AN INVITATION TO VON NEUMANN ALGEBRAS
LECTURE NOTES

CYRIL HOUDAYER

ABSTRACT. These are the lecture notes of a graduate course given at the Université Paris-
Sud (Orsay) in the Winter of 2017. In Section [1} we review some preliminary background on
C*-algebras. In Section we review weak and strong operator topologies on B(H) and prove
the spectral theorem for bounded normal operators. In Section [3} we introduce von Neumann
algebras and prove some basic properties. In Section [d] we present two important classes of
von Neumann algebras, namely group von Neumann algebras and Murray—von Neumann’s
group measure space constructions. Finally, in Section [f] we prove Connes’s characterization
of amenable tracial von Neumann algebras.
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1. PRELIMINARY BACKGROUND ON C*-ALGEBRAS
All the algebras we consider are always over the field C of complex numbers.
1.1. Introduction to C*-algebras.

1.1.1. Definition and first properties.

12
22
26
33

Definition 1.1. A C*-algebra A is a Banach algebra endowed with an involution A — A : a +—

a* which satisfies the following relation:
la*al| = [|al?, Ya € A.

If A admits a unit, we say that A is a unital C*-algebra. Denote by B(H) the Banach algebra

of all bounded linear operators T': H — H endowed with the supremum norm:

1T loo = sup [IT€]-
lell<1

Let T € B(H). The adjoint operator T* is defined by
<T§7 77> = <§7 T*7’]>7V§7 n € H.
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Examples 1.2. Here are examples of C*-algebras.

(1) Norm closed *-subalgebras of B(H).
(2) The space of all complex-valued continuous functions C(X) over a compact topological
space X endowed with the supremum norm given by || f|loc = sup,cx |f(z)|. The

involution is given by f*(x) = f(z) for all z € X.

(3) Let T be a countable discrete group and let A\ : T' — U(¢*(T")) be the left reqular
representation defined by A\y0, = 04, for all g,h € I'. The reduced group C*-algebra
Ci(T) is defined as the norm closure of the linear span of {\; : g € T'}.

From now on, to avoid any technical difficulties, we will always assume that all C*-algebras are
unital. Moreover, all x-homomorphisms are assumed to be unital. For a € A, the spectrum of
a is defined as follows:

o(a) :={\ € C:a— Al is not invertible}.

Proposition 1.3. For all a € A, o(a) is a nonempty compact subset of C.

Proof. Tt is clear that o(a) is closed. Moreover for all |A| > ||all, 1 — A~ta is invertible with
inverse >, A7"a". It follows that o(a) is bounded by ||a||, whence o(a) is compact.

By contradiction, assume that o(a) is the empty set. Then the function A + (a — A\1)~! is
entire and vanishing at infinity. By Hahn-Banach and Liouville Theorems, we get that this
function is zero everywhere. Thus a~! = 0, which is a contradiction. Thus o (a) is nonempty
and compact. O

Observe that the above proof works more generally for any unital Banach algebra. We have
the following useful corollary.

Corollary 1.4. Any unital Banach algebra A in which every nonzero element is invertible is
isomorphic to C.

Proof. Let © € A and choose A € o(a). Since x — Al is not invertible, we have x — A1 = 0.
Thus A = C1. O
Exercise 1.5. Show that o(ab) U {0} = o(ba) U {0}, for all a,b € A.

Exercise 1.6. Let A be a unital abelian Banach algebra and m C A a proper ideal, that is,
1 ¢ m. Show that

inf{||]1 —z[ : x € m} > 1.

Deduce that the closure of any proper ideal is still proper and any maximal proper ideal is
closed.

The spectral radius is defined by
r(a) :=sup{|A|: A€ o(a)}.
We have 7(a) < ||al|.

Proposition 1.7. For all a € A, the sequence (||a"||*/™),, converges to r(a).
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Proof. If A € o(a), then \* € o(a”). Thus |\ < |la®|'/, for all n € N. It follows that
|A| < liminf||a™||'/™ and hence r(a) < liminf, ||a®||'/". Next, for |z| < r(a)~!, f : z —
(1 — za)~! is a holomorphic function which coincides with the power series Y, 2z"a™ when
moreover |z| < ||a]|71. Observe that this power series represents f on the open disk with center
0 and radius r(a)~'. However, this series cannot converge for |z| > (limsup [a”||*/™)~!. Thus,
we get that limsup [a”||"/" < 7(a). O

In particular, if a,b € A are commuting elements, we have that
r(ab) = lim || (ab)||*/™ = lim ||a”™b"|| /™
< lim ||a™|| V™ lim [|o™ || /7

= r(a)r(b).
We say that a is selfadjoint if a* = a; normal if a*a = aa™; unitary if a*a = aa®™ = 1. The
group of unitaries is denoted by U(A). The subspace of selfadjoint elements in A is sometimes
denoted by R(A). For any subset V C A, the unit ball of V will be denoted by (V);.

Proposition 1.8. Let a € A. The following are true.

1) If a is invertible, a* is invertible and (a*)~! = (a=1)*

2) a can be uniquely decomposed a = x + iy, with x,y selfadjoint elements.

3) If a is a unitary then ||a|| = 1.

4) If a is normal then ||a|| = r(a).

5) If B is another C*-algebra and ¢ : A — B is a x-homomorphism then ||¢(a)|| < ||all.

(
(
(
(
(

Proof. We leave (1),(2),(3) as an exercise. To prove (4), first assume that a is selfadjoint.

One has ||a®"| = ||a||*" for all n € N. Thus, r(a) = lim, ||a*"|> " = |la||. If a is normal,
la* = la*a|| = r(a*a) < r(a*)r(a) < [|a*[[[lall = ]la]®, whence r(a) = [|a]|. To prove (5), let
a € A. Then

le(@* = llp(a) ()| = llp(a*a)ll = r((a*a)) < r(a*a) = |la*a]| = ||a*. O

Corollary 1.9. Any onto x-isomorphism ¢ : A — B is isometric.

1.1.2. Continuous functional calculus.

Lemma 1.10. Let x : A — C be a unital algebraic homomorphism. Then the following
assertions hold true.

(1) For alla € A, |x(a)| < ||al|.
2) For all a € R(A), x(
3) Foralla € A, x(a*) = x(a).
4) For alla € A, x(a*a
5) For alla € U(A), |x

(
(
(
(

Proof. (1) For all a € A, x(a — x(a)l) = 0, whence a — x(a)l is not invertible. We get
x(a) € o(a) and so |x(a)| < [a].

(2) Assume that a € A is selfadjoint. Let ¢t € R.
x(a+it)* < [la+it]* = [l(a +it)"(a + it)]| = [[(a — it)(a + it)|| < [laf|* + .
Write x(a) = a +13. We then get
lall* +£* > o +i(8 + 1) = o® + 5 + 28t +¢*.
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It follows that |la]|? > a? + 5% + 253t and thus 8 = 0.
Now (3) follows easily, while (4) and (5) are trivial. O

Corollary 1.11. Every unital algebraic homomorphism x : A — C is a *-homomorphism.

For a unital abelian C*-algebra A, a unital algebraic homomorphism x : A — C is simply called
a character. We will denote by  := Q(A) the set of characters of A. Sometimes (2 is called the
spectrum of A. Observe that if x : A — C is a character, we have that x € A* and ||x||4+ = 1.
One checks that Q is closed for the o(A*, A)-topology and thus compact by Banach—Alaoglu
Theorem. The Gelfand Transform v : A — C(Q) is defined by v(a)(x) = x(a).

Theorem 1.12. Let A be any unital abelian C*-algebra. Then the Gelfand Transform v : A —
C(R2) is an onto x-isomorphism. Moreover o(a) = {x(a) : x € Q} for all a € A.

Proof. Let a € A. We have already shown that {x(a) : x € Q} C o(a). If A € o(a), then a — A1
is not invertible. It is thus contained in a maximal proper ideal m, which is closed by Exercise
Observe that the Banach algebra A/m is a division ring and so is isomorphic to C. Whence
there exists x € Q such that x(a—Al) = 0, that is, x(a) = A. Therefore o(a) = {x(a) : x € Q}.

