∞(N, A) be any uniformly bounded
sequence such that limn ‖an − σg(an)‖2 = 0 for every g ∈ Γ. Let ω ∈ β(N) \ N be any
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nonprincipal ultrafilter. Consider the tracial ultraproduct von Neumann algebra (Aω, τω) and
the ultraproduct action σω : Γ y Aω. We claim that (Aω)Γ = C1. Indeed, let p ∈ (Aω)Γ be
any projection. By [Co75a, Proposition 1.1.3 (a)], we may write p = (pn)ω where pn ∈ A is a
projection for every n ∈ N. Write pn = 1Un for some measurable subset Un ⊂ X. Since for
every g ∈ Γ, we have

lim
n→ω

µ(Un4gUn) = lim
n→ω
‖1Un − 1gUn‖22 = lim

n→ω
‖pn − σg(pn)‖22 = ‖p− σωg (p)‖22 = 0,

it follows that (Un)n∈N is an ω-invariant sequence. By strong ergodicity, we have

‖p− τω(p)1‖22 = lim
n→ω
‖pn − τ(pn)1‖22 = lim

n→ω
µ(Un)(1− µ(Un)) = 0.

Thus, we have p ∈ {0, 1}. This shows that (Aω)Γ = C1. Since (an)ω ∈ (Aω)Γ, it follows
that limn→ω ‖an − τ(an)1‖2 = ‖(an)ω − τω((an)ω)1‖2 = 0. Since this holds true for every
ω ∈ β(N) \N, it follows that limn ‖an − τ(an)1‖2 = 0. �

Proposition 2.4 implies that for every ergodic free nonsingular action Γ y (X,µ), if L(Γ y X)
is full then Γ y (X,µ) is strongly ergodic. We point out that the converse need not be true
as demonstrated by Connes–Jones [CJ81]. However, it is natural to seek for natural classes of
groups and actions for which strong ergodicity of the action implies fullness of the corresponding
group measure space construction.

We first review a well-known result due to Choda [Ch81] that gives a satisfactory answer to
the above question in the probability measure preserving setting.

Theorem 2.5. Let Γ be any non-inner amenable group, (X,µ) any standard probability space
and Γ y (X,µ) any strongly ergodic free pmp action. Then L(Γ y X) is a full factor.

Proof. Let (xn)n∈N ∈ `∞(N,M) be any central uniformly bounded sequence in M . For
every n ∈ N, write xn =

∑
h∈Γ(xn)huh for the Fourier expansion of xn ∈ M . Put ξn =∑

h∈Γ ‖(xn)h‖2 δh ∈ `2(Γ). For every g ∈ Γ, we have

‖Adg(ξn)− ξn‖2 =
∑
h∈Γ

∣∣∣‖(xn)g
−1hg‖2 − ‖(xn)h‖2

∣∣∣2
=
∑
h∈Γ

∣∣∣‖g · (xn)g
−1hg‖2 − ‖(xn)h‖2

∣∣∣2
≤
∑
h∈Γ

∥∥∥g · (xn)g
−1hg − (xn)h

∥∥∥2

2

= ‖ugxnu∗g − xn‖22 → 0 as n→∞.

Since Γ is not inner amenable, it follows that limn ‖ξn − ‖(xn)e‖2 δe‖ = 0 and so limn ‖xn −
EA(xn)‖2 = 0. Since (xn)n is central, it follows that

lim
n
‖EA(xn)− σg(EA(xn))‖2 = lim

n
‖EA(xn − ugxnu∗g)‖2 = 0

for every g ∈ Γ. Then Proposition 2.4 implies that limn ‖EA(xn)− τ(xn)1‖2 = limn ‖EA(xn)−
τ(EA(xn))1‖2 = 0. This implies that limn ‖xn−τ(xn)1‖2 = 0 and so (xn)n is trivial. Therefore,
M is full. �

Let us point out that Choda’s argument relies in a crucial way on the invariance of the proba-
blity measure µ and no longer works when the action does not preserve a probability measure.
We next investigate a large class of non-inner amenable groups for which one can prove the
fullness property of the group measure space factors arising from arbitrary strongly ergodic
actions.
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Following [Oz03, Oz04, BO08], a countable group Γ is bi-exact if Γ is exact and if the following
condition is satisfied:

(2.1) ∃µ : Γ→ Prob(Γ) : x 7→ µx, ∀g, h ∈ Γ, lim
x→∞

‖µgxh − g∗µx‖`1(Γ) = 0.

Here and in what follows, we denote by Prob(Γ) = {η ∈ `1(Γ) | η ≥ 0 and ‖η‖`1(Γ) = 1}. The
class of bi-exact groups includes amenable groups, free groups [AO74], Gromov word-hyperbolic
groups [Oz03] and discrete subgroups of connected simple Lie groups of real rank one [Sk88].
The following proposition shows that free groups satisfy (2.1).

Proposition 2.6. For every n ≥ 2, the free group Fn satisfies (2.1).

Proof. Let n ≥ 2 and put Γ = Fn = 〈a1, . . . , an〉. Denote by | · | : Γ → N the length function
with respect to the generating set S = {a±1

1 , . . . , a±1
n }. For every g ∈ Γ, denote by (g0, . . . , gk)

the unique geodesic path in the Cayley graph of (Γ, S) such that g0 = e and gk = g where

k = |g|. Put µg = 1
k

∑k
j=1 δgj . For all g, h ∈ Γ, it is easy to see that

‖µgxh − g∗µx‖`1(Γ) ≤ ‖µgxh − g∗µxh‖`1(Γ) + ‖g∗µxh − g∗µx‖`1(Γ)

= ‖µgxh − g∗µxh‖`1(Γ) + ‖µxh − µx‖`1(Γ)

≤ |g|
|gxh|

+

∣∣∣∣ |xh||gxh|
− 1

∣∣∣∣+

∣∣∣∣ |x||xh| − 1

∣∣∣∣+
|h|
|x|
→ 0 as x→∞.

This finishes the proof. �

The next result due to Houdayer–Isono (see [HI15b, Theorem C]) is a strengthening of Choda’s
result for arbitrary strongly ergodic actions of bi-exact groups.

Theorem 2.7. Let Γ be any countable group satisfying (2.1), (X,µ) any diffuse standard
probability space and Γ y (X,µ) any ergodic free nonsingular action. We have the following
dichotomy:

• Either Γ y (X,µ) is amenable.
• Or for every centralizing uniformly bounded sequence (wn)n ∈ `∞(N,M), we have
wn − EL∞(X)(wn)→ 0 strongly.

In particular, if Γ y (X,µ) is strongly ergodic, then L(Γ y X) is a full factor.

