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ABSTRACT. These are the lecture notes for the YMC*A summer school held at KU Leuven
during August 13-17, 2018. In Lecture 1, we review the fullness property for arbitrary factors
and give examples of full factors of type II; and of type III. In Lecture 2, we review the strong
ergodicity property for nonsingular group actions and we prove the fullness property of group
measure space factors arising from arbitrary strongly ergodic actions of bi-exact groups (e.g.
free groups) due to Houdayer—Isono. In Lecture 3, we give a proof of Connes’ spectral gap
theorem for full factors of type II; due to Marrakchi and we prove Marrakchi’s spectral gap
theorem for full factors of type III. In Lecture 4, we review Popa’s intertwining theory and we
prove a unique McDuff decomposition theorem due to Houdayer—-Marrakchi—Verraedt.
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1. LECTURE 1: INTRODUCTION TO FULL FACTORS

We introduce the fullness property for type II; factors in terms of central nets and then for
arbitrary factors in terms of centralizing nets. We provide examples of full factors of type II;
and of type IIL.

Full factors of type II;. We say that a von Neumann algebra M is tracial if M possesses
a faithful normal tracial state 7. A type II; factor M is an infinite dimensional tracial von
Neumann algebra with trivial center. A tracial von Neumann algebra (M, 7) is amenable if
there exists a state ¢ € B(L?(M, 7))* such that |y = 7 and p(2T) = o(Tx) for every x € M
and every T € B(L?(M,1)).

Let M be any type II; factor. Denote by 7 its (unique) faithful normal tracial state. Write

lz|l2 = T(m*m)1/2 for every x € M. Let (z;)ier € ¢°°(I, M) be any uniformly bounded net.
We say that (x;)cr is

e central if lim; ||z;y — yx;||2 = 0 for every y € M.
o trivial if lim; ||x; — 7(x;)1|]2 = 0.

We first introduce the fullness property for factors of type II;.

Definition 1.1. Let M be any type I1; factor. We say that M is full if every central uniformly
bounded net is trivial.

Let us point out that when M has separable predual (or equivalently M acts on a separable
Hilbert space), M is full if and only if every central uniformly bounded sequence is trivial.

Denote by R the hyperfinite factor of type II; defined by

R= (U Mgn(C)> - @neN(MQ(C),trQ)

neN

where try is the normalized trace on My(C). By Murray-Neumann’s result [MvN43], R is
the unique hyperfinite factor of type II;. By Connes’ fundamental result [Co75b], R is in fact
the unique amenable factor of type II; (with separable predual). For every n € N, denote by
7+ M2(C) — R the trace preserving embedding of My (C) into R corresponding to the nth

position. Define
= L0 eRr
un =m0\ g _; .

It is straightforward to see that (u,)nen is a central uniformly bounded sequence in R. More-
over, for every n € N, we have u,, € U(R), 7(un) = 0 and so ||u, — 7(up)1||2 = 1. This shows
that (up)nen is not trivial and therefore R is not full. One can then think of the fullness
property for type II; factors as a strengthening of nonamenability.

In order to give examples of full factors of type II;, we look at von Neumann algebras associ-
ated with countable groups. Let ' be any countable group and = : I' — U(H,) any unitary
representation. We say that 7 has almost invariant vectors if there exists a net of unit vectors
(&)ier in Hy such that lim; [|74(&;) — &| = 0 for every g € I'. We say that 7 has spectral gap if
there exist k > 0 and g1,...,gr € I" such that

k
(1.1) VE € Hey IEP < h D lImg, (6) — €I
j=1
Observe that (1.1) is equivalent to saying that the spectrum of the positive selfadjoint bounded
operator T = Zle g, — 1% is contained in [1,400). It is easy to check that 7 does not have
almost invariant vectors if and only if 7 has spectral gap. The proof is left to the reader.
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Denote by A : T' — U(*(T)) (resp. p : I' — U(F3(T))) the left (resp. right) regular repre-
sentation. Recall that the left (resp. right) group von Neumann algebra L(I') (resp. R(I")) is
defined by L(I') = {)\; | g € T}’ C B({*(I")) (resp. R(T') = {py | g € T}’ C B({*(I"))). We
have L(T') = R(T")’. A countable group I' is ICC or has infinite conjugacy classes if for every
g € T'\ {e}, the conjugacy class {sgs~! | s € I'} is infinite. It is well-known that whenever T
is an ICC countably infinite group, the group von Neumann algebra L(T") is a type II; factor
(with separable predual).

Recall that T' is amenable if the left regular representation A\ : I' — U(¢*(T")) has almost
invariant vectors. Then I' is amenable if and only if L(I") is amenable. Denote by Ad : I' —
U(PRT)) : g = Agpy the conjugation representation. Since the unit vector &, is always Ad-

invariant, we rather consider the conjugation representation Ad® on the Ad-invariant subspace
2(I') © C6, = £*(T'\ {e}). The next definition is due to Effros [Ef73].

Definition 1.2. Let ' be any countable group. We say that I is inner amenable if Ad® : T —
U\ {e})) has almost invariant vectors.

Observe that a non-inner amenable countably infinite group is necessarily ICC. Indeed, if T’
is not ICC, then there exists g € I' \ {e} such that C; = {sgs™! | s € T'} is finite. Then the
nonzero vector n = 3,cc. 0p € 2T\ {e}) is Ad’-invariant.

Example 1.3. Here are some well-known examples of non-inner amenable groups.

(i) Free product groups I' =I'; * Iy where |I';| > 3 and |[I'z| > 2 (in particular free groups
F,, where n > 2);
(ii) ICC property (T) groups;
(iii) ICC Gromov-word hyperbolic groups.

The following proposition shows in particular that free groups are not inner amenable.

Proposition 1.4. For every i € {1,2}, let T'; be any countable group. Assume that |T'1| > 3
and |Ty| > 2. Then T' =Ty x 'y is not inner amenable.

Proof. Put H = (*(T' \ {e}). For every i € {1,2}, denote by H; C H the closure of the linear
span of all d,’s where g is a reduced word in I' that begins with a letter in I'; \ {e} and denote
by P; : H — H; the corresponding orthogonal projection. Observe that H = Hy & Hs. Choose
a,b € 'y \ {e} such that a # b and ¢ € T'y \ {e}. For simplicity, write Adg(&) = g€g! for every
g € T and every ¢ € H. Observe that aHya™' C Hy, bHob™' C Hy, aHsa™ ' L bHyb~! and
cHic™!' C Hy. Then, for every ¢ € H, we have

(1.2) 1P2(a™"¢a)||* + | Py (b7 D)3 = [l Partya1 ()P + 1Py (€)1
< 1P (&)1
1PL(c €3 = 1Pemye-1(©)I3
< || P2(&)]15.

Let now (&), be any || - [|2-bounded Ad-invariant sequence in H. Then (1.2) implies that
V2 -limsup || P (&n)ll2 < limsup || P (&) |2

limsup || P1(&n)[2 < Tim sup || P2(&5)|2-
n n

Thus, we have limsup,, || P1(&,)]|2 = limsup,, || P2(&,)]]2 = 0 and so lim,, ||£,||2 = 0. This shows
that I' is not inner amenable. O
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Murray—von Neumann showed in [MvN43] that the free group factor L(F3) is full and deduced
that L(F2) is not isomorphic to the hyperfinite type II factor R. The following result due to
Effros [Ef73, Theorem] provides plenty of examples of full factors of type II;.

Theorem 1.5. Let ' be any non-inner amenable countably infinite group. Then L(T) is a full
factor of type I1;.

Proof. Since Ad® : T' — U(¢*(T'\ {e})) has spectral gap, there exist x > 0 and ¢;,...,gx € T
such that

k
(1.3) Ve e P(T\{e}), [&” <k IIAdY (&) — &I

J=1

Put M = L(I'). For every j € {1,...,k}, put u; = \,,. For every x € M and every g € T,
we have Ady(wde) = Agpg ¥de = A\gZpgbe = AgzA;0e. Applying (1.3) to & = (z — 7(2)1)de €
2(T) © CS. = £%(T'\ {e}), we obtain

k
(1.4) Ve e M, |z—7(x)1)3< /@ZHujx—a?ujH%.
i=1

Then (1.4) clearly implies that every central uniformly bounded sequence in M is trivial. Thus,
L(T) = M is full. O

The converse to Effros’ theorem does not hold. Indeed, Vaes [Va09] constructed an example of
an inner amenable ICC countably infinite group A such that L(A) is a full factor.