It is then clear that -y is a *-isomorphism and is isometric. Indeed, for all a € A, since a*a = aa™,
we have

[7(a)]loe = sup{|x(a)| : x € 2} =r(a) = |al|.
Thus, v(A) is a unital closed *-subalgebra of C(2). It remains to prove that v is onto. Observe
that (A) separates points: for all x # X/, there exists a € A such that x(a) # x'(a), that
is, v(a)(x) # v(a)(x’). By Stone-Weierstrass’s Theorem, v(A) is dense in C(2). Therefore
v(A) = C(9). O

Corollary 1.13. Ifa € A is a unitary, then o(a) C T. If a € A is selfadjoint, then o(a) C R.

Theorem 1.14 (Continuous functional calculus). Let A be a unital C*-algebra and b € A be a
normal element. Denote by B the abelian C*-algebra generated by b. There exists a unique onto
x-isomorphism ® : C(a(b)) — B such that ®(z) = b. We moreover have a(®(f)) = f(a(b)).

We will simply denote ®(f) by f(b). Observe that || f(b)|| < ||b]|||f]lcc-

Proof. Let Q be the set of characters of B. Define the continuous function ¢ : Q — o(b) by
¥(x) = x(b). We have seen before that 1 is onto. Assume now that ¥ (x) = ¥(x’), that is,
x(b) = x'(b). Tt follows that x(p(b,b*)) = x'(p(b,b*)) for all polynomials p. Since b generates
B, we get that y = y/. Therefore ¢ is a homeomorphism. Then 1) : C(Q) — C(o(b)) defined by
O(f) = f o is an onto *-isomorphism. Now the #-isomorphism ® =y~ o4~ : C(a(b)) — B
does the job. O

Exercise 1.15. Let A, B be any C*-algebras and w : A — B any injective *-homomorphism.
Show that 7 is isometric.

1.1.3. The Gelfand-Naimark—Segal construction.

Definition 1.16. An element a € A is positive if a = a* and o(a) C R4. We will denote
a > 0. The set of positive elements in A will also be denoted by A..

An element a € A is negative if —a is positive. The set of negative elements in A will be denoted
by A_. For selfadjoint elements a,b € A, we write a < b when b—a € A,.
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Proposition 1.17. Let A be a unital C*-algebra and let a € A be a selfadjoint element. There
exists a unique pair (h, k) of positive elements in A such that a = h — k and hk = kh = 0.

Proof. Define the continuous functions f(t) = max(¢,0) and g(t) = max(—t,0) so that f(t) —
g(t) =1t, f(t) >0, g(t) > 0 and f(t)g(t) = 0. By continuous functional calculus, we have a =
fa) —g(a), f(a) >0, g(a) > 0 and f(a)g(a) = g(a)f(a) = 0. We have proven the existence of
the decomposition. To prove the uniqueness, assume that a = u—wv for some u, v € Ay such that
uv = vu = 0. It is not hard to see that u and v commute with a so that the C*-algebra C*(a, u, v)
is abelian. There exists some compact space X such that C*(a,u,v) = C(X). Regarding a,u, v
as continuous fonctions on X, it is clear that v = max(a,0) and v = max(—a,0). This implies
that w = h and v = k. O

Exercise 1.18. Let A be a unital C*-algebra.

e Let a € AL and n > 1. Show that there exists a unique b € A, such that a = b". We
then write b := a'/™.

e Let a € A selfadjoint. Show that a > 0 if and only if ||t — a|| < ¢ for some t > ||a]|.
Deduce that if a,b > 0, then a + b > 0.

Proposition 1.19. Let A be a unital C*-algebra and a € A. The following are equivalent:

(1) a>0.
(2) There exists b € A such that a = b*b.

Proof. (1) = (2) It suffices to put b = a'/2.
(2) = (1) Assume that a = b*b and write a = h — k as in Proposition We want to show
that k = 0. Set bk'/2 = a + i, with «, 8 selfadjoint elements in A. On the one hand, we have
(bkl/Q)*(bk,l/Q) — kl/Qb*bkl/Q — k,l/?(h _ k)kl/Q — _kQ S 0’
since hk = kh = 0. On the other hand,

(bk'2)* (bk'/?) = (o +18)*(a +i8) = o* + % +i(aB — Ba).
Thus i(af — fa) = —k? — a® — B2 < 0. Observe that o((bk'/2)*(bk/?)) and o((bk/?)(bk'/2)*)
only differ by 0 (see Exercise [1.5). Thus (bk/?)(bk'/?)* = —¢ with ¢ € A_. We get —c =
a? + B2 +i(Ba — aB), so that i(a — Ba) = ¢+ a? + 2 > 0. Therefore i(af — Ba) € AL NA_

and so i(af — fa) = 0. This implies that —k% = (bk'/2)*(bk'/?) = o® + % € Ay NA_ and thus
k=0. U

Exercise 1.20. Show that for all a € A, a*a < ||a|*1.

Corollary 1.21. Let A be any unital C*-algebra. Then A is linearly spanned by U(A).

Proof. Up to considering real and imaginary parts and up to scaling, it suffices to show that
any element a € (R(A)); is a linear combination of unitaries. Indeed, since a € (%(A))1, we
have 0 < a? < 1. Put u = a +1v1 — a2. Then we have u € U(A) and a = 1 (u + u*). O

Definition 1.22. A state ¢ : A — C is a positive linear functional (¢(a) > 0 for all a > 0)
such that (1) = 1. The state space of A is denoted by X(A). A state ¢ is faithful if p(a*a) >0
for all a # 0.

Example 1.23. Let (7w, H,£) be a unital x-representation of A together with a unit vector.
The linear functional a — (7(a), &) defines a state on A. We will prove that every state on a
unital C*-algebra arises this way.
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Proposition 1.24. Let ¢ : A — C be a positive linear functional. The following hold true.

(1) For all a,b € A, |p(b*a)|? < p(a*a)p(b*b)
(2) ¢ is bounded and ||| = ¢(1). In particular, if ¢ is a state then ||| = 1.

Proof. Observe that (a,b) — ¢(b*a) defines a semi-sesquilinear form on A. Then (1) follows
from the Cauchy—Schwarz Inequality. For (2), observe that since a*a < ||al|?1, we have |p(a)|? <
p(Dp(ata) < p(1)?]al. Tt follows that ] = (1),

Example 1.25. Let X be a compact space. Any probability measure p on X gives rise to a
state ¢ on C(X) by ¢(f) = [ fdu. By Riesz Representation Theorem, any state on C(X)
arises this way.

Exercise 1.26. Let A be a unital C*-algebra and let ¢ : A — C be a bounded linear functional
with [|¢|| = ¢(1). Show that ¢ is positive. Deduce that if B C A is a unital C*-subalgebra,
then any state on B has an extension on A.

Theorem 1.27 (GNS construction). Let A be a unital C*-algebra.
(1) For every state ¢ on A, there exists a cyclic x-representation (w4, Hy) together with a

unit vector &, € Hy, such that p(a) = (my(a)éy, &), for all a € A.
(2) If (7, H) is a cyclic x-representation with unit cyclic vector & € H and ¢ is the state

defined by p(a) = (m(a)¢, &), then ™= m,.

Proof. (1) Let ¢ be a state on A. Define the following semi-sesquilinear form (a, b), = ¢(b*a)
on A. After separation and completion, promote (A,(-, -),) to a genuine Hilbert space H,.
Denote by a® € H, the image of a € A in H,. One checks that m,(a)b® = (ab)® defines a cyclic
*-representation with unit cyclic vector &, = 1°. Indeed, for all a,b € A, we have

7o (a)b* |2 = (mp(a)b®, mp(a)b®),
= (ng(a*a)b',b°)<p
= p(b* a*ab)
< |lal*e(b*b)
= [lall(|b®]I2,
and hence 7, (a) € B(H,) is well-defined. For all a € A, we moreover have
(Tp(@)€ps Ep)p = (a®,1%)p = ¢(a).
We leave (2) as an exercise. O
Corollary 1.28. FEvery unital C*-algebra admits a unital faithful x-representation (w,H).