Proof. Put A = L∞(X) and M = L(Γ y X). Denote by EA : M → A the canonical faithful
normal conditional expectation and by ϕ ∈M∗ the unique faithful state such that ϕ ◦ EA = ϕ
and ϕ|A =

∫
X · dµ. We simply write τ = ϕ|A ∈ A∗. Assume that there exists a centralizing

uniformly bounded sequence (wn)n ∈ `∞(N,M) such that lim supn ‖wn − EA(wn)‖ϕ > 0. Up
to extracting a subsequence, rescaling and replacing each wn by wn −EA(wn), we may further
assume that for every n ∈ N, we have ‖wn‖ϕ = 1 and EA(wn) = 0. We prove that Γ y (X,µ)
is amenable following an idea due to Ozawa (see [Oz16, Example 8]). For every n ∈ N, write
wn =

∑
h∈Γ(wn)huh for the Fourier expansion of wn ∈M .

Claim. For every h ∈ Γ, we have limn ‖(wn)h‖2 = 0.

By assumption, we already know that (wn)e = EA(wn) = 0 for every n ∈ N. Next assume
that h ∈ Γ \ {e}. Since (wn)n is centralizing, we have limn ‖a(wn)h − (wn)hσh(a)‖2 = 0. Let
ω ∈ β(N) \N be any nonprincipal ultrafilter. Write bh = σ-weak limn→ω((wn)h)∗(wn)h ∈ A.
Since A is abelian, we obtain abh = σh(a)bh for every a ∈ A. Since Γ y (X,µ) is free, we have
bh = 0. This implies that limn→ω ‖(wn)h‖2 = 0. Since this holds true for every ω ∈ β(N) \N,
it follows that limn ‖(wn)h‖2 = 0. This finishes the proof of the claim.



SPECTRAL GAP IN VON NEUMANN ALGEBRAS AND APPLICATIONS 11

Choose a map µ : Γ→ Prob(Γ) for which (2.1) is satisfied. For every n ∈ N, define the positive
linear mapping Φn : L∞(Γ×X)→ L∞(X) by the formula

∀f ∈ L∞(Γ×X), Φn(f) : x 7→ Φn(f)(x) =
∑
g,h∈Γ

|(wn)g(x)|2µg(h)f(h, x).

Observe that (Φn(f))n is uniformly bounded for every f ∈ L∞(X) since
∑

g∈Γ |(wn)g|2 =

EA(w∗nwn) ≤ supn ‖wn‖2∞ < +∞ Next, fix a nonprincipal ultrafilter ω ∈ β(N) \N and define
the positive linear mapping Φω : L∞(Γ×X)→ L∞(X) by the formula

∀f ∈ L∞(Γ×X), Φω(f) = σ-weak lim
n→ω

Φn(f).

Note that σ-weak limn→ω EA(w∗nwn) ∈ AΓ = C1, limn→ω τ(EA(w∗nwn)) = limn→ω ‖wn‖2ϕ = 1
and thus σ-weak limn→ω EA(w∗nwn) = 1. Then Φω(f) = f for every f ∈ L∞(X) and so
Φω : L∞(Γ×X)→ L∞(X) is a conditional expectation.

Claim. The conditional expectation Φω : L∞(Γ×X)→ L∞(X) is Γ-equivariant.

Indeed, let s ∈ Γ and f ∈ L∞(Γ×X). On the one hand, we have

Φn(s · f)(x) =
∑
g,h∈Γ

|(wn)g(x)|2µg(h)f(s−1h, s−1x)

=
∑
g,h∈Γ

|(wn)g(x)|2µg(sh)f(h, s−1x)

=
∑
g,h∈Γ

|(wn)g(x)|2µs−1gs(h)f(h, s−1x)

+
∑
g,h∈Γ

|(wn)g(x)|2(s−1
∗µg − µs−1gs)(h)f(h, s−1x)

=
∑
g,h∈Γ

|(wn)sgs
−1

(x)|2µg(h)f(h, s−1x)

+
∑
g,h∈Γ

|(wn)g(x)|2(s−1
∗µg − µs−1gs)(h)f(h, s−1x)

On the other hand, we have

(s · Φn(f))(x) = Φn(f)(s−1x) =
∑
g,h∈Γ

|(wn)g(s−1x)|2µg(h)f(h, s−1x).

This implies that

‖Φn(s · f)− s · Φn(f)‖1 ≤ ‖f‖∞
∑
g∈Γ

∥∥∥|(wn)sgs
−1 |2 − s · |(wn)g|2

∥∥∥
1

(2.2)

+ ‖f‖∞
∑
g∈Γ

‖(wn)g‖22 · ‖s−1
∗µg − µs−1gs‖`1(Γ).

Regarding the first term on the right hand side of (2.2), using Cauchy–Schwarz inequality and
the fact that ||z1| − |z2|| ≤ |z1 − z2| for all z1, z2 ∈ C, we have∑

g∈Γ

∥∥∥|(wn)sgs
−1 |2 − s · |(wn)g|2

∥∥∥
1

≤

∑
g∈Γ

∥∥∥(wn)sgs
−1 − s · (wn)g

∥∥∥2

2

1/2

·

∑
g∈Γ

∥∥∥|(wn)sgs
−1 |+ s · |(wn)g|

∥∥∥2

2

1/2

≤ 2‖wn‖∞ · ‖(wn − uswnu∗s)(1X ⊗ δe)‖.
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Since (wn)n is centralizing, it follows that

(2.3) lim
n

∑
g∈Γ

∥∥∥|(wn)sgs
−1 |2 − s · |(wn)g|2

∥∥∥
1

= 0.

Regarding the second term on the right hand side of (2.2), using (2.1), for every ε > 0, there
exists a finite subset F ⊂ Γ such that for every g ∈ Γ \F , we have ‖s−1

∗µg − µs−1gs‖`1(Γ) ≤ ε.

Using the previous claim, we have limn ‖(wn)g‖22 = 0 for every g ∈ F . These two observations
lead to

lim sup
n

∑
g∈Γ

‖(wn)g‖22 · ‖s−1
∗µg − µs−1gs‖`1(Γ) ≤ ε lim sup

n

∑
g∈Γ\F

‖(wn)g‖22 ≤ ε lim sup
n
‖wn‖2ϕ ≤ ε.

Since this holds true for every ε > 0, this leads to

(2.4) lim
n

∑
g∈Γ

‖(wn)g‖22 · ‖s−1
∗µg − µs−1gs‖`1(Γ) = 0.

Combining (2.3) and (2.4), we obtain limn ‖Φn(s · f) − s · Φn(f)‖1 = 0. Since the sequence
(Φn(a))n is uniformly bounded for every a ∈ A, this implies that Φω(s · f) = s · Φω(f) and
finishes the proof of the Claim.

Then the Γ-equivariant conditional expectation Φω : L∞(Γ×X) → L∞(X) witnesses the fact
that the action Γ y (X,µ) is amenable.