Full factors. Let M be any von Neumann algebra. We denote by M, its predual, by Z(M)
its center, by U (M) its group of unitaries, by M, its subspace of selfadjoint elements and by
Ball(M) its unit ball with respect to the uniform norm. We denote by (M,L?(M), J,L2(M))
the standard form of M. More precisely, we have M C B(L?(M)), J : L2(M) — L*(M) is a
conjugate linear isometry such that J2 = 1 and L?(M), C L*(M) is a closed convex cone that
satisfies

L2(M)y = {¢ e LA(M) | (¢,€) > 0,¥¢ € L (M) } .

Furthermore, we have JM.J = M'; J¢ = ¢ for every & € L2(M),; xJaxJé € L2(M) 4 for every
x € M and every ¢ € L2(M)y; JzJ = 2* for every z € Z(M). By [Ha73], the standard form of
M always exists and is unique in an appropriate sense. The Hilbert space LQ(M ) is naturally
endowed with a structure of M-M-bimodule defined as follows:

Yo,y € M,Yn e L2(M), zny=zJy*Jn.

Observe that for every b € Mj and every ¢ € L*(M) such that J¢ = ¢, we have ||(b| =
|Jb*J¢|| = ||6¢||. To any element ¢ € (M,); corresponds a unique element &, € L?(M)4
such that ¢ = (-&,,§,). For every ¢ € (M,)1 and every x € M, we simply write ||z|/, =

plaa)'/? = ||at, || and [} = p(a*z + z27) /2 = (|2 + ||gp2]|?) /2.

Example 1.6. Let M be any tracial von Neumann algebra with a distinguished faithful normal
tracial state 7. Denote by (m,, L?(M, 7),&;) the GNS construction. Regard M c B(L2(M, 7).
Define J : L2(M, 1) — L2(M,7) : 2& +— z*€;. Then J extends to a well-defined conjugate
linear isometry such that J? = 1. Moreover, one checks that (M,L?(M, 1), J,L2(M,,7)) is the
standard form of M.
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We say that M is o-finite if M possesses a faithful normal state. For every faithful state

¢ € M,, the norm || - ||, (resp. || - H?p) induces the strong (resp. *-strong) operator topology on
Ball(M). For every faithful state ¢ € M,, the centralizer of ¢ in M is defined by

My ={z € M | 2§, = o}
={rxeM|Vyec My =pyz)}.

It is straightforward to check that M, C M is a von Neumann subalgebra. We say that M
is amenable if there exists a conditional expectation ® : B(L%(M)) — M. Note that when M
is a tracial von Neumann algebra, this definition coincides with the one we introduced in the
previous subsection.

Let M be any factor. Recall that

e M is of type I if M has a minimal projection. In that case, we have M = B(/?(I))
for some nonempty index set I.

e M is of type II if M has no minimal projection and M possesses a faithful normal
semifinite trace Tr. If Tr(1) < 400, we say that M is of type II;. If Tr(1) = 400, we
say that M is of type Il.

e M is of type III otherwise. When M is o-finite and of type III, all nonzero projections
in M are Murray-von Neumann equivalent to 1.

The classification of type III factors into subtypes was obtained by Connes in [Co72]. Since we
will not use those classification results, we will not dwell further on that.

To define the fullness property for arbitrary factors, it is more appropriate to use the M-M-
bimodule structure of L?(M) rather than the M-M-bimodule structure of M. This is because
the right multiplication on M does not extend to a representation by bounded operators on
L2(M). Let (x;)er € £°(I, M) be any uniformly bounded net. We say that (x;);cs is

e central if x;y — yx; — 0 x-strongly for every y € M.
e centralizing if lim; ||z;n — nz;|| = 0 for every n € L2(M).
e trivial if there exists a bounded net ()\;);er in C such that z; — A\;1 — 0 *-strongly.

We now introduce the fullness property for arbitrary factors.

Definition 1.7. Let M be any factor. We say that M is full if every centralizing uniformly
bounded net is trivial.

Let us point out that when M has separable predual, M is full if and only if every centralizing
uniformly bounded sequence is trivial. One next checks that Definition 1.7 coincides with
Definition 1.1 when M is a type II; factor. This is a consequence of the following useful
lemma.

Lemma 1.8. Let M be any o-finite von Neumann algebra and (x;);c;r any uniformly bounded
net in M. The following assertions are equivalent:

(i) The net (z;)ier is centralizing.
(ii) The net (x;)icr s central and for some (or any) faithful state p € M,, we have
lim; ||$1£<p - gapl‘zH =0.

Proof. (i) = (ii) Fix any faithful state ¢ € M,. Since (z;);er is centralizing, for n = &, we have
lim; ||2:€, — &pi]] = 0. For every y € M, since (x;);er is centralizing, for n = y&, we have

lim sup [|(ziy — yai)&e || < limsup [lzin — nai|| + limsup [[y(§pzi — 2iép)|| = 0.
(2 (2

1
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Likewise, for n = £,y we have

limsup || (ziy — yzi)* el = limsup [|{p (ziy — yai)||
K3

(2

< limsup ||[(§pzi — 2,y + lim sup [|z;n — na;| = 0.
1 7

This implies that (z;);er is central.
(ii) = (i) Since &, is M-cyclic and since (z;);er is uniformly bounded, it suffices to prove that
lim; ||z;n — na4]| = 0 for every n € L?(M) of the form n = y&, for y € M. For every y € M, we
have
limsup ||z; y&p — y&p x4l < limsup ||(ziy — ya;)Ep | + Imsup [[y(z:§p — §pai)|| = 0.
7 7

(2

Thus, (x;)ier is centralizing. O

When M is a type 117 factor with faithful normal tracial state 7, since any element © € M
commutes with & € L?(M), Lemma 1.8 implies that any central uniformly bounded net is
centralizing. Therefore, Definition 1.7 coincides with Definition 1.1 for type II; factors.

For every A € (0,1), denote by Ry the Powers factor of type III) defined by

(Ra, 2) = @neN(MﬂC),%) where ¢\ = trs < <1+(1)A ()\) )> :

T+
For every n € N, denote by m, : M2(C) — R) the state preserving embedding of My (C) into
R), corresponding to the nth position, meaning that ) o m, = 1. Define

wen (3 0)) e

Using Lemma 1.8, it is straightforward to see that (u,),eN is a centralizing uniformly bounded
sequence in Ry. Moreover, for every n € N, we have u,, € U(R)), pi(un) = 0 and so ||u, —
©x(un)l|ly, = 1. This shows that (u,)nen is not trivial and therefore Ry is not full. More
generally, it follows from the work and Connes and Haagerup on the classification of amenable
factors (see [Co75b, Co85, Ha85]) that any non-type I amenable factor with separable predual
is never full. One can then think of the fullness property for arbitrary factors as a strengthening
of nonamenability.

Example 1.9. Here are some examples of full factors (possibly of type III):

(i) For every nonamenable group I' and every von Neumann algebra B # C1 endowed
with a faithful normal state 1, the Bernoulli crossed product

<®96F<B,¢>> 1T

is a full factor (see [Co74, VV14]). It is a type III factor if and only if 4 is not tracial.

(ii) For every orthogonal representation U : R ~ Hg such that dim Hgr > 2, Shlyakht-
enko’s free Araki-Woods factor I'(Hg, U)" is a full factor (see [Sh96, Sh97, Va04]). It is
a type III factor if and only if U # id. When U = id, we have I'(HR,, id)"” = L(F 4im fg )-

(iii) For every bi-exact group I' (e.g. free group) and every strongly ergodic free nonsingular
action I' ~ (X, u), the group measure space factor L(I' ~ X)) is full (see [HI15b]). It is
a type III factor if and only if there is no o-finite I'-invariant measure that is equivalent
to p on X. We will prove this result in Lecture 2.

Finally, let us point out that there is a subtle difference between central nets and centralizing
nets. For instance, one can show that in the Powers factor R), there exist central uniformly
bounded sequences that are not centralizing. We refer to [AH12, Example 5.1] and the refer-
ences therein for further details.
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2. LECTURE 2: FULL GROUP MEASURE SPACE FACTORS

We introduce the strong ergodicity property for nonsingular group actions and we provide
examples of strongly ergodic actions. We prove Choda’s result stating that strongly ergodic
free probability measure preserving actions of non-inner amenable groups give rise to full factors
of type II;. We finally prove Houdayer—Isono’s result stating that arbitrary strongly ergodic
free nonsingular actions of bi-exact groups give rise to full factors.