Moreover, H can be chosen to be separable if A is separable.

Proof. Let S C ¥(A) be a weak*-dense subset. Note that if A is separable, S can be taken
countable. Define 7 = P, m,. Assume that m(a) = 0, that is, 7(a*a) = 0. We get p(a*a) =0
for all p € S. By density, we get ¢(a*a) =0 for all p € X(A).

Let now p be any Borel probability measure on X := o(a*a) and define the state ¥(f(a*a)) =
Jx fdp for all f e C(X). Extend ¢ to ¢ on A. We have

[ tu) = via*a) = pla’a) =0,
X

It follows that (X N (0,4+00)) = 0. Since this holds true for any Borel probability measure on
X, we have that X = {0} and so a = 0. O
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The above Corollary shows that the notions of selfadjoint, positive, unitary elements in a unital
C*-algebra A correspond to the notions of selfadjoint, positive, unitary elements in B(H).

2. SPECTRAL THEOREM

2.1. Topologies on B(H).
Definition 2.1. Let H be any complex Hilbert space.

e The strong operator topology (SOT) on B(H) is defined by the following family of open
neighbourhoods: for S € B(H), ¢ >0, &1,...,&, € H, define

US,e,&) = {T € B(H) : |(T — S)&i|| <e,V1<i<n}.

e The weak operator topology (WOT) on B(H) is defined by the following family of open
neighbourhoods: for S € B(H), e >0, &1,.-., &, M1, .-+, € H, define

V(Sv‘57£i?ni) = {TE B(H) : |<(T_S)£2777’L>| < 57V1 <1 STL}

The strong operator topology is always stronger than the weak operator topology. It is strictly
stronger when H is infinite dimensional.

Theorem 2.2. Let C C B(H) be a nonempty conver subset. Then the strong operator closure
and the weak operator closure of C coincide.

Proof. Assume T is in the weak operator closure of C. Let &1,...,6, € H. Let K =H®---®&H
be the n-fold direct sum of H with itself. Define the s-isomorphism p : B(H) — B(K) by
(T, ymn) = (T, ..., Ty). Let € = (&1,...,&,) € K. It is clear that p(C) is a convex
subset of B(K). Since T is in the weak operator closure of C, p(T) is in the weak operator
closure of p(C) and hence p(T)¢ is in the weak closure of p(C){. Since p(C){ C K is convex,
the Hahn-Banach Separation Theorem implies that p(7)¢ is also in the norm closure of p(C)¢E.
For € > 0, there exists S € C such that ||S& — T&;|| < € for all 1 < i < n. This shows that T is
in the strong operator closure of C. 0

Proposition 2.3. Let V C B(H) be any weakly closed subspace and ¢ : V. — C any linear
functional. The following assertions are equivalent.

(1) There exist &1y .. &nymy .-,y € H such that
n
p(T) = (T&,m:),VT € V.
=1
(2) ¢ is strongly continuous.
(3) ¢ is weakly continuous.

Proof. (1) = (2) is clear. For (2) = (1), let € > 0 and &;,...,&, € H such that |p(z)| <1 for
all 2 € U(0,¢,&). Tt follows that |p(z)] < 1/3, [[#&]? for all z € V. Let & = (&,...,&) €

2 ®Hand K= (1@ V)¢ C 2 ® H. Define the continuous linear functional ¢ : KX — C by
P((1®@x)f) = p(z) for all x € V. By Representation Theorem, there exists n € K such that

o(r) = (1®x)é,n) for all z € V.

Observe that ¢ is continuous if and only if ker ¢ is closed. Since ker p C B(H) is a nonempty
convex subset, the equivalence between (2) and (3) follows from Theorem O

Theorem 2.4. The unit ball (B(H))1 is weakly compact.
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Proof. Denote by Dg , the closed unit disk in C of center 0 and radius ||£||||n||. The map
BH)1 2 T = (T n)enen € e en Dey is a homeomorphism from (B(H))1, endowed
with the weak operator topology onto its image X. Note that Hg,ne 1 D¢, is compact for the
product topology by Tychonoff’s Theorem. It remains to show that the image X is closed.

Let a = (ag,) € X. There exists a net (5;);cs of elements in (B(H)); such that (S;&,n) — ag .,
for all {,n € H. We get that H x H > (§,7) — a¢, € C is a sesquilinear form such that

lagn| < [|€]|[|n]| for all §,m € H. By Riesz Representation Theorem for sesquilinear forms, there
exists T' € (B(H))1 such that ag, = (T€,n), for all £,n € H. O

Proposition 2.5. Let (T;);er be an increasing net of selfadjoint operators such that —C1 <
T; < C1 for all i € I. Then (T;)icr has a limit with respect to the strong operator topology.
Moreover, for all S € B(H) such that T; < S for all i € I, we have that imT; < S. We denote
lim7T; = supT;.

Proof. By weak compactness of the unit ball, we can find a subnet (7});cs; which converges
weakly to some selfadjoint operator T € B(H).
Let ¢ € I. For all j > i, £ € H, we have (T3£,§) > (T3€,§) so that (T¢, &) = lim;(T6,£) >
(T3¢, €). Thus, for all i > j, we have 0 < T —T; < T — Tj so that

(T = T2 = (T = T1)6,6) < (T = TH)E.€) — 0 as j — cc.
We have that (T — T;)'/? — 0 strongly as i — co. Finally, strong continuity of multiplication
on uniformly bounded sets implies that (7' — T;) — 0 strongly as i — oo.

We have already seen that 1; < T for all i € I. Assume now that T; < S for all ¢ € I. Since
T; — T strongly as i — oo, we have that T; — T weakly as i — oo, whence for all £ € H, we

have (T¢, &) = lim; (T3, §) < (5S¢, §). O
Definition 2.6. Let H be any complex Hilbert space.

e The ultrastrong operator topology on B(H) is defined by the following family of open
neighbourhoods: for S € B(H), ¢ > 0, (£,), € £2(N, H), define

U(S, <, (Enln) = {T eB(H): Y IT - S)&l? < } .

e The ultraweak operator topology on B(H) is defined by the following family of open
neighbourhoods: for S € B(H), ¢ > 0, (&,)n, (Mn)n € £2(N, H), define

V(S,, (&) (a)a) = {T € BUH) : |3 (T = $)én,ma)| < 2}

Observe that the ultrastrong (resp. ultraweak) operator topology on B(H) correspond to the
pullback of the strong (resp. weak) operator topology on B(¢?(N, H)) under the map 7 :
B(H) » B((N,H)): T ((§a)n = (Tén)n).

Exercise 2.7. Show that on uniformly bounded sets, weak and ultraweak (resp. strong and
ultrastrong) operator topologies coincide.

Proposition 2.8. Let V C B(H) be any ultraweakly closed subspace and ¢ : V — C any linear
form. The following are equivalent.

(1) There exist (§n)n, (n)n € (2(N, H) such that
@(T) = (T&,nn) VT € V.

n
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(2) ¢ is ultrastrongly continuous.

(3) ¢ is ultraweakly continuous.

(4) ¢ is strongly continuous on (V);.
(5) ¢ is weakly continuous on (V).

Proof. The proof is analogous to Proposition [2.3] so we leave it as an exercise. ]

2.2. Spectral measures.

Definition 2.9. Let H be any complex Hilbert space and (X, Q) any standard Borel space
together with its o-algebra of Borel subsets. A spectral measure for (X,Q, H) is a function
¢ : QO — B(H) which satisfies the following properties:

U) is a projection, that is, ®(U) = ®(U)* = ®(U)? for all U € Q.
0) =0 and ®(X) = 1.

UNV)=dU)P(V) for allUU,V € Q.
Whenever (U, ), is a sequence of pairwise disjoint Borel subsets of X, we have

() S

The above convergence holds with respect to the strong operator topology.