We finally point out that thanks to the work of Connes and Haagerup on the classification
of amenable factors ([Co75b, Co85, Ha85]), we do have a dichotomy in the statement of the
theorem. �

We observe that using Theorem 2.7 and Vaes–Wahl results [VW17], we obtain full group
measure space type III factors arising from strongly ergodic actions of the free groups with
prescribed Connes’ invariants [Co74, HMV17].
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3. Lecture 3: Spectral gap for full factors

We first review Connes’ joint distribution trick and we prove some useful technical results
regarding norm estimates of certain commutators between elements in the von Neumann algebra
and elements in its standard form. We then state Connes’ spectral gap result for full factors
of type II1 and Marrakchi’s spectral gap result for full factors of type III and derive some
interesting consequences. We finally give a proof of Connes’ spectral gap result due to Marrakchi
and we prove Marrakchi’s spectral gap result.

Preliminaries. Let M be any von Neumann algebra and denote by (M,L2(M), J,L2(M)+)
its standard form. We first recall a useful technical tool known as Connes’ joint distribution
trick (See [Co75b, Proposition I.1] and [Ha85, Lemma 2.11]). Denote by L∞(B) the space of
bounded Borel functions defined on a standard Borel space B.

Lemma 3.1. Let ζ ∈ L2(M) and x ∈Mh. Then there exists a finite positive Borel measure ν
on R2 with supp(ν) ⊂ Sp(x)× Sp(x) such that

(3.1) ∀f, g ∈ L∞(R), ‖f(x)ζ − ζg(x)‖2 =

∫
R2

|f(s)− g(t)|2 dν(s, t).

Proof. Since C(Sp(x)×Sp(x)) = C(Sp(x))⊗max C(Sp(x)), there exists a unital ∗-representation
π : C(Sp(x)× Sp(x))→ B(L2(M)) such that

∀f, g ∈ C(Sp(x)), π(f ⊗ g)ζ = f(x)ζg(x).

Denote by ν the finite positive Borel measure on Sp(x)× Sp(x) such that

(3.2) ∀h ∈ C(Sp(x)× Sp(x)), 〈π(h)ζ, ζ〉 =

∫
Sp(x)×Sp(x)

h(s, t) dν(s, t).

By standard arguments, (3.2) holds for every h ∈ L∞(Sp(x) × Sp(x)). Then for all f, g ∈
L∞(Sp(x)), we have

‖f(x)ζ − ζg(x)‖2 = 〈|f |2(x)ζ, ζ〉+ 〈ζ|g|2(x), ζ〉 − 2<〈f(x)ζg(x), ζ〉

=

∫
Sp(x)×Sp(x)

(
|f(s)|2 + |g(t)|2 − 2<(f(s)g(t))

)
dν(s, t)

=

∫
Sp(x)×Sp(x)

|f(s)− g(t)|2 dν(s, t).

We may extend ν to a finite positive Borel measure on R2 by letting ν(R2 \Sp(x)×Sp(x)) = 0.
This finishes the proof. �

Next, we collect results due to Connes–Størmer [CS78, Theorem 2] and Marrakchi [Ma17,
Lemma 2.3]. For every a > 0, denote by ea = 1[a,+∞) ∈ L∞(R).

Theorem 3.2. Let ζ ∈ L2(M) such that Jζ = ζ, ϕ ∈ (M∗)+ and x ∈M+. Then we have

ϕ(x) =

∫
R∗+

ϕ(ea(x)) da(3.3)

‖x− ϕ(x)1‖2ϕ ≤
∫
R∗+

ϕ(ea(x
2))(1− ϕ(ea(x

2))) da(3.4) ∫
R∗+

‖ea(x2)ζ − ζea(x2)‖2 da ≤ 2‖xζ‖ · ‖xζ − ζx‖.(3.5)
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Proof. Fix ζ ∈ L2(M) such that Jζ = ζ, ϕ ∈ (M∗)+ and x ∈M+.

Proof of (3.3). Since ϕ ∈ (M∗)+, we have

ϕ(x) = ϕ

(∫
R∗+

ea(x) da

)
=

∫
R∗+

ϕ(ea(x)) da.

Proof of (3.4). Observe that ‖x− ϕ(x)1‖2ϕ = ϕ(x2)− ϕ(x)2. By (3.3), we already know that

ϕ(x2) = ϕ

(∫
R∗+

ea(x
2) da

)
=

∫
R∗+

ϕ(ea(x
2)) da.

In order to prove (3.5), it suffices to show that∫
R∗+

ϕ(ea(x
2))2 da ≤ ϕ(x)2.

In M ⊗M , we have ea(x
2) ⊗ ea(x2) ≤ ea(x ⊗ x). Applying (3.3) to x ⊗ x ∈ M ⊗M with

ϕ⊗ ϕ ∈ (M ⊗M)∗, we have∫
R∗+

ϕ(ea(x
2))2 da =

∫
R∗+

(ϕ⊗ ϕ)(ea(x
2)⊗ ea(x2)) da

≤
∫
R∗+

(ϕ⊗ ϕ)(ea(x⊗ x)) da

= (ϕ⊗ ϕ)(x⊗ x) = ϕ(x)2.

Proof of (3.5). By Lemma 3.1, there exists a finite positive Borel measure ν on R2 with
supp(ν) ⊂ Sp(x)× Sp(x) ⊂ R+ such that

∀a > 0, ‖ea(x2)ζ − ζea(x2)‖2 =

∫
R2

+

|ea(s2)− ea(t2)|2 dν(s, t).

Using Fubini’s theorem, Cauchy–Schwarz inequality and Lemma 3.1, we have∫
R∗+

‖ea(x2)ζ − ζea(x2)‖2 da =

∫
R2

+

(∫
R∗+

|ea(s2)− ea(t2)|2 da

)
dν(s, t)

=

∫
R2

+

|s− t| · (s+ t) dν(s, t)

≤

(∫
R2

+

|s− t|2 dν(s, t)

)1/2

·

(∫
R2

+

(s+ t)2 dν(s, t)

)1/2

≤

(∫
R2

+

|s− t|2 dν(s, t)

)1/2

·

(
2

∫
R2

+

(s2 + t2) dν(s, t)

)1/2

= ‖xζ − ζx‖ ·
(
2‖xζ‖2 + 2‖ζx‖2

)1/2
= 2‖xζ‖ · ‖xζ − ζx‖.

This finishes the proof. �



SPECTRAL GAP IN VON NEUMANN ALGEBRAS AND APPLICATIONS 15

Spectral gap property of full factors. As we have seen in Theorem 1.5, any non-inner
amenable countable group Γ gives rise to a full type II1 factor M = L(Γ) for which there
exist some κ > 0 and a finite critical set {g1, . . . , gk} ⊂ Γ witnessing spectral gap for the
conjugation representation Ad0 : Γ→ U(L2(Γ)	Cδe). In other words, the constant κ > 0 and
the critical set {ug1 , . . . , ugk} ⊂ U(M) witnesses spectral gap for the conjugation representation
U(M)→ U(L2(M)	Cξτ ). Connes’ celebrated result [Co75b, Theorem 2.1] shows that such a
spectral gap property holds for every full factor of type II1 (with separable predual). Connes’
spectral gap theorem is a remarkable result that played a key role in Connes’ proof of the
uniqueness of the amenable type II1 factor [Co75b]. As we will see in Lecture 4, it has also
been an important tool in Popa’s deformation/rigidity theory.