Strongly ergodic actions. Let I' be any countable group, (X, ) any standard probability
space and I' ~ X any measurable action. We say that the action I' ~ X is nonsingular and
write I' ~ (X, p) if for every g € T, the pushforward measure g, has the same null measurable
subsets as the measure u. Moreover, we say that the nonsingular action I' ~ X is

e probability measure preserving (pmp for short) if for every g € I', we have g.u = p.

o essentially free (free for short) if for p-almost every x € X, we have Stabr(z) = {e}.

e crgodic if every I'-invariant measurable subset U C X (meaning that u(UAgU) = 0 for
every g € I') is trivial (meaning that p(U)(1 — p(U)) = 0).

e amenable if there exists a I'-equivariant conditional expectation ¢ : L*°(I' x X) —
L*>(X) where we view L>°(X) € L*°(T" x X) as a von Neumann subalgebra.

Let us point out that any infinite group I' admits an ergodic free pmp action, namely the
Bernoulli action T ~ ([0, 1], Leb®!). For every amenable countable group I', every nonsingular
action I' ~ (X, u) is amenable. Every nonamenable countable group admits at least one
amenable ergodic nonsingular action, namely the Poisson boundary action.

Let ' be any countable group, (X, u) any standard probability space and I' ~ (X, ) any
ergodic nonsingular action. Recall that

o I' ~ (X, p) is of type Tif I' ~ (X, uu) is essentially transitive. In that case, we have
(' ~ X) = (I' ~ I) where I is a countable set and I' ~ I is a transitive action.

o I' ~n (X, p) is of type II if I' ~ (X, p) is not essentially transitive and there exists
a o-finite [-invariant measure v on X that is equivalent to u. If v(X) < 400, we say
that ' ~ (X, p) is of type II;. If v(X) = +o0, we say that I' ~ (X, p) is of type 1.

o I' ~n (X, ) is of type III otherwise.

Let now (U, )nen be any sequence of measurable subsets of X. We say that (Up)pen is

e invariant if lim,, u(U, AgU,) = 0 for every g € T.
o trivial if lim, u(Uy,)(1 — pu(Uy)) = 0.

The following definition due to Schmidt [Sc79] is central in this lecture.

Definition 2.1. Let I" be any countable group, (X, u) any standard probability space and
I' ~ (X,u) any nonsingular action. We say that I' ~ (X, u) is strongly ergodic if every
invariant sequence is trivial.

Any strongly ergodic nonsingular action is obviously ergodic. It is easy to show that the notion
of strong ergodicity does not depend on the measure p but only on the measure class of u. We
leave the details to the reader.

Let Z ~T (X, u) be any ergodic free pmp action. By Rokhlin’s lemma, for every n € N,
there exists a measurable subset V,, C X such that V,,, T(V,,),...,T"(V,) are pairwise disjoint
and p(X \ L[7_, T/ (V) < 1/(n+1). Put U, = UJLZ/OQJ T7(V,). Then the sequence (Up)neN
is invariant and nontrivial since lim, u(U,) = 1/2. Thus, the action Z ~T (X, u) is not
strongly ergodic. More generally, it follows from Connes—Feldman—Weiss result [CFW81] that
any amenable nonsingular action I' ~ (X, u) on a diffuse standard probability space is never
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strongly ergodic. Therefore, like the fullness property for non-type I factors, one can think of
strong ergodicity as a strengthening of nonamenability.

Example 2.2. Here are some examples of strongly ergodic free nonsingular actions (possibly
of type III).

(i) For every nonamenable countable group I', the Bernoulli action ' ~ ([0, 1)7, Leb®") is
a strongly ergodic free pmp action.

(ii) For every connected simple Lie group G and every countable dense subgroup I' < G
with algebraic entries, the translation action I' ~ G is a strongly ergodic free measure
preserving action (see [BG06, BG10, BdS14, BISG15]).

(iii) For every connected simple Lie group G with finite center, every lattice I' < G and
every nonamenable closed subgroup H < G, the homogeneous action I' ~ G/H is a
strongly ergodic free nonsingular action (see [Oz16]).

Full group measure space factors. We introduce the group measure space construction
due to Murray—von Neumann [MvN43]. Let I be any countable group, (X, u) any standard
probability space and I" ~ (X, u) any nonsingular action. Denote by o : I' ~ L*(X) the
action defined by o,(f)(z) = f(g~' - x) for every f € L®(X). Put H = L*(X, ) ® ¢3(I).
Define the unital *-representation 7, : L°°(X) — B(H) by 7 (f)(£®,) = on(f) @}, for every
f € L°(X), every ¢ € L2(X, 1) and every h € I'. For every g € T, put ug = 1® Ag. Then we
have the following covariance relation:

Vg e TVf € LX), ugmo(fug = m6(0g(f))-

Definition 2.3. The group measure space von Neumann algebra associated with I' ~ (X, )
is defined by
LT~ X) = {mo(f), g | f € 12(X),g € T} C B(H).

For simplicity, we identify L>°(X) with its image 7, (L°°(X)) in B(H) and regard A = L>(X) C
L(I' ~ X) = M. The mapping E4 : M — A : fug — fé.q4 extends to a well-defined faithful
normal conditional expectation. Write 7 = fX ~dp and ¢ = 70 Epee(x). Then ¢ € M, is a
faithful state and A C My. We write = }_ . 29u, for the Fourier expansion of z € M.
Note that for all measurable subsets U,V C X, we have |17 — 1V||?D = pn(UAV). This shows
that for every measurable subset U C X, U is invariant if and only if 1y € Z(M). Moreover,
for every sequence of measurable subsets (U, )pnen in X, (Up)pen is invariant if and only if
(1y, )nen is centralizing. If the nonsingular action I' ~ (X, p) is free, then A C M is maximal
abelian, meaning that A’ N M = A. In that case, I' ~ (X, p) is ergodic if and only if M is a
factor. The nonsingular action I' ~ (X, u) is amenable if and only if M is amenable.

Proposition 2.4. Let T' be any countable group, (X, p) any standard probability space and
I' ~ (X, p) any nonsingular action. Put A = L*(X) and M = L(I' ~ X). The following
assertions are equivalent:

(i) I' ~ (X, p) is strongly ergodic.
(ii) For every uniformly bounded sequence (an)n € ¢>°(N, A), if lim,, ||an —og4(an)||2 = 0 for
every g € I', then limy, ||a, — 7(an)1]|2 = 0.

Proof. (ii) = (i) Let (Up)nen be any invariant sequence of measurable subsets of X. For every
n € N, put p, = 1y, € A. Since (Up)nen is invariant, we have lim, ||p, — 04(pn)|l2 = 0 for
every g € I'. Then we have

lim o (Un)(1 = p(Un)) = litn [pn = 7(p) 13 = 0.

(i) = (ii) We use ultraproduct techniques. Let (ay), € ¢°°(N, A) be any uniformly bounded
sequence such that lim, ||a, — og4(an)|l2 = 0 for every g € I'. Let w € B(IN) \ N be any
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nonprincipal ultrafilter. Consider the tracial ultraproduct von Neumann algebra (A¥, 7¢) and
the ultraproduct action o : T' ~ A%, We claim that (4“)" = C1. Indeed, let p € (A*)" be
any projection. By [Co75a, Proposition 1.1.3 (a)], we may write p = (p,,)* where p, € A is a
projection for every n € N. Write p, = 1y, for some measurable subset U, C X. Since for
every g € I'; we have

. . 2 . 2 2
lim (U 8gU) = Tim |10, = L0, 3 = lim [[pa = 0y (pa) I3 = [Ip — 0% (p)3 = 0.
it follows that (Up)neN is an w-invariant sequence. By strong ergodicity, we have
lp = 7P)1113 = lim |pn = 7(pa) 1[5 = lim p(Un)(1 = 1(Un)) = 0.
n—w n—w

Thus, we have p € {0,1}. This shows that (A“)l' = C1. Since (a,)* € (4A¥)!, it follows
that lim, s, ||an, — 7(an)1ll2 = [[(an)® — 7¥((an)*)1|]2 = 0. Since this holds true for every
w € B(N) \ N, it follows that lim, ||a, — 7(an)1||2 = 0. O

Proposition 2.4 implies that for every ergodic free nonsingular action I' ~ (X, p), if L(I' ~ X)
is full then I' ~ (X, p) is strongly ergodic. We point out that the converse need not be true
as demonstrated by Connes—Jones [CJ81]. However, it is natural to seek for natural classes of
groups and actions for which strong ergodicity of the action implies fullness of the corresponding
group measure space construction.