(1) &
(2) &
(3) &
(4)

Example 2.10. Let (X,, ) be any standard Borel probability space. Regard L (X, u) C
B(L?(X, it)) where L°°(X, 1) acts by multiplication. Then the map ® : Q — L>(X, 1) defined
by ®(U) = 1y is a spectral measure for (X, Q, L?(X, p)).

The next lemma will be useful. The proof is left to the reader.

Lemma 2.11. Let ® be any spectral measure for (X,Q, H). Let {&,m € H. Then the map
Dep: Q= C:U— (PU)E,m) defines a Borel complex measure on X with || ®¢ [ < [ €][||n]]-
In particular, ®¢ ¢ is a Borel probability measure on X for every & € H such that ||€]| = 1.

Denote by B(X) the C*-algebra of all bounded Borel functions on X.

Proposition 2.12. Let ® be any spectral measure for (X,Q,H) and f € B(X). Then there
exists a unique operator T € B(H) which satisfies the following property: for every e > 0 and
every Q-partition (Ui, . .., Uyp) of X such that sup{|f(z) — f(y)| : 1 <k <mn,z,y €Uy} <€ and
for every xy, € Uy, we have

=Y fla)eU
k=1

o0

Proof. Define the sesquilinear form on H x H by ¢(&,1) = [y fd®e,. We have |p(&,n)] <
| fllsolI€]l|m]| by Lemma [2.11] and hence ¢ is bounded. By Rlesz Representatlon Theorem, there
exists a unique operator 7' € B(H) such that (T¢,n) = = [ fd®e, forall &,n e H.
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Let now € > 0 and zy, € Z/lk for every 1 < k < n as in the statement. We have

fo e

k) dPgp(7)
Z/{

<2/u Fan)| e | (2)

Q/mmm
X

< ell¢][[n]l-
This implies the inequality in the statement. O

The operator T will be denoted by [  fd®. We have

VE,n € H, <</qu>> > /fd@gn

The proof of the next proposition is left as an exercise.

Proposition 2.13. Let ® be any spectral measure for (X,Q, H). The map 7 : B(X) — B(H)
defined by n(f) = [y fd® is a unital *-representation. Moreover w(f) is a normal operator
for every f € B(X).

Let X be any compact space. Let M(X) be the Banach space of all finite Borel measures on
X. By Riesz Representation Theorem, we have C(X)* = M(X). Identify B(X) as a subspace
of M(X)* in the following way: for every f € B(X), we have u — [y fdu € M(X)* and
[ fllso =l =[x fdul|. Since (C(X)); is weak*-dense in (C(X)**); = (M(X)*)y, it follows
that for every f € B(X) € M(X)*, there exists a net (f;)ier in C(X) such that || filloo < || flleo
for every i € I and lim; [ fidp = [ fdu for every p e M(X).

Theorem 2.14. Let X be any compact space and 7w : C(X) — B(H) any unital x-representation.

Then there exists a unique spectral measure ® for (X,Q, H) such that ®¢,, is a regular Borel
complex measure on X and 7(f) = [y fd® for every f € C(X).

Proof. Let §,n € H. The map C(X) — C: f — (w(f)§,n) defines a bounded linear functional
with norm at most [[£]|||n]|. By Riesz Representation Theorem, there exists a unique Borel
complex measure pe, € M(X) and (m(f)&,n) = [y fduey, for
every f € C(X).

Let f € B(X). The sesquilinear form defined by ¢(&,7) = [ f dpue,, is bounded by || f|ls. By
Riesz Representation Theorem, there is a unique bounded operator 7(f) € B(H) such that

<7~T(f)§,’l7> = fX fdﬂﬁ,n for all {,n € H.

Claim 2.15. The map 7 : B(X) — B(H) is a unital *-representation such that 7(f) = 7(f)
for every f € C(X).

The fact that 7(f) = w(f) for every f € C(X) is clear from the definitions. We only prove
that 7 is multiplicative. Let f € B(X), g € C(X) and let (f;)icr be a net in C(X) such that
I filloo < ||fllco for every ¢ € I and f; — f with respect to the weak*-topology as i — oo.
We have 7(f;) — 7(f) weakly as i — co. Regarding g, as an element in M(X), we have
7(fig) — 7(fg) weakly as well. This yields

7(fg) = 17 (fig) = lim(fig) = (im(f}))w(g) = 7(/)7(g).
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Repeating the same reasoning with ¢ € B(X) proves that 7 is indeed multiplicative. This
finishes the proof of the Claim.

Define now ®(U) = 7(1y) for every U € Q. It is easy to check that ® is a spectral measure for
(X,Q, H) for which 7(f) = [ fd® for every f € B(X). In particular, we have 7(f) = [y fd®
for every f € C(X). O

2.3. Spectral Theorem.

Theorem 2.16 (Fuglede Theorem). Let T' € B(H) be any normal operator and S € B(H). If
TS = ST, then T*S = ST*.

Proof. By continuous functional calculus, we get exp(izT)S = Sexp(izT) for every z € C.
Define the entire analytic function f : C — B(H) by

f(z) = exp(—izT™")S exp(izT™)
= exp(—izT™) exp(—izT)S exp(izT") exp(izT™)
= exp(—i(zT" +ZT))S exp(i(ZT + =2T™))

since T and T commute. Observe that since 27" + ZT' is selfadjoint, exp(i(zT™ + ZT")) is
a unitary and thus f(z) is uniformly bounded. By Liouville’s Theorem and Hahn-Banach
Theorem, f is a constant function and hence f’ = 0. Therefore 0 = f/(z) = —iT* f(z) +if (2)T*
for every z € C. With z =0, we get 0 = —iT*S +iST™. O

Let T € B(H) be any normal operator. The continuous functional calculus gives rise to a
unital *-representation 7 : C(o(7")) — C*(T') C B(H) where n(z) = T. We will simply denote
m(f) = f(T).

Theorem 2.17 (Spectral Theorem). Let T' € B(H) be any normal operator. Then there exists
a unique spectral measure ® for (o(T),, H) such that the following assertions hold:

(1) f(T) = fU(T) fd® for every f € C(a(T)).
(2) If U C o(T) is a nonempty open subset, then ®(U) # 0.

2
(3) For every S € B(H), ST =TS if and only if S®(U) = ®(U)S for every U € Q.

Proof. The existence of ® has already been proven in Theorem m To prove (2), choose a
nonzero continuous function f € C(o (7)) such that 0 < f < 1. We have 0 # 7(f) < 7(1y) =
o(U).

To prove (3) first assume that ST = T'S. By Fuglede Theorem, we have ST* = T*S as well.
By continuous functional calculus, we get S7(f) = n(f)S for every f € C(o(T)). Now given
f € B(a(T)), let (fi)ier be a net in C(o(T")) such that ||filloe < ||flloc for every i € I and
fi = f with respect to the weak* topology as i — oco. It follows that w(f;) — 7(f) weakly as
i — 0o. Therefore S7(f) = 7w(f)S for every f € B(o(T)). In particular, S®U) = ®(U)S for
every U € (). It is easy to check that if S®(U) = ®(U)S for every U € Q then S7(f) =7(f)S
for every f € B(o(T')). This finishes the proof. O

We will simply denote 7(f) = f(T') for every f € B(o(T')). The unital x-representation
B(o(T)) = B(H) : f — f(T) is called the Borel functional calculus.
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Theorem 2.18. Let T € B(H) be any normal operator together with its spectral measure
defined for (o(T),Q, H). The unital x-representation B(o(T)) — B(H) : f — f(T) satisfies
the following property: whenever (f;)icr is a net in B(o(T)) such that f; — 0 weak* as i — oo,
we have f;(T) — 0 weakly as i — oo.

Moreover, if p : B(o(T)) — B(H) is another unital x-representation such that p(z) = T and
p(fi) = 0 weakly as i — oo whenever f; — 0 weak™ as i — oo, then p(f) = f(T) for every
f € B(a(T)).