We state and we will give a complete proof of the following more general version of [Co75b,
Theorem 2.1] without assuming separability of the predual.

Theorem 3.3. Let M be any type II1 factor. Then the following conditions are equivalent:

(i) M is a full factor.
(ii) There exist κ > 0 and u1, . . . , uk ∈ U(M) such that

(3.6) ∀x ∈M, ‖x− τ(x)1‖22 ≤ κ
k∑
j=1

‖ujx− xuj‖22.

Note that (3.6) exactly means that the conjugation representation

U(M)→ U(L2(M)	Cξτ ) : η 7→ uJuJη

has spectral gap (here we regard U(M) as a discrete group).

It is easy to see that for any type II1 factor M , if PCξτ ∈ C∗(M,JMJ), then M is full. Theorem
3.3 shows that the converse holds true.

Corollary 3.4. Let M be any full factor of type II1. Then K(L2(M)) ⊂ C∗(M,JMJ).

Proof. Since M is a full factor of type II1, we may choose κ > 0 and u1, . . . , uk ∈ U(M)

witnessing (3.6). Then the positive selfadjoint bounded operator T =
∑k

j=1 |uj − JujJ |2 on

L2(M) has its spectrum σ(T ) contained in {0} ∪ [ 1
κ ,+∞) and 0 is an eigenvalue for T with

multiplicity 1. Since T ∈ C∗(M,JMJ) and since 1{0} is a continuous function on σ(T ), it
follows that PCξτ = 1{0}(T ) ∈ C∗(M,JMJ). Since ξτ is M -cyclic and since C∗(M,JMJ) is

‖ · ‖∞-closed, we infer that K(L2(M)) ⊂ C∗(M,JMJ). �

Corollary 3.4 implies that the tensor product of any two full factors of type II1 is still full.
Indeed, let (M1, τ1) and (M2, τ2) by any full factors of type II1. Put M = M1⊗M2, τ = τ1⊗ τ2

and J = J1 ⊗ J2. By Corollary 3.4, we have K(L2(M1)) ⊂ C∗(M1, J1M1J1) and K(L2(M2)) ⊂
C∗(M2, J2M2J2). Since C∗(M1, J1M1J1) ⊗ C1 ⊂ C∗(M,JMJ) and C1 ⊗ C∗(M2, J2M2J2) ⊂
C∗(M,JMJ), we have PCξτ = PCξτ1

⊗ PCξτ2
∈ C∗(M,JMJ). This implies that M is full.

Marrakchi recently obtained in [Ma16, Theorem A] an analogue of Connes’ spectral gap theorem
in the setting of type III factors. We only state his result for σ-finite factors and refer the reader
to [Ma16, Theorem A] for a more general statement that holds for arbitrary factors.

Theorem 3.5. Let M be any σ-finite factor of type III. The following conditions are equivalent:

(i) M is a full factor.
(ii) There exist κ > 0, a faithful state ϕ ∈M∗ and ξ1, . . . , ξk ∈ Ball(M)ξϕ such that Jξj = ξj

for every 1 ≤ j ≤ k and such that

(3.7) ∀x ∈M, ‖x− ϕ(x)1‖2ϕ ≤ κ
k∑
j=1

‖xξj − ξjx‖2.
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Let us point out that the spectral gap estimates (3.6) in Theorem 3.3 and (3.7) in Theorem
3.5 are slightly different. Indeed, for every 1 ≤ j ≤ k write ξj = ajξϕ where aj ∈ Ball(M).
By the parallellogram inequality, for every 1 ≤ j ≤ k and every x ∈ M , since xξj − ξjx =
(xaj − ajx)ξϕ + aj(xξϕ − ξϕx), we have

‖xξj − ξjx‖2 ≤ 2‖xaj − ajx‖2ϕ + 2‖xξϕ − ξϕx‖2.

Then (3.7) becomes

(3.8) ∀x ∈M, ‖x− ϕ(x)1‖2ϕ ≤ 2κ
k∑
j=1

‖xaj − ajx‖2ϕ + 2kκ‖xξϕ − ξϕx‖2.

We can now see that the main difference between (3.6) and (3.8) is the existence of the extra
term 2kκ‖xξϕ − ξϕx‖2 on the right hand side of the inequality which measures “how far x
commutes with ξϕ”. For that reason, we cannot obtain the same conclusion as the one in
Corollary 3.4.

In [HMV16], Houdayer–Marrakchi–Verraedt obtained a strengthening of (3.8) and proved that
fullness is stable under taking tensor product. In [HMV17], Houdayer–Marrakchi–Verraedt also
obtained a spectral gap characterization of strong ergodicity for arbitrary nonsingular actions.
Since these results are beyond the scope of these notes, we will not dwell further on that.

Proof of the spectral gap property of full factors. We give a simple proof of Connes’
spectral gap theorem for full factors of type II1 (see Theorem 3.3) due to Marrakchi [Ma17].
We then prove Marrakchi’s spectral gap theorem for full factors of type III (see Theorem 3.5).
Let us point out that a simple proof of Connes’ spectral gap theorem for full factors of type
II1 is also given in the forthcoming book [AP18].

The following crucial result is due to Marrakchi [Ma17, Proposition 2.2].

Theorem 3.6. Let M be any σ-finite von Neumann algebra, ϕ ∈ M∗ any faithful state and
ξ1, . . . , ξk ∈ Ball(M)ξϕ any elements such that Jξj = ξj for every 1 ≤ j ≤ k. The following
assertions are equivalent:

(i) There exists κ1 > 0 such that for all projections p ∈M , we have

(3.9) ϕ(p)(1− ϕ(p)) ≤ κ1

k∑
j=1

‖pξj − ξjp‖2.

(ii) There exists κ2 > 0 such that for all elements x ∈M , we have

(3.10) ‖x− ϕ(x)1‖2ϕ ≤ κ2

k∑
j=1

‖xξj − ξjx‖2.

Proof. (ii)⇒ (i) Applying (3.10) with κ1 = κ2 to x = p, we obtain (3.9).

(i) ⇒ (ii) First, let x ∈ M+ be any positive element. For every 1 ≤ j ≤ k, write ξj = ajξϕ =
ξϕa
∗
j where aj ∈ Ball(M). Then we have ‖xξj‖ = ‖xξϕa∗j‖ ≤ ‖xξϕ‖. Using (3.4) and (3.5) in
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Theorem 3.2 and using the assumption, we obtain

‖x− ϕ(x)1‖2ϕ ≤
∫
R∗+

ϕ(ea(x
2))(1− ϕ(ea(x

2))) da

≤ κ1

k∑
j=1

∫
R∗+

‖ea(x2)ξj − ξjea(x2)‖2 da

≤ 2κ1

k∑
j=1

‖xξj‖ · ‖xξj − ξjx‖

≤ 2κ1

k∑
j=1

‖x‖ϕ · ‖xξj − ξjx‖.