We first review a well-known result due to Choda [Ch81] that gives a satisfactory answer to
the above question in the probability measure preserving setting.

Theorem 2.5. Let I' be any non-inner amenable group, (X, ) any standard probability space
and I' ~ (X, u) any strongly ergodic free pmp action. Then L(I' ~ X) is a full factor.

Proof. Let (zp)nen € (°(N,M) be any central uniformly bounded sequence in M. For
every n € N, write x,, = Zher(mn)huh for the Fourier expansion of z, € M. Put &, =
> oner I(@n)]l2 05 € €3(T). For every g € I', we have

1 2
I Adg(€n) — &all? = 3 i)™ "l — )1

hel
— 9~ 'hg Rk
=3 [llg- () 1l = i)

hel’

~1h n||

<> |lg- @y — @

hel 2
= |lugznuy — Tl =0 as n— oo.

Since T' is not inner amenable, it follows that lim, ||, — ||(z4)¢||2 0] = 0 and so lim, ||z, —

Ea(zy)|l2 = 0. Since (zy,)y is central, it follows that
lim [[Ea(zs) = 0g(Ba(zn))ll2 = im [Ea(zn — ugznug)lls = 0

for every g € T'. Then Proposition 2.4 implies that lim, |E4(z,) — 7(2n)1]|2 = limy, [|Ea(z,) —
T(Ea(xy))1||2 = 0. This implies that lim,, ||z, —7(2y)1]|2 = 0 and so (x,,),, is trivial. Therefore,
M is full. O

Let us point out that Choda’s argument relies in a crucial way on the invariance of the proba-
blity measure p and no longer works when the action does not preserve a probability measure.
We next investigate a large class of non-inner amenable groups for which one can prove the
fullness property of the group measure space factors arising from arbitrary strongly ergodic
actions.
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Following [0z03, Oz04, BO08], a countable group I' is bi-ezact if I' is exact and if the following
condition is satisfied:

(2.1) Jp:T — Prob(T) : x — py, Vg,h €T, xlggo | ttgan — Gebtz|lorry = 0.

Here and in what follows, we denote by Prob(I') = {n € £(I') | n > 0 and |5,y = 1}. The
class of bi-exact groups includes amenable groups, free groups [AO74], Gromov word-hyperbolic
groups [Oz03] and discrete subgroups of connected simple Lie groups of real rank one [Sk&8].
The following proposition shows that free groups satisfy (2.1).

Proposition 2.6. For every n > 2, the free group ¥y, satisfies (2.1).

Proof. Let n > 2 and put I' = F,, = (a1, ...,ay). Denote by |-|: ' — N the length function
with respect to the generating set S = {alﬂ, ...,a1}. For every g € T, denote by (go, ..., gk)
the unique geodesic path in the Cayley graph of (I',.S) such that go = e and g = g where
k=|g|. Put py = %Zé?:l dg;- For all g,h € T, it is easy to see that

| tegan — 9*#:6”61(1“) < |lpgan — g*NwhHﬁl(F) + [|gsptan — g*NxHél(F)
= \ltgan — guttanllorry + llten — pall oy
h h
< 9] |$|— LU'— +u—>0 as x — 00.
lgzh| — [lgzhl |z

|z
This finishes the proof. g

1‘4—

The next result due to Houdayer—Isono (see [HI15b, Theorem CJ]) is a strengthening of Choda’s
result for arbitrary strongly ergodic actions of bi-exact groups.

Theorem 2.7. Let T' be any countable group satisfying (2.1), (X,u) any diffuse standard
probability space and T' ~ (X, p) any ergodic free nonsingular action. We have the following
dichotomy:

e FEither I' ~ (X, ) is amenable.
e Or for every centralizing uniformly bounded sequence (wp), € ¢*°(N,M), we have
Wy, — Eyeoxy(wn) — 0 strongly.

In particular, if T ~ (X, u) is strongly ergodic, then L(I' ~ X)) is a full factor.

Proof. Put A = L*°(X) and M = L(I' ~ X). Denote by E4 : M — A the canonical faithful
normal conditional expectation and by ¢ € M, the unique faithful state such that p o E4 = ¢
and ¢|g4 = fX -dp. We simply write 7 = |4 € A,. Assume that there exists a centralizing
uniformly bounded sequence (wy,), € £>°(N, M) such that limsup, ||w, — E4(wy)|l, > 0. Up
to extracting a subsequence, rescaling and replacing each w,, by w, — E4(w,), we may further
assume that for every n € N, we have ||wy||, = 1 and E4z(w,) = 0. We prove that I' ~ (X, p1)
is amenable following an idea due to Ozawa (see [0z16, Example 8]). For every n € N, write
wy, = > per(wn)uy, for the Fourier expansion of w, € M.

Claim. For every h € I', we have lim,, ||(w,)"||2 = 0.

By assumption, we already know that (w,)¢ = Es(w,) = 0 for every n € N. Next assume
that h € T'\ {e}. Since (wy,), is centralizing, we have lim,, ||a(w,)" — (w,) on(a)|lz = 0. Let
w € B(N)\ N be any nonprincipal ultrafilter. Write b, = o-weak lim,, ., ((w,)")*(w,)" € A.
Since A is abelian, we obtain aby, = op(a)by, for every a € A. Since I' ~ (X, p) is free, we have
br, = 0. This implies that lim,, ,, ||(w,)"|]2 = 0. Since this holds true for every w € S(N) \ N,
it follows that lim,, ||(wy)"||2 = 0. This finishes the proof of the claim.
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Choose a map p : I' — Prob(I") for which (2.1) is satisfied. For every n € N, define the positive
linear mapping ®,, : L=(I" x X)) — L*°(X) by the formula

VfeL®T x X), ®,(f):x— = Y |(wn)?(x) Pg(h) £ (R, ).
g,hel’

Observe that (®,(f)), is uniformly bounded for every f € L*(X) since >  p |(wn)9]? =

Ea(wiwy,) < sup, |[wy]|?, < +o0o Next, fix a nonprincipal ultrafilter w € B(N) \ N and define
the positive linear mapping ®,, : L>(T" x X)) — L*°(X) by the formula

VfeL®([I x X), ®,(f)=o-weak lim ®,(f).
n—w
Note that o-weak lim,, ., Eq(w}w,) € AU = C1, lim, ., 7(Ea(wiwy,)) = lim, . Hwn||i =1

and thus o-weaklim,_,, Es(wjw,) = 1. Then ®,(f) = f for every f € L*(X) and so
O, : L' x X) — L*°(X) is a conditional expectation.

Claim. The conditional expectation ®,, : L>(I' x X) — L*°(X) is I-equivariant.

Indeed, let s € I' and f € LOO(F x X). On the one hand, we have

D,y = D (wa)?(@) Pg(h) f(s™ hy s )
g,hel’
= > (wa)?(@)Ppg(sh) f(h, s~ )
g,hel’
Z | ’LUn | Hs— 1gs(h)f(h7 S_lw)
g,hel’
+ > Nwn)? (@) (s aptg — prg=1gs) (R) (B, s~ )
g,hel’
= 3 [(wa)* (@) Prg(h) f(h, s~ ")
g,hel’
+ > N(wn)? (@) (s aptg — prg=1gs) (R) (B, s~ )
g,hel’

On the other hand, we have
(s @n(f))(2) = Pu( = > l(wn)? (s a)Pug(h) £ (s 2).
g,hel’
This implies that

(22) 1@l ) =5 @Dl < I flloo D [[1(ea) o2

gel

+ 1 lloo D I wn)O13 - s~ eptg — pgrgsllenry

gel’

s r<wn>912Hl

Regarding the first term on the right hand side of (2.2), using Cauchy—Schwarz inequality and
the fact that ||z1] — |2:2H < |21 — 22| for all 21, 29 € C, we have

> 1wy = s w2,

gel

- , 1/2 y , 1/2
<\ Xl =o)X o
gel’

< 2||wn||oo | (wn = uswpug)(1x @ de)||-
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Since (wy,)y is centralizing, it follows that

2.3 li H )9S g nQQH - 0.
(2.3) I}LHQZGEKM) | S|(w)|1

Regarding the second term on the right hand side of (2.2), using (2.1), for every € > 0, there

exists a finite subset F' C T such that for every g € I'\ F, we have ||s™ g — prs—145]lor ) < €.