3. INTRODUCTION TO VON NEUMANN ALGEBRAS

3.1. Definition and first examples of von Neumann algebras. For any nonempty subset
S C B(H), the commutant of S is defined by

S :={TeB(H):ST=TS,VS e€S}.

It is easy to see that one always has S C S8”. Moreover, if S is stable under the adjoint
operation, then &’ C B(H) is a weakly closed unital *-subalgebra.

Theorem 3.1 (Bicommutant Theorem). Let M C B(H) be any unital *-subalgebra. The
following assertions are equivalent.

(1) M = M".

(2) M is strongly closed.

(3) M is weakly closed.

(4) M is ultrastrongly closed.
(5) M is ultraweakly closed.

Proof. (1) = (2). Let (z;)ier be a net in M such that z; — x strongly as i — oco. Since
;T = Tx; for all i € [ and T € M’, by passing to the limit we get T = Tz, for all T € M’.
Thus z € M. (2) = (4) is obvious.

(4) = (1). Let z € M" and (&,), € £2(N, H). Let

Uz, (€n)n) = {y eBH): Y. e - )l < }
neN

be an ultrastrong neighborhood of x in B(H). Let K = (?(N, H) and define p : B(H) —
B(?(N,H)) : T — 1y @ T. Let £ = (&)n € K. Define V. = p(M)¢{ C K. Denote by
Py : K — V € B(K) the corresponding orthogonal projection. We have p(a)Py = Pyp(a) for
all @ € M and hence Py € p(M)’. Observe that p(M)’ can be identified inside B(¢*(N, H))
as the set of infinite matrices indexed by N x N with coefficients in M’. Since z € (M'),
it follows that p(x)Py = Pyp(x). Thus p(z)¢ € V and hence we can find y € M such that
|(p(z) = p(y))¢|| < e. In particular, we have that y € U(z, e, (,)n). Then M” is contained in
the ultrastrong closure of M and hence M = M".

Since M C B(H) is convex, (2) < (3) follows from Theorem Likewise, (4) < (5). O

Definition 3.2. A von Neumann algebra M is a unital x-subalgebra of B(H) which satisfies
one of the equivalent conditions of Theorem

The first important example of von Neumann algebras we discuss comes from measure theory.
Let (X, u) be a standard probability space. Define the unital *-representation 7 : L (X, u) —
B(L%(X, i) given by multiplication: (m(f)¢)(z) = f(x)é(x) for all f € L®(X,u) and all
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¢ € L3(X, u). Since 7 is a C*-algebraic isometric isomorphism, we will identify f € L>(X, )
with its image 7(f) € B(L*(X,u)). When no confusion is possible, we will simply denote
L>(X, ) by L= (X).

Proposition 3.3. We have L=®(X) N B(L*(X,pn)) = L®(X), that is, L>°(X) is mazimal
abelian in B(L?(X, p)). In particular, L°(X) is a von Neumann algebra.

Proof. Let T € L°(X) N B(L?(X, 1)) and denote f = T1x € L*(X, u). For all ¢ € L°(X) C
L2(X, 1), we have

TE=TE1x =ET'1x =&f = f¢.
For every n > 1, put Uy, := {z € X : |f(2)| = ||T||oc + L }. We have

1
<”T||<>O + n> nUD)"? <1 L 2 = (1T L4, 2 < (1T oo (@),
hence u(Uy,) = 0 for every n > 1. This implies that || f|lecc < ||7||cc and so T = f. O

The von Neumann algebra M = L°°(X) comes equipped with the faithful trace 7, given by
integration against the probability measure p,

ru(f) = /demvf € L=(X).

Theorem 3.4 (Borel functional calculus in von Neumann algebras). Let H be any separable
Hilbert space and T € B(H) any normal operator. Denote by Ap = {T,T*}" the abelian von
Neumann subalgebra generated by T and T™.

Then the map B(o(T)) — Ar : f — f(T) is an onto x-homomorphism. Moreover, there exists
a Borel probability measure pr on Sp(o(T)) such that L>(o(T), pr) = Ar.

Proof. Let S € {T,T*} N B(H). Then for every f € B(c(T)), we have Sf(T) = f(T)S by
Theorem [2.17) (3). This implies that f(T) € {T,T*}" = Ar. Observe that C(o(T)) is weak*-
dense in B(o(T)) and C*(T,T*) is weakly dense in Ar. Since the map B(o(T')) — Ar : f —
f(T) is weak*-weak continuous, it follows that it is onto.

By Zorn’s Lemma, there exists a maximal family (;);cs of pairwise orthogonal unit vectors in H
such that H = @,; A7&;. Since H is separable, I is at most countable. Choose a sequence of
positive reals (c;)ier such that Y, .;a? = 1. Put § =3,.; as& € H and pup(U) = (1y(T)E, €)
for every U C o(T) Borel subset. Then pr is a Borel probability measure on o(7"). For every
f € B(a(T)), we have

f(T) =0 ifand only if f(7)6 =0 ifandonlyif f=0 pr-almost everywhere.

Thus, ker (B(o(T)) — Ar : f— f(T)) ={f € B(c(T)) : f =0 pr-almost everywhere} and hence
L>®(o(T), ur) = Arp. O

Observe that for any von Neumann M, the center of M defined by Z(M) = M’ N M is an
abelian von Neumann algebra.

Definition 3.5. Let M C B(H) be a von Neumann algebra. We say that

e p € M is a projection if p = p* = p?.
e v € M is an isometry if v*'v = 1.
e u € M is a partial isometry if u*u is a projection.
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Observe that if u*u is a projection, then uu* is a projection as well. The set of projections of
M will be denoted by P(M). If K C H is a closed subspace, we denote by [K] € B(H) the
orthogonal projection [K]: H — K.

We will always assume that M is o-finite, that is, any family (p;);e; of pairwise orthogonal
projections in M is (at most) countable.

Exercise 3.6. Let M be any von Neumann algebra. The closed subspace K C H is u-invariant
for all uw € U(M) if and only if [K] € M'.

Exercise 3.7. Let M be any von Neumann algebra and Z C M any ultraweakly closed two-
sided *-ideal. Show that there exists a central projection z € Z(M) such that Z = Mz.

If (p;)icr is a family of projections, we denote by

\/pi = [Zran(m] and A\ pi = [ﬂ ran(pi)] .

icl el i€l icl
If p € B(H) is a projection, write p- = 1 — p. It is easy to check that (\/Z-ejpi)L = Nier pi

Proposition 3.8. Let M C B(H) be a von Neumann algebra. Then P(M) is a complete
lattice.

Proof. Let (p;)icr be a family of projections in M. Since M = (M')’, we have that ran(p;) is
u-invariant for all u € U(M') and all i € I. Thus ), ;ran(p;) is u-invariant for all u € U(M’),
whence \/;c; pi € M. Moreover \,.;p; = (\/ pif)* € M. O

Theorem 3.9 (Polar decomposition). Let M C B(H) be any von Neumann algebra and T' € M
any element. Then T can be written T = U|T| where |T| € M and U € M is a partial isometry
with initial support ran(T*) and final support ran(T).

Moreover, if T = V.S with S > 0 and V' a partial isometry such that V*V = [ran(S)], then
S=|T| and V =U.

Proof. Since T € M, we have |T| = (T*T)%? € M. Observe that ker(T) = ker(T*T) = ker(|T))
so that ran(7T*) = ker(T)* = ker(|T|)* = ran(|T|). Define Un = 0 for 5 € ran(|T|)* and
U|T|¢E = T¢ for all £ € H. One checks that U € B(H) is a well-defined partial isometry such
that U*U = [ran(T*)], UU* = [ran(T)] and T' = U|T|.

Assume now that 7 = V.S with S > 0 and V*V = [ran(S)]. Then T*T = SV*VS = S%. Thus
S = (T*T)'/? = |T|. The formula T = V|T| clearly shows that V = U.