Next, let x ∈ Mh be any selfadjoint element such that ϕ(x) = 0. Write x = x+ − x− where
x+, x− ∈ M+ and x+x− = 0. Using the parallellogram inequality and the above inequalities
for x+ and x−, we obtain

‖x‖2ϕ ≤ 2
(
‖x+ − ϕ(x+)1‖2ϕ + ‖x− − ϕ(x−)1‖2ϕ

)
(3.11)

≤ 4κ1

k∑
j=1

(‖x+‖ϕ · ‖x+ξj − ξjx+‖+ ‖x−‖ϕ · ‖x−ξj − ξjx−‖) .

Since x = x+ − x− and x+x− = 0, we have ‖x‖2ϕ = ‖x+‖2ϕ + ‖x−‖2ϕ. Thus, we have ‖x±‖ϕ ≤
‖x‖ϕ. For every 1 ≤ j ≤ k, we moreover have

‖xξj − ξjx‖2 = ‖x+ξj − ξjx+‖2 + ‖x−ξj − ξjx−‖2 − 2<〈x+ξj − ξjx+, x−ξj − ξjx−〉
= ‖x+ξj − ξjx+‖2 + ‖x−ξj − ξjx−‖2 + 2<〈x+ξj , ξjx−〉+ 2<〈ξjx+, x−ξj〉
≥ ‖x+ξj − ξjx+‖2 + ‖x−ξj − ξjx−‖2

since x+Jx−J ≥ 0 and x−Jx+J ≥ 0. Thus, we have ‖x±ξj − ξjx±‖ ≤ ‖xξj − ξjx‖. From
(3.11), we obtain

‖x‖2ϕ ≤ 8κ1‖x‖ϕ
k∑
j=1

‖xξj − ξjx‖

and so

‖x‖ϕ ≤ 8κ1

k∑
j=1

‖xξj − ξjx‖.

Using Cauchy–Schwarz inequality and letting κ2 = (8κ1)2k, we obtain

(3.12) ‖x‖2ϕ ≤ κ2

k∑
j=1

‖xξj − ξjx‖2.

Next, let x ∈ Mh be any selfadjoint element. Applying (3.12) to x − ϕ(x)1, we obtain (3.10)
for x ∈Mh.

Finally, let x ∈M be any element. Writing x = <(x)+i=(x), applying (3.10) to <(x) and =(x)
respectively, using the fact that Jξj = ξj for every 1 ≤ j ≤ k and using Pythagoras theorem,
we obtain (3.10) for x ∈M . �

Proof of Theorem 3.3. (ii)⇒ (i) It is obvious.
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(i)⇒ (ii) We prove the implication by contradiction. Assume that M satisfies (i) of Theorem
3.3 but does not satisfy (ii) of Theorem 3.3. Since M satisfies (i) of Theorem 3.3, for ε = 1/4,
there exist α > 0 and b1, . . . , bk ∈Mh such that

(3.13) ∀p ∈ P(M),
k∑
j=1

‖pbj − bjp‖22 ≤ α ⇒ min(τ(p), 1− τ(p)) ≤ 1

4
.

We start by proving the following crucial claim.

Claim. For every nonzero projection p ∈M , pMp does not satisfy (ii) of Theorem 3.3.

Proof of the Claim. Denote by I the directed set of all pairs (F, ε) where F ⊂ U(M) is a
nonempty finite subset and ε > 0. Let i = (F, ε) ∈ I. Since M does not satisfy (ii) of Theorem
3.3, there exists xi ∈M such that

‖xi − τ(xi)1‖22 >
1

ε

∑
u∈F
‖xiu− uxi‖22.

In particular, ‖xi−τ(xi)1‖2 > 0. Letting yi = 1
‖xi−τ(xi)1‖2 (xi−τ(xi)1) ∈M , we have ‖yi‖2 = 1,

τ(yi) = 0 and ∑
u∈F
‖yiu− uyi‖22 < ε.

Since any element in M is a linear combination of at most 4 elements in U(M), (yi)i∈I is a
central net in M , meaning that limi ‖yib−byi‖2 = 0 for every b ∈M . Note however that (yi)i∈I
need not be uniformly bounded.

Fix a nonzero projection p ∈ M . Observe that (pyip)i∈I is a central net in pMp. Let ω be a
cofinal ultrafilter on I. Denote by ψω ∈M∗ the state defined by ψω(x) = limi→ω τ(y∗i xyi) for all
x ∈M . Since (yi)i∈I is a central net in M , ψω is tracial on M and thus ψω = τ by uniqueness
of the trace on M . This implies that limi→ω ‖pyip‖2 = ‖p‖2. Denote by ζ = weak limi→ω yiξτ ∈
L2(M). Since τ(yi) = 0 for every i ∈ I, we have 〈ζ, ξτ 〉 = 0. Since (yi)i∈I is a central net in
M , we have bζ = ζb for every b ∈ M and so ζ ∈ Cξτ . Thus, we have ζ = 0. This implies that
limi→ω τ(pyip) = 0. Thus, the net (pyip)i∈I witnesses the fact that pMp does not satisfy (ii)
of Theorem 3.3. �

Denote by J the directed set of all pairs (F, δ) where F ⊂ Mh is a finite subset such that
{b1, . . . , bk} ⊂ F and 0 < δ ≤ α. Let j = (F, δ) ∈ J . Denote by Λj the inductive set
of all projections q ∈ M such that τ(q) ≤ 1/4 and

∑
b∈F ‖qb − bq‖22 ≤ δτ(q). By Zorn’s

lemma, we may choose a maximal projection p = pj ∈ Λj . We claim that τ(p) = 1/4.

Assume that this is not the case and so τ(p) < 1/4. By the previous claim, p⊥Mp⊥ does
not satisfy (ii) of Theorem 3.3. Put τp⊥ = 1

τ(p⊥)
τ(p⊥ · p⊥). Then p⊥Mp⊥ does not satisfy

(ii) of Theorem 3.6 with respect to the tracial state ϕ = τp⊥ (recall that any element is a

linear combination of at most four unitaries) and thus p⊥Mp⊥ does not satisfy (i) of Theorem
3.6 either with respect to the tracial state ϕ = τp⊥ . There exists a projection q ∈ p⊥Mp⊥

such that τ(q)(τ(p⊥)− τ(q)) > 1
δ

∑
b∈F ‖q p⊥bp⊥ − p⊥bp⊥ q‖22. Up to replacing q ∈ p⊥Mp⊥ by
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p⊥ − q ∈ p⊥Mp⊥, we may assume that τ(q) ≤ 1/2. We have∑
b∈F
‖(p+ q)b− b(p+ q)‖22 =

∑
b∈F
‖(pbq⊥ − q⊥bp) + (q p⊥bp⊥ − p⊥bp⊥ q)‖22

=
∑
b∈F
‖q⊥(pb− bp)q⊥‖22 +

∑
b∈F
‖q p⊥bp⊥ − p⊥bp⊥ q‖22

≤
∑
b∈F
‖pb− bp‖22 +

∑
b∈F
‖q p⊥bp⊥ − p⊥bp⊥ q‖22

≤ δτ(p) + δτ(q) = δτ(p+ q).