Using the previous claim, we have lim,, ||(w,)?||3 = 0 for every g € F. These two observations

lead to

limsup > [[(wa)? 13- |57 sty = temrgallerry < elimsup D [[(wn)?]f3 < e limsup [w, |3 < e.
" ger " gen\F "

Since this holds true for every € > 0, this leads to

(2.4) lim Y [ (wn)?l3 - s~ ertg — ps-15lleary = 0.

gel
Combining (2.3) and (2.4), we obtain lim,, || ®,(s - f) — s - ®,(f)||1 = 0. Since the sequence
(®y(a))y, is uniformly bounded for every a € A, this implies that @, (s - f) = s - ®,(f) and
finishes the proof of the Claim.

Then the I'-equivariant conditional expectation ®,, : L=°(I" x X)) — L°°(X) witnesses the fact
that the action I' ~ (X, p) is amenable.

We finally point out that thanks to the work of Connes and Haagerup on the classification
of amenable factors ([Co75b, Co85, Ha85]), we do have a dichotomy in the statement of the
theorem. 0

We observe that using Theorem 2.7 and Vaes—Wahl results [VW17], we obtain full group
measure space type III factors arising from strongly ergodic actions of the free groups with
prescribed Connes’ invariants [Co74, HMV17].
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3. LECTURE 3: SPECTRAL GAP FOR FULL FACTORS

We first review Connes’ joint distribution trick and we prove some useful technical results
regarding norm estimates of certain commutators between elements in the von Neumann algebra
and elements in its standard form. We then state Connes’ spectral gap result for full factors
of type II; and Marrakchi’s spectral gap result for full factors of type III and derive some
interesting consequences. We finally give a proof of Connes’ spectral gap result due to Marrakchi
and we prove Marrakchi’s spectral gap result.

Preliminaries. Let M be any von Neumann algebra and denote by (M,L*(M),J,L2(M).)
its standard form. We first recall a useful technical tool known as Connes’ joint distribution
trick (See [Co75b, Proposition I.1] and [Ha85, Lemma 2.11]). Denote by £>°(B) the space of
bounded Borel functions defined on a standard Borel space B.

Lemma 3.1. Let ¢ € L2(M) and x € My,. Then there exists a finite positive Borel measure v
on R? with supp(v) C Sp(z) x Sp(x) such that

(3.1) Vf,g€ L2R), [If(x)¢ —Co(@)|* = /R2 |f(s) = g(&)|* dv (s, 1).
Proof. Since C(Sp(z) x Sp(z)) = C(Sp(x)) @max C(Sp(x)), there exists a unital *-representation
7 : C(Sp(z) x Sp(x)) — B(L?(M)) such that

Vf,g € C(Sp(z)), w(f@g)¢= f(z)Cg(x).

Denote by v the finite positive Borel measure on Sp(z) x Sp(z) such that

(3.2) Vh € C(Sp(z) x Sp(z)), (m(h)(, Q) :/S e )h(s,t) dv(s,t).

By standard arguments, (3.2) holds for every h € L>(Sp(z) x Sp(z)). Then for all f,g €
L>(Sp(x)), we have

@)~ Co@) | = (PO + (Clol(@).C) — 2R (2)Ca(a). )
-/ (IF()P +1a)” — 2R(/(s)g(0) ) du(s. )
Sp(z)xSp()

=/’ F(s) — g(t) 2 (s, 1),
Sp(z)xSp(x)

We may extend v to a finite positive Borel measure on R? by letting v(R?\ Sp(z) x Sp(z)) = 0.
This finishes the proof. O

Next, we collect results due to Connes-Stgrmer [CS78, Theorem 2] and Marrakchi [Mal7,
Lemma 2.3]. For every a > 0, denote by e, = 1 o0y € L2(R).

Theorem 3.2. Let ¢ € L2(M) such that J¢ =, ¢ € (M,), and x € M. Then we have

(33) o) = [ eeafa)da
(3.0 o= @12 < | pleaa?)1 - plea(w?) da
(35) [ Tlealw?)¢ = Geala)|* da < 2l - o€ — Gal.

+
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Proof. Fix ¢ € L2(M) such that J( = ¢, p € (M,); and z € M.
Proof of (3.3). Since ¢ € (M), we have

p(x) = </ ) eaq(x) da) :/* o(eq(x))da.

+ +

Proof of (3.4). Observe that ||z — go(x)lH?D = p(2?) — p(z)%. By (3.3), we already know that

s0(1‘2)=¢</R

In order to prove (3.5), it suffices to show that

ea(m2)da) :/ o(eq(x?)) da.

*

*
+ +

/ p(ea(a?))? da < p(x)
R

*
+

In M ® M, we have e,(2?) ® eq(2?) < eq(z ® ). Applying (3.3) to r @ x € M ® M with
PR p € (M® M), we have

Je

p(ea(a?))? da = / (0 ® 0)(ea(@?) @ ea(a?)) da
" R}

< /Ri(cp@)go)(ea(x@x))da

= (¢ @)z @) = p(z)’.

Proof of (3.5). By Lemma 3.1, there exists a finite positive Borel measure v on R? with
supp(v) C Sp(x) x Sp(x) C R4 such that

Va> 0. fles(a)C = GealaD)P = [ | leals?) = ealt) o)

Using Fubini’s theorem, Cauchy—Schwarz inequality and Lemma 3.1, we have

| leala?)é = ceata®)Pda= [ ( /|

«
+ xS

\ea(s2) — ea(t2)\2da> dv(s,t)

*
+

:/ ls —t| - (s+t)dv(s,t)
R

2
+

< (/R |s—t!2dv<sﬁt)>1/2' (/R
< </R'i ys—tyzdu(s,t)>1/2- (2/R

— [|la¢ — Cal| - (2[¢)? + 2l|ce]?)
= 2| - |2 — Ca.

This finishes the proof. O

1/2
(s + )2 du(s, t))

1/2
(5% +t?) du(s, t))

2
+
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Spectral gap property of full factors. As we have seen in Theorem 1.5, any non-inner
amenable countable group I' gives rise to a full type II; factor M = L(I") for which there
exist some £ > 0 and a finite critical set {g1,...,g9x} C I' witnessing spectral gap for the
conjugation representation Ad’ : I' — U(L?(T') © Cé,). In other words, the constant x > 0 and
the critical set {ug,,...,uq, } CU(M) witnesses spectral gap for the conjugation representation
U(M) — U(L*(M) © CE;). Connes’ celebrated result [Co75b, Theorem 2.1] shows that such a
spectral gap property holds for every full factor of type II; (with separable predual). Connes’
spectral gap theorem is a remarkable result that played a key role in Connes’ proof of the
uniqueness of the amenable type II; factor [Co75b]. As we will see in Lecture 4, it has also
been an important tool in Popa’s deformation/rigidity theory.

We state and we will give a complete proof of the following more general version of [Co75b,
Theorem 2.1] without assuming separability of the predual.

Theorem 3.3. Let M be any type 111 factor. Then the following conditions are equivalent:

(i) M is a full factor.
(ii) There exist k > 0 and uy,...,ux € U(M) such that

k
(3.6) VeeM, |z—7@)1]5<k) |lujz—zu3.
7j=1

Note that (3.6) exactly means that the conjugation representation
UM) = ULAM) S CE) :n — uudn
has spectral gap (here we regard U(M) as a discrete group).

It is easy to see that for any type II; factor M, if Pce, € C*(M, JMJ), then M is full. Theorem
3.3 shows that the converse holds true.

Corollary 3.4. Let M be any full factor of type I1;. Then K(L2(M)) c C*(M, JM.J).

Proof. Since M is a full factor of type II;, we may choose k > 0 and uy,...,ux € U(M)
witnessing (3.6). Then the positive selfadjoint bounded operator T° = Z§:1 luj — Ju;J|? on
L?(M) has its spectrum o(7T') contained in {0} U [, +00) and 0 is an eigenvalue for T with
multiplicity 1. Since 7' € C*(M,JMJ) and since 1) is a continuous function on o(7), it
follows that Pce, = 110y(T) € C*(M,JMJ). Since & is M-cyclic and since C*(M, JMJ) is
| - llso-closed, we infer that K(L*(M)) c C*(M,JM.J). O

Corollary 3.4 implies that the tensor product of any two full factors of type II; is still full.
Indeed, let (M, 1) and (My, 72) by any full factors of type II;. Put M = M1 @ Ma, 7 = 11 ® 7o
and J = J; ® Ja. By Corollary 3.4, we have K(L?(M;)) € C*(My, JyMyJ;) and K(L?(Ms)) C
C*(MQ, JQMQJQ). Since C*(Ml, J1M1J1) ® Cl1 C C*(M, JMJ) and Cl ® C*(MQ, JQMQJQ) C
C*(M, JMJ), we have Pce, = Pce,, ® Pce,, € C*(M, JMJ). This implies that M is full.