Finally, using uniqueness, we can prove that U € M. Indeed, let v € U(M’) be any unitary.
Then vTv* = vUv* v|T|v*. Since T = vTv*, we obtain |T'| = v|T|v*. Since U*U = [ran(|T|)] €
M, we have (vUv*)*(vUv*) = vU*Uv* = U*U and hence U = vUv* by uniqueness. This
implies that U € (M') = M. O

3.2. The predual. Let M be any von Neumann algebra. Denote by M, C M* the subspace
of all ultraweakly continuous functionals on M. Recall the following fact.

Proposition 3.10. We have that M, is a closed subspace of M*. Therefore, (M,,| -|) is a
Banach space.
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Proof. Let ¢ € M* and (¢;)ier be a net in M, such that lim ||¢ — ¢;|| = 0. We have to show
that ¢ is strongly continuous on (M);. Let € (M); and (x;)jcs a net in (M), such that
x; — x strongly as j — oo. We have

[o(x) = (x))] < lp() = @i(x)] + l@i(x) = @i(z;)] + [0i(z;) — ()]
< 2[le = ill + lpiz) — wilz;)].
Let € > 0. Choose i € I such that || — ¢;|| < e/3. Since ¢; is ultraweakly continuous, choose

Jjo € J such that for all j > jo, |pi(x) — pi(x;)] < e/3. We obtain |p(x) — ¢(z;)| < € for all
J > jo. This shows that ¢ is strongly continuous on (M); and hence ¢ € M,. O

Theorem 3.11. Let M be any von Neumann algebra. The map ® : M — (M,)* defined by
®(z)(¢) = p(x) is an onto isometric linear map. Moreover, under the identification M =
(M,)*, the ultraweak topology on M and the weak* topology on (M.)* coincide.

Proof. Assume M C B(H). For all x € M, we have

[#]lco = sup {[(z€,m)| : &;n € H, (€]l < 1, [Inl] <1}.

Put we,, = (-&,n). Since we y|ar € (My)y for all £, € H such that [|£]| < 1, ||n|| < 1, it follows
that ||z]|eco = sup {|p(x)| : ¢ € (My)1}. Therefore ® is an isometric embedding. It remains to
show that ® is onto.

Let L € (M,)*. Define the bounded sesquilinear form b on H x H by b(§,n) = L(we n|a). By
Riesz Representation Theorem for sesquilinear forms, let 7' € B(H) be the unique bounded
operator such that b(¢,n) = (T¢,n) for all {,n € H. Let S € M’ be a selfadjoint element. For
all x € M, we have wge (v) = (S§,n) = (Sx&,n) = (x&, SN) = we,5n() so that wge , = we sy
We obtain

(T'S¢,m) = b(SE,n) = Llwsen|n) = L(we,sylar) = b(&, Sn) = (STE, m).
Therefore T € M"” = M by the Bicommutant Theorem. We have

we(T) = (T€,m) = b(&,n) = L(wep|ar)-

Since any ¢ € M, can be written ¢ = > we, n.|ar for some (£,)n, (n)n € (N, H) (see
Proposition and since L is continuous, we obtain ¢(7T') = L(p) for all ¢ € M,. Thus
L =®(T) and @ is onto. O

Definition 3.12. Let M and N be any von Neumann algebras. A positive linear map 7 :
M — N is normal if for every uniformly bounded increasing net of selfadjoint elements (x;);cr
in M, we have

T (sup l‘z> = sup m(z;).

icl icl
We have the following characterization of normal states.

Theorem 3.13. Let M be a von Neumann algebra together with a state ¢ € M*. The following
are equivalent.

(1) ¢ is normal.
(2) Whenever (p;)icr s a family of pairwise orthogonal projections in M, we have

0 (Zm) = op)-
el el

(3) ¢ is ultraweakly continuous.



16 CYRIL HOUDAYER

Proof. (1) = (2). Let (pi)ier be a family of pairwise orthogonal projections in M. Consider
the increasing net x; = >, ;p;, where J C I is a finite subset. We have sup;z; = >,/ pi

and so
” (Zm) = (sgp xJ> = supp(zs) = Sgp2<p(pi) = epi).

el i€J i€l
(2) = (3). Fix ¢ € M a nonzero projection and £ € ran(q) such that p(g) <1 < (¢&,&). There
exists a nonzero projection p < ¢ such that ¢(pzp) < (paxpg, ) for all x € M. Indeed, by

Zorn’s Lemma, let (p;);er be a maximal family of pairwise orthogonal projections in M such
that @(p;) > (p;i§, &) for all i € I. By assumption, we have

o(X0) = Tetwr > Tweo = (L) o).
icl iel iel iel

Put p = ¢ — >, pi and observe that p # 0. By maximality of the family (p;)icr, we have
o(r) < (r§, &) for every nonzero projection r < p. Therefore, using the Spectral Theorem and
since @ is || - ||co-continuous, we get ¢(pxp) < (pxpé,€) for all z € M. By Cauchy—Schwarz
Inequality, we have for all z € (M),

o(ap)® = |o(1*2p)[* < w(pa*ap)p(1) < (pr*apt, &) = |lapt|*.
It follows that (- p) is strongly continuous on (M);.

By Zorn’s Lemma, let (p;);er be a maximal family of pairwise orthogonal projections such
that o(-p;) is strongly continuous on (M); for all i« € I. By maximality of the family and
the previous reasoning, we have ) ..;p; = 1. Therefore >, ; p(p;) = ¢(1) = 1. Let ¢ > 0.
There exists a finite subset F' C I such for all finite subsets F' C J C I, we have cp(pﬁ) =1-
©o(ps) < e, where pj = >, ;p;. Moreover the Cauchy-Schwarz Inequality yields |g0(:cp§)\2 <
o(p7)p(xa*) < e forall z € (M) and all F C J C I. We have ||¢ — ¢(-py)| < V& for all
F c J C I. Since the net (¢(-pys))s converges to ¢ in M* and since ¢(-py) € M, for all finite
subsets J C I, we have ¢ € M. (3) = (1) is trivial. O

Lemma 3.14. Let M C B(H) be any von Neumann algebra. Any ¢ € M, is a linear combi-
nation of four elements in (M) .

Proof. By Proposition there exist (&,)n, (Mn)n € £2(N, H) such that ¢(z) = Y, (2&0, nn)
for all z € M. A simple calculation shows that we have

3

> i (@ (& +100), & + F).

k=0

1
Ve e M, (x&,,nn) = 1

Put p(z) = 3. (2(&n +i¥nn), &, + iFn,) for all € M. For every 0 < k < 3, we have
v € (My)+ and

3
1 &
@:Zzlwk- g

Theorem 3.15. Any x-isomorphism between von Neumann algebras is normal and ultraweakly
continuous.

Proof. Let m: M — N be a *-isomorphism. Let (x;) be a uniformly bounded net of selfadjoint
operators in M and write © = supz;. We have 7(x;) < m(x) so that supm(z;) < w(z). Write
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y = sup(z;). We have z; = 7~ (n(x;)) < 7~ 1(y) so that z < 7= (y). Thus y = n(z) and 7 is
normal.

For all ¢ € (Ni)4+, ¢ om is normal and thus ultraweakly continuous by Theorem By
Lemma we have p o € M, for all ¢ € N,. Therefore, 7 is ultraweakly continuous. [J

3.3. Kaplansky’s Density Theorem.

Theorem 3.16. Let A C B(H) be a unital x-subalgebra. Denote by M the strong closure of
A. The following are true.

e The strong closure of (A)y is (M);.
e The strong closure of (R(A))1 is (R(M));.