Since p ∈ Λj is a maximal element, the above inequalities show that we have τ(p + q) > 1/4.

Since in particular we have
∑k

j=1 ‖(p+ q)bj − bj(p+ q)‖22 ≤ α and since τ(p+ q) > 1/4, (3.13)

implies that τ(p + q) ≥ 3/4. However, since τ(p + q) = τ(p) + τ(q) < 1/4 + 1/2 = 3/4, we
obtain a contradiction. Therefore, we have τ(pj) = τ(p) = 1/4.

Thus, we have obtained a net of central projections (pj)j∈J in M such that τ(pj) = 1/4 for
every j ∈ J . This contradicts the fact that M satisfies (i) of Theorem 3.3. Therefore, we have
proved that (i)⇒ (ii). �

Proof of Theorem 3.5. (ii)⇒ (i) It is obvious.

(i)⇒ (ii) The proof of this implication is entirely analogous to the one of (i)⇒ (ii) in Theorem
3.3. We proceed by contradiction and assume that M satisfies (i) of Theorem 3.5 but does not
satisfy (ii) of Theorem 3.5. Fix a faithful state ϕ ∈ M∗. Since M satisfies (i) of Theorem 3.5
and since the linear span of all the vectors ζ ∈ Ball(M)ξϕ such that Jζ = ζ is dense in L2(M)
(this follows from the fact that the set of all ϕ-analytic elements is ∗-strongly dense in M), for
ε = 1/4, there exist α > 0 and ξ1, . . . , ξk ∈ Ball(M)ξϕ such that Jξj = ξj for every 1 ≤ j ≤ k
and such that

(3.14) ∀p ∈ P(M),
k∑
j=1

‖pξj − ξjp‖2 ≤ α ⇒ min(ϕ(p), 1− ϕ(p)) ≤ 1

4
.

Denote by J the directed set of all pairs (F, δ) where F ⊂ Ball(M)ξϕ is a finite subset such that
{ξ1, . . . , ξk} ⊂ F and Jζ = ζ for all ζ ∈ F and 0 < δ ≤ α. Let j = (F, δ) ∈ J . Denote by Λj the
inductive set of all projections q ∈M such that ϕ(q) ≤ 1/4 and

∑
ζ∈F ‖qζ − ζq‖2 ≤ δϕ(q). By

Zorn’s lemma, we may choose a maximal projection p = pj ∈ Λj . We claim that ϕ(p) = 1/4.

Assume that this is not the case and so ϕ(p) < 1/4. By assumption, p⊥Mp⊥ ∼= M does not
satisfy (ii) of Theorem 3.5. Put ϕp⊥ = 1

ϕ(p⊥)
ϕ(p⊥ · p⊥) ∈ (p⊥Mp⊥)∗. Then p⊥Mp⊥ does not

satisfy (ii) of Theorem 3.6 with respect to the faithful state ϕp⊥ and thus p⊥Mp⊥ does not
satisfy (i) of Theorem 3.6 either with respect to the faithful state ϕp⊥ . There exists a projection

q ∈ p⊥Mp⊥ such that ϕ(q)(ϕ(p⊥) − ϕ(q)) > 1
δ

∑
ζ∈F ‖q p⊥ζp⊥ − p⊥ζp⊥ q‖2. Up to replacing

q ∈ p⊥Mp⊥ by p⊥ − q ∈ p⊥Mp⊥ we may assume that ϕ(q) ≤ 1/2. We have∑
ζ∈F
‖(p+ q)ζ − ζ(p+ q)‖2 ≤

∑
ζ∈F
‖pζ − ζp‖22 +

∑
ζ∈F
‖q p⊥ζp⊥ − p⊥ζp⊥ q‖2 ≤ δϕ(p+ q).

Since p ∈ Λj is a maximal element, the above inequality shows that we have ϕ(p + q) > 1/4.

Since in particular we have
∑k

j=1 ‖(p+ q)ξj − ξj(p+ q)‖2 ≤ α and since ϕ(p+ q) > 1/4, (3.14)

implies that ϕ(p + q) ≥ 3/4. However, since ϕ(p + q) = ϕ(p) + ϕ(q) < 1/4 + 1/2 = 3/4, we
obtain a contradiction. Therefore, we have ϕ(pj) = ϕ(p) = 1/4.

Thus, we have obtained a net of centralizing projections (pj)j∈J in M such that ϕ(pj) = 1/4
for every j ∈ J . This contradicts the fact that M satisfies (i) of Theorem 3.5. Therefore, we
have proved that (i)⇒ (ii). �
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4. Lecture 4: Unique McDuff decomposition

Popa’s intertwining theory. We say that a von Neumann subalgebra P ⊂M is with expec-
tation if there exists a faithful normal conditional expectation EP : M → P . Recall that when
M is tracial, any von Neumann subalgebra P ⊂M is with expectation.

Popa introduced his powerful intertwining-by-bimodules theory in [Po01, Po03] in the setting
of tracial von Neumann algebras. Popa’s intertwining theory has recently been extended to
arbitrary von Neumann algebras in [BH16, HI15a]. Let M be any σ-finite von Neumann algebra
and P,Q ⊂M any tracial von Neumann subalgebras with expectation. Following [Po01, Po03],
we say that P embeds into Q inside M and write P �M Q if there exist projections p ∈ P , q ∈ Q,
a nonzero partial isometry v ∈ pMq and a unital normal ∗-homomorphism π : pPp→ qQq such
that xv = vπ(x) for every x ∈ pPp. Observe that vv∗ ∈ (pPp)′∩pMp and v∗v ∈ π(pPp)′∩qMq.

The following criterion provides a useful analytical tool to exploit the condition P �M Q.
This result is essentially due to Popa [Po03, Theorem 2.1 and Corollary 2.3] (see also [HV12,
Theorem 2.3]).

Theorem 4.1. Let M be any σ-finite von Neumann algebra and P,Q ⊂ M any tracial von
Neumann subalgebras with expectation. The following assertions are equivalent:

(i) P �M Q.
(ii) There is a net of unitaries (ui)i∈I in P such that limi ‖EQ(x∗uiy)‖2 = 0 for all x, y ∈M .