Marrakchi recently obtained in [Mal6, Theorem A] an analogue of Connes’ spectral gap theorem
in the setting of type III factors. We only state his result for o-finite factors and refer the reader
to [Mal6, Theorem A] for a more general statement that holds for arbitrary factors.

Theorem 3.5. Let M be any o-finite factor of type I11. The following conditions are equivalent:
(i) M is a full factor.

(ii) There exist k > 0, a faithful state ¢ € M and &y, ..., &, € Ball(M)&, such that J&; = &;
for every 1 < j < k and such that

k
(3.7) Ve e M, |z—o@1|2 <k |ag - &l
j=1
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Let us point out that the spectral gap estimates (3.6) in Theorem 3.3 and (3.7) in Theorem
3.5 are slightly different. Indeed, for every 1 < j < k write £ = a;{, where a; € Ball(M).
By the parallellogram inequality, for every 1 < j < k and every x € M, since x§; — {jx =
(xaj —ajx)é, + aj(r€, — Eyx), we have

lz¢; — &zll* < 2l|za; — ajz|} + 2] 2€, — Epzll*.
Then (3.7) becomes

k
(3.8) Vo e M, |z —o@)1)2 <2:) llva; — aja|? + 2kela, — L.
j=1

We can now see that the main difference between (3.6) and (3.8) is the existence of the extra
term 2kk||zé, — &,2]|? on the right hand side of the inequality which measures “how far z
commutes with §,”. For that reason, we cannot obtain the same conclusion as the one in
Corollary 3.4.

In [HMV16], Houdayer—Marrakchi—Verraedt obtained a strengthening of (3.8) and proved that
fullness is stable under taking tensor product. In [HMV17], Houdayer—Marrakchi—Verraedt also
obtained a spectral gap characterization of strong ergodicity for arbitrary nonsingular actions.
Since these results are beyond the scope of these notes, we will not dwell further on that.

Proof of the spectral gap property of full factors. We give a simple proof of Connes’
spectral gap theorem for full factors of type II; (see Theorem 3.3) due to Marrakchi [Mal7].
We then prove Marrakchi’s spectral gap theorem for full factors of type III (see Theorem 3.5).
Let us point out that a simple proof of Connes’ spectral gap theorem for full factors of type
I1; is also given in the forthcoming book [AP18].

The following crucial result is due to Marrakchi [Mal7, Proposition 2.2].

Theorem 3.6. Let M be any o-finite von Neumann algebra, ¢ € M, any faithful state and
&1,..., & € Ball(M)&, any elements such that J§; = &; for every 1 < j < k. The following
assertions are equivalent:

(i) There exists k1 > 0 such that for all projections p € M, we have
k
(3.9) e(p)(1 = (p)) < k1 Y _ Ip& — &l
j=1
(ii) There exists ko > 0 such that for all elements v € M, we have
k
(3.10) lz — (@) 15 < k2 Y [l — &al|*.
j=1

Proof. (ii) = (i) Applying (3.10) with k; = K2 to = = p, we obtain (3.9).

(i) = (ii) First, let € M, be any positive element. For every 1 < j < k, write & = a;{, =
§pa; where a;j € Ball(M). Then we have [[x§;|| = [|zya}| < [|z€,||. Using (3.4) and (3.5) in
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Theorem 3.2 and using the assumption, we obtain

lz — ()15 < /R p(ea(@®))(1 — p(ea(z?))) da

+

k
Ne. g 2y12 4
< m;/m lea(2)€; — & ea(a?)]? da

k
<2m Y || - [la; — &2

i=1

k
<201 Y llelly -l — &zl

J=1

Next, let © € M} be any selfadjoint element such that ¢(x) = 0. Write = z — x_ where

Ty, r— € My and zix_ = 0. Using the parallellogram inequality and the above inequalities
for x4 and x_, we obtain
(3.11) I2lI2 < 2 (a4 = (@) LIZ + llz— — p(z-)1]13)

k
<4r1 > (loglle - o4& — Gl + la—llg - le-& — &)
j=1

Since x = x4 —x_ and z o = 0, we have ||z[|}, = [lz4[|2 + |lz—[|2. Thus, we have [z, <
|z||,. For every 1 < j <k, we moreover have
285 — &a)® = llz &5 — G |® + le—& — Ga_ | — 2R(x1 & — Gag, 28 — &)
= [l4&5 — i PP + |o-&5 — Ga_||” + 2R(w &, Ea_) + 2R(Gay, w_E;)
> |log& — Gag|® + lo—& — Ga_ |

since x1Jr_J > 0 and z_JxJ > 0. Thus, we have |z+§; — {os| < ||z§; — &z||. From
(3.11), we obtain
k

213 < 8killzlly D ll2€; — &l
j=1

and so
k
Izl < 8k1 Y |l2&; — &)
j=1

Using Cauchy-Schwarz inequality and letting ko = (8k1)%k, we obtain
k
(3.12) |2l|2 < k2> a5 — &>
j=1

Next, let x € M}, be any selfadjoint element. Applying (3.12) to z — ¢(x)1, we obtain (3.10)
for x € Mjy,.

Finally, let x € M be any element. Writing z = R(x) +i3(x), applying (3.10) to R(z) and J(x)
respectively, using the fact that J¢; = &; for every 1 < j < k and using Pythagoras theorem,
we obtain (3.10) for x € M. O

Proof of Theorem 3.5. (ii) = (i) It is obvious.
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(i) = (ii) We prove the implication by contradiction. Assume that M satisfies (i) of Theorem
3.3 but does not satisfy (ii) of Theorem 3.3. Since M satisfies (i) of Theorem 3.3, for e = 1/4,
there exist a > 0 and bq,...,br € M} such that

ol

k
(3.13) Vpe P(M), > lpbj—bpl5 <o = min(r(p),1—7(p)) <
j=1

We start by proving the following crucial claim.

Claim. For every nonzero projection p € M, pMp does not satisfy (ii) of Theorem 3.3.

Proof of the Claim. Denote by I the directed set of all pairs (F,e) where F' C U(M) is a
nonempty finite subset and € > 0. Let i = (F,¢) € I. Since M does not satisfy (ii) of Theorem
3.3, there exists x; € M such that

1
;s — 7 (i) 15 > B > i — umi3.
ueF

In particular, ||z; —7(z;)1||2 > 0. Letting y; = m<$z—7(9¢z)1) € M, we have ||y;|l2 = 1,
7(yi) = 0 and

> llyi — ugill3 < e.
ueF

Since any element in M is a linear combination of at most 4 elements in U(M), (yi)ier is a
central net in M, meaning that lim; ||y;b—by;||2 = 0 for every b € M. Note however that (y;)ier
need not be uniformly bounded.

Fix a nonzero projection p € M. Observe that (py;p)icr is a central net in pMp. Let w be a
cofinal ultrafilter on I. Denote by v, € M* the state defined by v, (z) = lim;_,,, 7(y}zy;) for all
x € M. Since (yi)ier is a central net in M, 1), is tracial on M and thus 1), = 7 by uniqueness
of the trace on M. This implies that lim;_,, ||pyip|l2 = ||p|l2- Denote by ( = weak lim;_,,, y;&; €
L2(M). Since 7(y;) = 0 for every i € I, we have (¢,&;) = 0. Since (y;)ies is a central net in
M, we have b( = (b for every b € M and so ¢ € C&,. Thus, we have ¢ = 0. This implies that
lim; , 7(py;p) = 0. Thus, the net (py;p)ic; witnesses the fact that pMp does not satisfy (ii)
of Theorem 3.3. O

Denote by J the directed set of all pairs (F,d) where F' C Mj, is a finite subset such that
{b1,...,b} C Fand 0 < 6 < a. Let j = (F,6) € J. Denote by A; the inductive set
of all projections ¢ € M such that 7(¢) < 1/4 and Y, p|lgb — bgl|3 < 67(¢q). By Zorn’s
lemma, we may choose a maximal projection p = p; € A;. We claim that 7(p) = 1/4.
Assume that this is not the case and so 7(p) < 1/4. By the previous claim, p*Mpt does
not satisfy (ii) of Theorem 3.3. Put 7,1 = %T(pL - p1). Then ptMpt does not satisfy

(ii) of Theorem 3.6 with respect to the tracial state p = 7,1 (vecall that any element is a
linear combination of at most four unitaries) and thus pMp* does not satisfy (i) of Theorem

3.6 either with respect to the tracial state ¢ = 7,1. There exists a projection ¢ € ptMpt
such that 7(q)(7(p™) — 7(q)) > 5 Yper llgp-bp™ — prbp* q||3. Up to replacing ¢ € p-Mp* by
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pt —q € ptMpt, we may assume that 7(q) < 1/2. We have
DI+ ab—blp+ a3 = (pba™ — ¢ bp) + (apTbp™ — pLoptq)3

beF beF
= lla™ (b= bp)g 13+ llgpTbp* —prbp*tql3
beF beF
<> b —bpll3+ Y llgptbpt — ptop* ql3
beF beF

< é7(p) +67(q) = d7(p + q).