Proof. We may assume that A is a unital C*-algebra. First assume that x € (R(M));. Let
U(x,e,&) be a strong neighbourhood of z with ¢ > 0 and &,...,&, € H. Consider the
continuous function f(t) = 2t/(1 + t?) and observe that f is a homeomorphism from [—1,1]
onto itself. By continuous functional calculus, let X € (R(M)); such that z = f(X). By strong
density of R(A) in R(M), we can find Y € R(A) such that

1 .
|(Y — X)z&|| <e and H(Y_X)H-XQ& <g/4 foralll<i<n.
Define y = f(Y) and observe that y € (R(A))1. We have
oy 2X
YT YT 1+ x2
=2——(Y(1+X%) - (1+YHX
1+Y2( (1+X7) = (1+Y7) )1+X2
1 1 Y X
=2 ——=((Y - X X-Y
<1+Y2( )1+X2+1+Y2( )1+X2>
1 1
=2—— Y - X)—— + -y(X = Y)z.
Fy2! JTrxe T a¥l )z

It follows that ||(y — z)&|| < € and so y € U(x,&,&;).
Assume now that z € (M);. Consider

o= (o §) € RO

The previous proof shows that there exists a net b; € (%(Mz2(.A))); of the form

(i B
“‘(@ %)

which converges strongly to a. Since [|b;]] < 1, we have ||5;]] < 1. Finally, we obtain that
B; — x strongly as i — oo. O

Corollary 3.17. Let M be any von Neumann algebra, K any complex Hilbert space and m :
M — B(K) any unital ultraweakly continuous *-homomorphism. Then w(M) C B(K) is a von
Neumann algebra.

Proof. Observe that ker(w) C M is an ultraweakly closed two-sided *-ideal and hence of the
form ker(m) = Mz where z € Z(M) is a central projection. Up to restrincting m|pr. : Mz —
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B(K), we may assume without loss of generality that 7 : M — B(K) is a unital ultraweakly
continuous *-isomorphism.

Denote by M the SOT closure of 7(M) in B(K). Let T € M. By Kaplansky Density Theorem,
there exists a net T; € w(M) such that ||T;||cc < ||T||co for every i € I and T; — T with respect
to SOT as i — oo. Write S; = 77 1(T;) € M and observe that ||Si|lcc = ||Tilloc < ||T||co for

every i € I. Since (M) is weakly compact and up to passing to a subnet, we may assume that
there exists S € M such that S; — S with respect to WOT as ¢ — co. Since 7 is ultraweakly
continuous, we have that T; = 7(S;) — 7(S) with respect to WOT as i — oo. Since T; — T
with respect to SOT as i — oo, we have that T; — T with respect to WOT as i — oo. By
uniqueness of the limit, we obtain 7' = 7(S) and hence w(M) is closed with respect to SOT. [

3.4. Tracial von Neumann algebras. A von Neumann algebra M is said to be tracial if it
is endowed with a faithful normal state 7 which satisfies the trace relation:

T(zy) = 7(yz),Vo,y € M.

Such a tracial state will be refered to as a trace. We will say that M is a II; factor if M is an
infinite dimensional tracial von Neumann algebra and a factor.

Let (M, T) be a tracial von Neumann algebra. We endow M with the following inner product
(,y)r =7(y*z),Vo,y € M.

Denote by (7, L%(M), &) the GNS representation of M with respect to 7. To simplify the
notation, we identify 7, (x) with z € M and regard M C B(L*(M)). Define J : M¢& —
L2(M) : &, — z*&,. For all z,y € M, we have

<fo7_, Jy§T> = <x*§’my*§7’> = T(@/l'*) = T(.%'*y) = <y€7'7x§7'>-
Thus J : L?(M) — L?(M) is a conjugate linear unitary such that J2 = 1.
Theorem 3.18. We have JMJ = M’'.

Proof. We first prove JMJ C M'. Let x,y,a € M. We have

JrxJya&, = Jra*y* &, = yax™ &, = yJzxa* s = yJxd aé,
so that JxJy = yJxJ.
Claim 3.19. The faithful normal state z — (z&;,&;) is a trace on M.

Let x € M'. We first show that Jz&, = 2*&,. Indeed, for every a € M, we have
(Ja&sr,a&r) = (Ja&r, 2&r) = (v"a"67,&r)
= (a*x*&,&) = <$*§T7a€’r>~
Let now x,y € M'. We have

(xy&r, &) = (Y&r, 27°&r) = (Y&r, J2Er) = (267, JYEr)
= <l'§7-,y*f~,-> = <y$£7'7§7'>'

Put 7/ : M’ — C: x — (2&,,&,). Define the canonical antiunitary K on L2(M’,7') = M'E, =
L2(M) by Kz¢; = x*¢, for all € M’. The first part of the proof yields KM'K C M" = M.
Since K and J coincide on M’¢,, which is dense in L?(M), it follows that K = .J. Therefore,
we have JM'J C M and so JMJ = M'. O
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Definition 3.20. Let N/ C M be any inclusion of von Neumann algebras. A conditional
expectation E : M — N is a contractive unital AN/'-AV-bimodular linear map.

We next show that for inclusions of tracial von Neumann algebras N C M, there always exists
a conditional expectation E : M — N.

Theorem 3.21. Let N C M be any inclusion of tracial von Neumann algebras and T € M,
a distinguished faithful normal trace. Then there exists a unique trace preserving conditional
expectation Ex : M — N.

Proof. We still denote by 7 the faithful normal trace 7|y € N.. Regard L?*(N) as a closed
subspace of L2(M) via the identity mapping L?(N) — L*(M) : &, — z&,. For all T € M,
define a sesquilinear form 7 : L2(N) x L2(N) — C by the formula

rr(2ér,yér) = 7(y T).

By Cauchy—-Schwarz inequality, we have |k (x&r, &) < || T |lool|zér||||¥é-|| for all z,y € N.
By Riesz Representation Theorem, there exists Ex(T) € B(L?(N)) such that kp(x&,, y&,) =
(En(T)xér,y&r) for all z,y € N. Observe that [|[En(T)|lec < ||T||ec- For all z,y,a € N, we
have
<EN (T)Ja*J z&s, y£T> = <EN (T)l‘aé,,., y£7'>

=7(y*Tzxa)

=7((ya")"Tx)

= <EN (T)x§T7 ya*§T>

= <EN (T)xgﬁ JaJy&r)

= (Ja"JEN(T) 267, y&7)-

This implies that E(T) € (JNJ)" = N. It is routine to check that Ex : M — N is a trace
preserving conditional expectation.

We next show that there is a unique trace preserving conditional expectation E : M — N.
Indeed, for all T' e M and all z,y € N, we have

(E(T)a&r, y&r) = (Y E(T)z)
= 7(E(y"Tz))
=7(y*"Tx)
= (En(T)2&r, y&7)-
This shows that E(T) = Ex(T) for every T' € M and hence E = Ey. O

3.5. Type II; factors. The next result is a WOT version of Dixmier averaging property.

Theorem 3.22 (WOT-Dixmier property). Let M be any type 11y factor. Then for every

x € M, we have

co{uzu* :u € L{(M)}WOT N C1 # (.

In particular, there exists a unique normal tracial state on M.

Proof. Let x € M be any element. Denote by K, = co {uzu* : u € L{(M)}WOT the weak closure
of the convex hull of the uniformly bounded set {uzu* :u € U(M)}. Observe that £, C M
is a uniformly bounded WOT-closed convex subset of M. We claim that K& C L%(M) is
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a weakly closed convex subset. Indeed, let (z;)ic; be a net in K, and n € L2(M) such that
x;& — n weakly as i — oo. Since (x;);cs is uniformly bounded, up to passing to a subnet,
we may assume that there exists y € M such that x; — y with respect to WOT as i — oo.
Since K, is WOT-closed, we have y € K,. Since x; — y with respect to WOT as ¢ — oo,
it follows that x;&; — y&; weakly as ¢ — co. By uniqueness of the limit, we have n = y&; .
This shows that K &, C L?(M) is a weakly closed convex subset. By Hahn-Banach Theorem,
K& C L2(M) is a || - ||-closed convex subset.

Denote by z € K the unique element such that z§; has minimal || - ||2-norm. Observe that
uJud Ky = Ky and [|[uJud z&; || = ||z&;|| for every w € U(M). By uniqueness, it follows that
for every u € U(M ), we have uJuJ z& = z&;, that is, uzu* = z and hence z € C1. This shows
that z € K, N C1 # 0.