Proof. (ii) ⇒ (i) We prove this implication by contradiction. Take a net of unitaries (ui)i∈I
in P such that limi ‖EQ(x∗uiy)‖2 = 0 for all x, y ∈ M . Take (p, q, v, π) witnessing the fact
that P �M Q. Up to shrinking p ∈ P if necessary, we may assume that the normal ∗-
homomorphism pPp → qMq : x 7→ π(x)v∗v is injective. Since P is tracial, using [KR97,
Proposition 8.2.1], we may choose nonzero partial isometries w1, . . . , wk ∈ P such that w∗jwj ≤ p
for every 1 ≤ j ≤ k and

∑k
j=1wjw

∗
j = z ∈ Z(P ). Note that for every 1 ≤ j ≤ k, wjv 6= 0

since v∗wjv = v∗vπ(wj) 6= 0. Define the normal ∗-homomorphism Θ : Pz → Mk(qQq) by
Θ(x) = [π(w∗i xwj)]ij and the nonzero partial isometry V = [w1v · · ·wkv] ∈ M1,k(C) ⊗ pMq.
We have xV = VΘ(x) for all x ∈ Pz.
Observe that Θ(z) = Diag(π(w∗jwj)) and V ∗V = Diag(v∗w∗jwjv) ≤ Θ(z). Denote by E :

Θ(z) Mk(qMq) Θ(z) → Θ(z) Mk(qQq) Θ(z) a faithful normal conditional expectation. Then
for every i ∈ I, we have

‖E(V ∗V )‖2 = ‖E(V ∗V )Θ(uiz)‖2
= ‖E(V ∗VΘ(uiz))‖2
= ‖E(V ∗uiV )‖2.

Using the assumption, we have limi ‖E(V ∗uiV )‖2 = 0 and so E(V ∗V ) = 0. This however
contradicts the fact that V 6= 0.

(i) ⇒ (ii) We prove this implication by contraposition. Fix a faithful normal conditional
expectation EQ : M → Q and a faithful state ϕ ∈ M∗ such that ϕ ◦ EQ = ϕ and τ = ϕ|Q
is tracial. Denote by (M,L2(M), J,L2(M)+) the standard form of M . Denote by 〈M,Q〉 =
(JQJ)′ ∩ B(L2(M)) Jones basic construction and by eQ : L2(M) → L2(Q) Jones projection.

Observe that 〈M,Q〉 = (M ∪ {eQ})′′. Since τ is tracial on Q, there exists a canonical faithful
normal semifinite trace Tr on 〈M,Q〉 such that Tr(TT ∗) = τ(T ∗T ) for all right Q-modular
bounded linear maps T : L2(Q)→ L2(M). In particular, we have Tr(eQ) = 1.

Since (ii) does not hold, there exist ε > 0 and a finite subset F ⊂M such that

∀u ∈ U(P ),
∑
x,y∈F

‖EQ(x∗uy)‖22 ≥ ε2.
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Put d =
∑

x∈F xeQx
∗ ∈ 〈M,Q〉+. We have Tr(d) =

∑
x∈F τ(EQ(x∗x)) < +∞. Moreover, for

every u ∈ U(P ), we have

(4.1)
∑
y∈F
〈u∗du yξϕ, yξϕ〉 =

∑
x,y∈F

〈u∗xeQx∗u yξϕ, yξϕ〉 =
∑
x,y∈F

‖EQ(x∗uy)‖22 ≥ ε2.

Denote by C the σ-weak closure in 〈M,Q〉 of the convex hull of {u∗du : w ∈ U(P )}. We have
0 /∈ C by (4.1). Since C is bounded both in ‖ · ‖∞ and ‖ · ‖2,Tr, C can be regarded as a closed

bounded convex subset of L2(〈M, eQ〉,Tr). Denote by c ∈ C the unique circumcenter of C. For
every u ∈ U(P ), since u∗Cu = C, we have u∗cu = c. Thus, c ∈ P ′ ∩ 〈M, eQ〉+ such that c 6= 0
and Tr(c) < +∞ (this is due to the fact that Tr is σ-weakly lower semi-continuous).

Define the nonzero spectral projection e = 1[‖c‖∞/2,‖c‖∞](c) ∈ P ′ ∩ 〈M,Q〉+. Since ‖c‖∞2 e ≤ c e,
we have Tr(e) < +∞. Let H = eL2(M). Then PHQ is a nonzero P -Q-subbimodule of

PL2(M)Q such that dim(HQ) = Tr(e) < +∞. By [BO08, Proposition F.10], there exist a
nonzero projection p ∈ P and a nonzero pPp-Q-subbimodule K ⊂ pH such that K is isomorphic
as a right Q-module to a right Q-submodule of L2(Q)Q. Denote by V : KQ → L2(Q)Q the
corresponding right Q-modular isometry. For every x ∈ pPp, since V xV ∗ commutes with the
right Q-action on L2(Q), we have V xV ∗ ∈ qQq where q = V V ∗. Therefore π : pPp → qQq :
x 7→ V xV ∗ is a unital normal ∗-homomorphism. Put ξ = V ∗ξτ ∈ K. We have ξ 6= 0 since
V ξ = V V ∗ξτ = qξτ 6= 0. Moreover, for every x ∈ pPp, we have

xξ = xV ∗ξτ = V ∗π(x)ξτ = V ∗ξτπ(x) = ξπ(x).

Write ξ = v|ξ| for the polar decomposition of ξ in the standard form L2(M). We have v ∈ pMq,
v 6= 0 and |ξ| ∈ L2(M)+. For every u ∈ U(pPp), we have

uv |ξ| = uξ = ξπ(u) = v|ξ|π(u) = vπ(u)π(u)∗|ξ|π(u).

By uniqueness of the polar decomposition, we have uv = vπ(u) and |ξ| = π(u)∗|ξ|π(u) for every
u ∈ U(pPp). It follows that xv = vπ(x) for every x ∈ pPp. �

Recall that whenever P ⊂M is an inclusion of σ-finite von Neumann algebras with expectation
such that P is a factor and M = P ∨ (P ′ ∩M), we have M ∼= P ⊗ (P ′ ∩M). In that case,
we will simply write M = P ⊗ (P ′ ∩M). The next intertwining lemma inside tensor product
factors will be crucial in the proof of Theorem 4.3 (see [HI15a, Lemma 4.13] and also [OP03,
Proposition 12]).

Lemma 4.2. Let P1, Q1 be any type II1 factors and P2, Q2 any σ-finite type III factors. Put
M = P1⊗P2, N = Q1⊗Q2 and assume that M = N . If P1 �M Q1, then there exist projections
p ∈ P1, q ∈ Q1 and a nonzero partial isometry w ∈M with ww∗ = p and w∗w = q such that

qQ1q = w∗P1w ⊗B and w∗P2w = B ⊗Q2q.

where B = (w∗P1w)′ ∩ qQ1q.