Since p € A; is a maximal element, the above inequalities show that we have 7(p + ¢) > 1/4.
Since in particular we have Z§:1 (p+ q)b; — bj(p+q)||3 < o and since 7(p + q) > 1/4, (3.13)
implies that 7(p + ¢) > 3/4. However, since 7(p + q) = 7(p) + 7(q) < 1/4+1/2 = 3/4, we
obtain a contradiction. Therefore, we have 7(p;) = 7(p) = 1/4.

) =
Thus, we have obtained a net of central projections (p;)jes in M such that 7(p;) = 1/4 for
every j € J. This contradicts the fact that M satisfies (i) of Theorem 3.3. Therefore, we have
proved that (i) = (ii). O

Proof of Theorem 3.5. (ii) = (i) It is obvious.

(i) = (ii) The proof of this implication is entirely analogous to the one of (i) = (ii) in Theorem
3.3. We proceed by contradiction and assume that M satisfies (i) of Theorem 3.5 but does not
satisfy (ii) of Theorem 3.5. Fix a faithful state ¢ € M,. Since M satisfies (i) of Theorem 3.5
and since the linear span of all the vectors ¢ € Ball(M )¢, such that J¢ = ¢ is dense in L2(M)
(this follows from the fact that the set of all p-analytic elements is *-strongly dense in M), for
e = 1/4, there exist o > 0 and &, ..., & € Ball(M)&, such that J&§; = §; for every 1 < j <k
and such that

el

(3.14) Vp € P(M Z Ipg; —&pl> <o = min(p(p), 1 — o(p)) <
7j=1

Denote by J the directed set of all pairs (F, §) where F' C Ball(M )&, is a finite subset such that

{&,..., &} CFand J(=(forall( € Fand 0 < 6 < a. Let j = (F,§) € J. Denote by A; the

inductive set of all projections ¢ € M such that ¢(q) < 1/4 and ZCEF lla¢ — Cql]? < dp(q). By

Zorn’s lemma, we may choose a maximal projection p = p; € A;. We claim that p(p) = 1/4.

Assume that this is not the case and so ¢(p) < 1/4. By assumption, pMp* = M does not

satisfy (ii) of Theorem 3.5. Put ¢, = (p(;l)go(pj‘ - pt) € (ptMpt),. Then p~Mp' does not

satisfy (ii) of Theorem 3.6 with respect to the faithful state 4,1 and thus pMpt does not
satisfy (i) of Theorem 3.6 either with respect to the faithful state ¢,,.. There exists a projection
q € p=Mp* such that o(q)(e(p*) — ¢(q) > 5 Ycer llap™Cp* — p~¢p* ql*. Up to replacing
q € ptMp* by pt — g € ptMp* we may assume that p(q) < 1/2. We have

Y+ aS =+l <D IS —Cpl3+ > llap™¢pt —p¢ptall* < sp(p+a)-

CEF CeF (EF

Since p € A; is a maximal element, the above inequality shows that we have ¢(p + ¢) > 1/4.
Since in particular we have Z§:1 I(p+q)& —&(p+q)||* < a and since p(p+q) > 1/4, (3.14)
implies that ¢(p + ¢) > 3/4. However, since ¢(p + q) = ¢(p) + ¢(q) < 1/4+1/2 = 3/4, we
obtain a contradiction. Therefore, we have p(p;) = ¢(p) = 1/4.

Thus, we have obtained a net of centralizing projections (p;)jes in M such that ¢(p;) = 1/4
for every j € J. This contradicts the fact that M satisfies (i) of Theorem 3.5. Therefore, we
have proved that (i) = (ii). O
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4. LECTURE 4: UNIQUE MCDUFF DECOMPOSITION

Popa’s intertwining theory. We say that a von Neumann subalgebra P C M is with expec-
tation if there exists a faithful normal conditional expectation Ep : M — P. Recall that when
M is tracial, any von Neumann subalgebra P C M is with expectation.

Popa introduced his powerful intertwining-by-bimodules theory in [Po01, Po03] in the setting
of tracial von Neumann algebras. Popa’s intertwining theory has recently been extended to
arbitrary von Neumann algebras in [BH16, HI15a]. Let M be any o-finite von Neumann algebra
and P, C M any tracial von Neumann subalgebras with expectation. Following [Po01, Po03],
we say that P embeds into Q) inside M and write P <j; Q if there exist projectionsp € P, ¢ € Q,
a nonzero partial isometry v € pM ¢ and a unital normal *-homomorphism 7 : pPp — ¢Qq such
that xv = vr(x) for every € pPp. Observe that vv* € (pPp)'NpMp and v*v € w(pPp)' NgMyq.

The following criterion provides a useful analytical tool to exploit the condition P Aj; Q.
This result is essentially due to Popa [Po03, Theorem 2.1 and Corollary 2.3] (see also [HV12,
Theorem 2.3]).

Theorem 4.1. Let M be any o-finite von Neumann algebra and P,Q C M any tracial von
Neumann subalgebras with expectation. The following assertions are equivalent:

(1) P Am Q.
(ii) There is a net of unitaries (u;)icr in P such that lim; ||Eq(z*uy)|2 = 0 for allx,y € M.

Proof. (ii) = (i) We prove this implication by contradiction. Take a net of unitaries (u;)ier
in P such that lim; |[Eqg(z*u;y)|2 = 0 for all ,y € M. Take (p,q,v,7) witnessing the fact
that P <)y Q. Up to shrinking p € P if necessary, we may assume that the normal *-
homomorphism pPp — ¢Mgq : x — w(x)v*v is injective. Since P is tracial, using [KR97,
Proposition 8.2.1], we may choose nonzero partial isometries wy, . .., wy € P such that w;wj <p

for every 1 < j < k and Z;?:l wjw; =z € Z(P). Note that for every 1 < j < k, wjv # 0
since v* wjv = v*vmw(w;) # 0. Define the normal *-homomorphism © : Pz — My (¢Qq) by
O(z) = [r(wfzw;)];; and the nonzero partial isometry V = [wiv---wiv] € My ;(C) ® pMg.
We have 2V = VO(x) for all z € Pz.
Observe that ©(z) = Diag(r(wjw;)) and V*V = Diag(v*wjw;v) < ©(z). Denote by E :
O(z) My (¢Mq) O(z) — O(z) M(qQq) ©(z) a faithful normal conditional expectation. Then
for every ¢ € I, we have
[EV V)2 = |[E
= [|E
= [[E
Using the assumption, we have lim; |[E(V*u;V
contradicts the fact that V' # 0.

V*V)O(u;2)||2

V*VO(u;iz))|l2

V*uV)lla.

l2 = 0 and so E(V*V) = 0. This however

_ N~~~

(i) = (ii) We prove this implication by contraposition. Fix a faithful normal conditional
expectation Eg : M — @ and a faithful state ¢ € M, such that g o Eg = ¢ and 7 = ¢|g
is tracial. Denote by (M,L?(M),J,L2(M),) the standard form of M. Denote by (M, Q) =
(JQJ) N B(L?(M)) Jones basic construction and by eq : L*(M) — L*(Q) Jones projection.
Observe that (M, Q) = (M U {eg})”. Since 7 is tracial on Q, there exists a canonical faithful
normal semifinite trace Tr on (M, Q) such that Tr(7T7*) = 7(T*T) for all right @-modular
bounded linear maps 7" : L?(Q) — L?(M). In particular, we have Tr(eq) = 1.