Proof. Since P1 �M Q1, there exist projections e ∈ P1 and f ∈ Q1, a nonzero partial isometry
w ∈ eMf and a unital normal ∗-homomorphism π : eP1e → fQ1f such that xw = wπ(x) for
every x ∈ eP1e. Then we have

ww∗ ∈ (eP1e)
′ ∩ eMe = P2e and w∗w ∈ π(eP1e)

′ ∩ fMf = (π(eP1e)
′ ∩ fQ1f)⊗Q2f.

Put L = π(eP1e)
′ ∩ fQ1f and observe that π(eM1e)

′ ∩ fMf = L ⊗Q2f is a σ-finite type III
von Neumann algebra.

If we denote by z⊗1Q2f the central support in L⊗Q2f of the projection w∗w ∈ L⊗Q2f , with
z ∈ Z(L), we have that w∗w ∼ z ⊗ 1Q2f in L⊗Q2f by [KR97, Corollary 6.3.5]. We may put
q = z and assume that w∗w = q. Likewise, we have ww∗ ∼ 1P2e in P2e by [KR97, Corollary
6.3.5]. We may put p = e and assume that ww∗ = p.
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Put B = (w∗P1w)′ ∩ qQ1q. Since w∗Mw = qMq = qQ1q ⊗Q2q and since w∗P1w ⊂ qQ1q, we
obtain

w∗P2w = (w∗P1w)′ ∩ w∗Mw = (w∗P1w)′ ∩ qMq = ((w∗P1w)′ ∩ qQ1q)⊗Q2q = B ⊗Q2q.

Likewise, we obtain qQ1q = w∗P1w ⊗B. �

Unique McDuff decomposition. Following [McD69, Co75a], we say that a factor M is
McDuff ifM∼=M⊗R. The following rigidity result is a particular case of the unique McDuff
decomposition theorem due to Houdayer–Marrakchi–Verraedt [HMV16, Theorem E]. Let us
point out that [HMV16, Theorem E] generalizes Popa’s result [Po06, Theorem 5.1] that holds
in the type II1 setting.

Theorem 4.3. Let M1 and M2 be any full type III factors with separable predual. If M1⊗R ∼=
M2 ⊗R, then M1 and M2 are isomorphic.

The proof of Theorem 4.3 is based on Popa’s deformation/rigidity theory. We will combine
Popa’s intertwining theory together with the following key rigidity result that allows us to
control centralizing sequences in McDuff factors.

Lemma 4.4. Let M be any full σ-finite factor and N any tracial von Neumann algebra. For
every centralizing uniformly bounded net (xi)i∈I in M⊗N , there exists a centralizing uniformly
bounded net (zi)i∈I in N such that xi − zi → 0 ∗-strongly.

Proof. When M is a full semifinite σ-finite factor, the result easily follows from Corollary 3.4.
We leave the details to the reader. From now on, we assume that M is a full σ-finite factor of
type III.

Fix a faithful normal tracial state τ on N . Since M is a full factor of type III, using Theorem
3.5, we may choose κ > 0, a faithful state ϕ ∈ M∗ and ξ1, . . . , ξk ∈ Ball(M)ξϕ such that
Jξj = ξj for every 1 ≤ j ≤ k and such that (3.7) holds. Write EN = ϕ⊗ idN : M ⊗N → N for
the faithful normal conditional expectation associated with ϕ on M . We show that

(4.2) ∀x ∈M ⊗N, ‖x− EN (x)‖2ϕ⊗τ ≤ κ
k∑
j=1

‖x(ξj ⊗ ξτ )− (ξj ⊗ ξτ )x‖2.

By linearity and density, it is enough to prove (4.2) for x ∈M⊗N of the form x =
∑m

i=1 yi⊗ai
where the family (aiξτ )1≤i≤m is chosen to be orthonormal in L2(N). In that case, we have

‖x− EN (x)‖2ϕ⊗τ =
m∑
i=1

‖yi − ϕ(yi)1‖2ϕ

≤ κ
m∑
i=1

k∑
j=1

‖yiξj − ξjyi‖2

= κ
k∑
j=1

m∑
i=1

‖yiξj − ξjyi‖2

= κ

k∑
j=1

‖x(ξj ⊗ ξτ )− (ξj ⊗ ξτ )x‖2.

Let now (xi)i∈I be any centralizing uniformly bounded net in M ⊗ N . For every i ∈ I, put
zi = EN (xi) ∈ N . Then (zi)i∈I is a centralizing uniformly bounded net in N and (4.2) shows
that xi − zi → 0 ∗-strongly. �
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Let us point out that Lemma 4.4 holds for any σ-finite von Neumann algebra N . We refer to
[HMV16, Theorem A] for further details.

Proof of Theorem 4.3. Write R1 = R = R2 so that M = M1 ⊗ R1 = M2 ⊗ R2. For every
n ∈ N, write R1 = M2n(C)⊗R1,n and observe that R1,n is isomorphic to the hyperfinite type
II1 factor. We start by proving the following claim.

Claim. There exists n ∈ N such that R1,n �M R2.

Indeed, by contradiction, assume that for every n ∈ N, we have R1,n �M R2. Fix a faithful
normal conditional expectation ER2 : M → R2. By Theorem 4.1, there exists un ∈ U(R1,n)
such that ‖ER2(un)‖2 ≤ 1

n+1 . Using Lemma 1.8, (un)n∈N is a uniformly bounded centralizing

sequence in M . By Lemma 4.4, there exists a centralizing uniformly bounded sequence (vn)n∈N
in R2 such that un − vn → 0 ∗-strongly. We then have

lim
n
‖vn‖2 = lim

n
‖ER2(vn)‖2 = lim

n
‖ER2(vn − un)‖2 = 0.

This implies that vn → 0 ∗-strongly and contradicts the fact that un ∈ U(M) for every n ∈ N.
This finishes the proof of the claim.

Let n ∈ N such that R1,n �M R2. Using Lemma 4.2, there exist projections p ∈ R1,n, q ∈ R2

and a nonzero partial isometry w ∈M such that ww∗ = p, w∗w = q and a subfactor B ⊂ qR2q
such that

qR2q = w∗R1,nw ⊗B and w∗(M1 ⊗M2n(C))w = B ⊗M2q.

Since qR2q is a tracial amenable factor, B is necessarily a tracial amenable factor. Since
w∗(M1 ⊗M2n(C))w is a full factor, B is necessarily a finite type I factor. Thus, M1 and M2

are (stably) isomorphic. �

Acknowledgments. I am grateful to Amine Marrakchi for his useful comments regarding a
first draft of this manuscript.
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expos9́37, Astérisque 299 (2005), 329–350.
[Va09] S. Vaes, An inner amenable group whose von Neumann algebra does not have property Gamma. Acta

Math. 208 (2012), 389–394.
[VV14] S. Vaes, P. Verraedt, Classification of type III Bernoulli crossed products. Adv. Math. 281 (2015),

296–332.
[VW17] S. Vaes, J. Wahl, Bernoulli actions of type III1 and L2-cohomology. Geom. Funct. Anal. 28 (2018),

518–562.
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