Since (ii) does not hold, there exist € > 0 and a finite subset F C M such that

VueU(P), Y |[Eqlz*uy)|3 > <.
T, yeF
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Put d = ) . rreqr* € (M,Q);. We have Tr(d) = >, . 7(Eqg(z*r)) < +00. Moreover, for
every u € U(P), we have

(41) Y (wrduys,yty) = D (wmeqrtuyle, yéo) = Y | [[Bo(ztuy)|3 > .

yeEF T, yeF z,yeF
Denote by C the o-weak closure in (M, Q) of the convex hull of {u*du : w € U(P)}. We have
0 ¢ C by (4.1). Since C is bounded both in || - ||« and || - ||2;1v, C can be regarded as a closed
bounded convex subset of L?({(M, eq), Tr). Denote by ¢ € C the unique circumcenter of C. For
every u € U(P), since u*Cu = C, we have u*cu = c¢. Thus, ¢ € P’ N (M, eq)4+ such that ¢ # 0
and Tr(c) < +oo (this is due to the fact that Tr is o-weakly lower semi-continuous).

Define the nonzero spectral projection e = 1(¢||.. /2, cl|-] (¢) € P'N{(M,Q). Since %e <ce,
we have Tr(e) < +oo. Let H = eL?(M). Then pHg is a nonzero P-Q-subbimodule of
pL%(M)g such that dim(Hg) = Tr(e) < +oo. By [BO0S, Proposition F.10], there exist a
nonzero projection p € P and a nonzero pPp-Q-subbimodule K C pH such that K is isomorphic
as a right @Q-module to a right Q-submodule of L?(Q)g. Denote by V : Ko — L*(Q)q the
corresponding right Q-modular isometry. For every x € pPp, since VaxV™* commutes with the
right Q-action on LQ(Q), we have VzV* € qQq where ¢ = VV*. Therefore 7w : pPp — qQq :
x — VaV* is a unital normal #-homomorphism. Put & = V*¢. € K. We have £ # 0 since
VE=VV*, = q&: # 0. Moreover, for every x € pPp, we have

xf =2V =Vin(x)é = Vi n(x) = En(x).

Write & = v[¢] for the polar decomposition of ¢ in the standard form L?(M). We have v € pMg,
v # 0 and |¢] € L2(M),. For every u € U(pPp), we have

uv €] = ug = & (u) = v|¢|m(u) = vm(u) w(u)*[E]m(u).
By uniqueness of the polar decomposition, we have uv = vr(u) and |£| = 7(u)*|{|m(u) for every
u € U(pPp). Tt follows that zv = vr(z) for every = € pPp. 0

Recall that whenever P C M is an inclusion of o-finite von Neumann algebras with expectation
such that P is a factor and M = PV (P' N M), we have M = P ® (P’ N M). In that case,
we will simply write M = P ® (P’ N M). The next intertwining lemma inside tensor product
factors will be crucial in the proof of Theorem 4.3 (see [HI15a, Lemma 4.13] and also [OP03,
Proposition 12]).

Lemma 4.2. Let P, Q1 be any type 111 factors and Pa, Qs any o-finite type 111 factors. Put
M=P®P,, N=Q1®Q> and assume that M = N. If P, <;; Q1, then there exist projections
p € P, q € Q1 and a nonzero partial isometry w € M with ww* = p and w*w = q such that

Qg =w"Plw® B and w'Pow = B® Q.
where B = (w*Pyw)’ N qQ1q.

Proof. Since P; <5 Q1, there exist projections e € P; and f € Q1, a nonzero partial isometry
w € eM f and a unital normal *-homomorphism 7 : ePie — fQ1f such that xw = wn(z) for
every x € ePje. Then we have

ww* € (ePre) NeMe = Poe and w'w € m(ePre) N fMf = (r(ePre) N fOQ1f) @ Qaf.
Put L = w(ePre)’ N fQ1f and observe that w(eMje)' N fMf =L ® Q2f is a o-finite type III
von Neumann algebra.

If we denote by z® 1¢, f the central support in L ® Q2 f of the projection w*w € L® Q2 f, with
z € Z(L), we have that w*w ~ 2 ® 1@, f in L ® Q2f by [KR97, Corollary 6.3.5]. We may put
g = z and assume that w*w = ¢. Likewise, we have ww* ~ 1p,e in Pye by [KR97, Corollary
6.3.5]. We may put p = e and assume that ww* = p.
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Put B = (w*Piw)’ N ¢Q1q. Since w*Mw = ¢Mq = qQ1q ® Q2q and since w* Pyw C qQ1q, we
obtain

w*Pow = (w*Pyw) Nw*Mw = (w*Piw) NgMq = ((w*Piw)’ N qQ1q9) ® Q2g = B ® Qaq.
Likewise, we obtain ¢Q1qg = w*Piw ® B. O

Unique McDuff decomposition. Following [McD69, Co75a], we say that a factor M is
MeDuff if M =2 M ® R. The following rigidity result is a particular case of the unique McDuff
decomposition theorem due to Houdayer—Marrakchi—Verraedt [HMV16, Theorem E|. Let us
point out that [HMV16, Theorem E] generalizes Popa’s result [Po06, Theorem 5.1] that holds
in the type II; setting.

Theorem 4.3. Let My and My be any full type 111 factors with separable predual. If M1 ® R =
Ms ® R, then My and Ms are isomorphic.

The proof of Theorem 4.3 is based on Popa’s deformation/rigidity theory. We will combine
Popa’s intertwining theory together with the following key rigidity result that allows us to
control centralizing sequences in McDulff factors.

Lemma 4.4. Let M be any full o-finite factor and N any tracial von Neumann algebra. For
every centralizing uniformly bounded net (x;);cr in M & N, there exists a centralizing uniformly
bounded net (z;)icr in N such that x; — z; — 0 x-strongly.

Proof. When M is a full semifinite o-finite factor, the result easily follows from Corollary 3.4.
We leave the details to the reader. From now on, we assume that M is a full o-finite factor of
type IIL.

Fix a faithful normal tracial state 7 on N. Since M is a full factor of type III, using Theorem
3.5, we may choose x > 0, a faithful state ¢ € M, and &,...,&§ € Ball(M)&, such that
J&; =& for every 1 < j < k and such that (3.7) holds. Write Exy = ¢ ®idy : M ® N — N for
the faithful normal conditional expectation associated with ¢ on M. We show that

(4.2) Vie M®N, |lz—En(2)|g, < nZHx@% — (& ®&)z)*
J=1

By linearity and density, it is enough to prove (4.2) for x € M @ N of the form z = " | y; ®a;
where the family (a;&;)1<i<m is chosen to be orthonormal in L2(N). In that case, we have

|z — En(z 4p®7' Z lyi — p(vi) 1”2
=1
ZZnyz@ il
ZZII%@ &yill?

j=1

3

Ea

Ed

= k> alg &) — (& ® &)z

Jj=1

Let now (x;);e; be any centralizing uniformly bounded net in M ® N. For every i € I, put
zi = En(x;) € N. Then (z;)es is a centralizing uniformly bounded net in N and (4.2) shows
that x; — z; — 0 *-strongly. O
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Let us point out that Lemma 4.4 holds for any o-finite von Neumann algebra N. We refer to
[HMV16, Theorem A] for further details.

Proof of Theorem 4.3. Write Ry = R = Ry so that M = M; ® Ry = Ms ® Rs. For every
n € N, write R; = M2 (C) ® Ry, and observe that Ry, is isomorphic to the hyperfinite type
IT; factor. We start by proving the following claim.

Claim. There exists n € N such that Ry, <y Ra.

Indeed, by contradiction, assume that for every n € N, we have Ry, Aam Re. Fix a faithful
normal conditional expectation Er, : M — Ry. By Theorem 4.1, there exists u, € U(R1)
such that ||Eg,(u,)|l2 < n%rl Using Lemma 1.8, (up)nen is a uniformly bounded centralizing
sequence in M. By Lemma 4.4, there exists a centralizing uniformly bounded sequence (vy,)nen

in Ry such that u,, — v,, — 0 *-strongly. We then have

lin [[oa]|> = 10 [Exz, (o) > = lim B, (v — )2 = 0.

This implies that v, — 0 *-strongly and contradicts the fact that u,, € U(M) for every n € N.
This finishes the proof of the claim.

Let n € N such that Ry, <am R2. Using Lemma 4.2, there exist projections p € Ry, ¢ € R
and a nonzero partial isometry w € M such that ww* = p, w*w = ¢ and a subfactor B C qRaq
such that

qR2q =w'R1 ,w® B and w*(M; ® Man(C))w = B ® Magq.
Since qR2q is a tracial amenable factor, B is necessarily a tracial amenable factor. Since
w*(M; @ Man(C))w is a full factor, B is necessarily a finite type I factor. Thus, M; and M>
are (stably) isomorphic. O
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first draft of this manuscript.
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