Let 7 be any normal tracial state on M. By traciality and ultraweak continuity, we have that
7 is constant on K, and moreover K, N C1 = {7(z)1}. This shows that 7 is indeed unique. O

Theorem 3.23 (Equivalence of projections). Let M be any type 111 factor. Denote by T the
unique (faithful) normal trace on M. Let p,q € M be any projections. The following assertions
are equivalent:

(1) 7(p) = 7(q)-
(2) There exists uw € U(M) such that upu* = q.

Proof. Since (2) = (1) is obvious, we only have to prove (1) = (2). We may assume that
p ¢ {0,1} so that ¢ ¢ {0,1}. We claim that there exists a nonzero partial isometry v € M such
that v*v < p and vv* < q. Indeed, since p,q # 0 and since M is a factor, there exists © € M
such that gzp # 0. Write qrp = v|gxp| for the polar decomposition of gzp € M. Then v € M
is a nonzero partial isometry such that v*v < p and vv* < gq.

Next, denote by J the directed set of all families ((p;)icr, (¢i)icr) such that p; < p and ¢; < ¢
for all i € I; the projections (p;)icr (resp. (¢;)icr) are pairwise orthogonal; for every i € I,
there exists a partial isometry v; € M such that vjv; = p; and v;v] = ¢;. The set J is clearly
inductive. By Zorn’s Lemma, let ((p;)ier, (¢i)icr) € J be a maximal element. Assume by
contradiction that ), ;p; # p. Since 7(p) = 7(¢q) and since 7(p;) = 7(¢;) for every i € I, we
also have ), ; ¢; # q. Applying the previous claim to p — > ,.; p; and ¢ — ) ;. i, we obtain
a nonzero partial isometry v € M such that v'v <p—>,;p; and vv* < q— 3 ;¢ Then

(((pi)ier,v*v), ((¢i)ier, vv*)) € J, which contradicts the maximality of ((p;)icr, (¢i)icr) € J.

If we let v =), ;v;, then v € M is a partial isometry such that v*v = p and vv* = ¢. Since
7(pt) = 7(¢), the same reasoning as before shows that there exists a partial isometry w € M
such that w*w = p* and ww* = q. Then v = v + w € U(M) satisfies upu* = q. O

3.6. The hyperfinite type II; factor. We start by proving a noncommutative version of the
|| - ||[2-convergence theorem for martingales.

Lemma 3.24 (Noncommutative martingales). Let (M, 1) be any tracial von Neumann algebra.
Let B, C M be an increasing sequence of von Neumann subalgebras such that \/, .n Bn = M.
For every n € N, denote by E, : M — B, the unique trace preserving conditional expectation.
The following assertions are true.

e For every x € M, we have lim, |E,(x) — z|2 = 0.

o Let (zy)n be a uniformly bounded sequence in M such that x,, € By, and x, = Ep, (Xn41)
for all n € N. Then there exists x € M such that x, = Ey(z) for all n € N and
lim, ||z — x,||2 = 0.
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Proof. Denote by e, : L(M) — L?(B,,) the orthogonal projection corresponding to the con-
ditional expectation E, : M — B,. Since (B,), is an increasing sequence of von Neumann
subalgebras, we have that (e,), is an increasing sequence of projections in B(L?(M)). Since
Vpen Bn = M, we have \/, . en = 1. It is easy to see that this implies that lim,, [|[E,(z)—x|]2 =
0 for all x € M.

Next, let (xy,), be a uniformly bounded sequence in M such that x,, € B,, and z,, = Ep, (zp+1)
for all n € N. We have E, (z,) = x, for all p > n. Let z € M be a weak limit point for
the sequence (z,)n. In particular, we have E, (x) = x, for all n € N. By the first item, we
moreover have lim, ||z — x,|2 = 0. O

Let A, := Man(C) and regard A,, C A, via the unital embedding

A0
A (0 A> .
This unital embedding preserves the normalized trace on matrices as well as the uniform norm.
Let Ao = U,;en An and observe that A, is a unital x-algebra endowed with a norm ||-|| which

satisfies |la*al| = ||a||? for all @ € As. Moreover, the normalized trace on matrices induces a
faithful trace 7o : Ao — C which satisfies |7o0(a)| < ||a|| and 7o (a*a) > 0 for all a € Ax.

As we did for unital C*-algebras, we may perform the GNS construction for (A, 7). We
obtain a unital isometric *-representation

Tr + Ao = B(LA (Ao, Too)) & @+ (b, + ably).
For simplicity, write H = L?( Ao, Too)-

Theorem 3.25. We have that R := 7, _(Ax)" C B(H) is a type 111 factor and the vector
state (&, &) defines a faithful normal trace on R.

Proof. Let ¢ = (- &7, &) be the vector state defined on R. In order to show that ¢ is faithful,
we have to show that &, is separating for 7, (A)”, that is, &, is cyclic for 7, (As)’. Define

J i (Ax) = H i (a)ér, — e (a%)ér, .

As in the proof of Theorem we check that J defines an antiunitary and that Jm . (Ax)”J C
Tro (Aso)'. Since &, is cyclic for Jr, (Ax)”J, this implies that & is cyclic for 7, (As)’
and hence &, is separating for m_(Ax)".

The state ¢ is clearly normal and since (7, ()7, (v)) = p(7ry (¥)7ry (z)) for all z,y € A,
we obtain that ¢ is a trace on R. We will simply denote it by 7 from now on.

Observe that @y, := 7, (A,) = 7 (Ay)” is an increasing sequence of finite dimensional von
Neumann subalgebras of R such that \/, .ny @n = R. Denote by E,, : R — @, the unique
trace preserving conditional expectation. Let z € Z(R) and define z, = E,(z). We have
zn € Z(Qn), whence z, = 7(2,)1 = 7(2)1 for all n € N. Since lim,, ||z — z,|]2 = 0, we have
z = 7(2)1. Therefore R is a type II; factor. O

The type II; factor R is called the hyperfinite type 1I; factor of Murray—von Neumann. In their
seminal work [MvN43], Murray—von Neumann showed the uniqueness of the hyperfinite type
II; factor.

Exercise 3.26. Let N be any type II; factor. Show that there exists a unital *-isomorphism
m:R— N.



22 CYRIL HOUDAYER

4. GROUP VON NEUMANN ALGEBRAS AND GROUP MEASURE SPACE CONSTRUCTIONS

4.1. Group von Neumann algebras. Let I' be a countable discrete group. The left regular
representation A : I' — U(¢2(T)) is defined by A0, = dg for all s, € T.

Definition 4.1 (Group von Neumann algebra). The group von Neumann algebra L(T") is de-
fined as the weak closure of the linear span of {\s : s € I'}.

Likewise, we can define the right regular representation p : I' — U(£3(T")) by psé; = 0451 for
all s,t € I'. The right von Neumann algebra R(I") is defined as the weak closure of the linear
span of {ps : s € I'}. We obviously have L(I') C R(T")".

Proposition 4.2. The vector state 7 : L(I') — C : © — (xd¢,de) is a faithful normal trace.
Moreover L(T") = R(T")’.

Proof. 1t is clear that 7 is normal. We moreover have
T()\sAt) = T()\st) = 5st,e = 6ts,e = T()\ts) = T()\t)\s)-
It follows that 7 is a trace on L(I"). Assume now that 7(z*x) = 0, that is, xd. = 0 for = € L(I).
For all t € I, we have xd; = zp;-16. = py—120. = 0. Therefore x = 0. Hence 7 is faithful.
We can identify ¢3(T") with L?(L(I")) via the unitary mapping d, + u,. Under this identification,
we have J§; = §;—1. An easy calculation shows that for all s,z € I'; we have
J)\ JCSt = J)\ (Stfl = J(Sstfl = 5,5371 = Ps 6t.

Therefore, JA\s;J = ps for all s € T. Tt follows that L(T')’ = JL(T')J = R(T") and thus L(T") =
R(T). O

Let z € L(T') and write 26, = Y 2505 € (*(T) with z; = (20, d5) = (a:)\*) for all s € I'.
As we have seen, the family (zs)ser completely determines x € L(I'). We shall denote by
T =) . TsAs the Fourier expansion of x € L(T').

The above sum Y #sAs does not converge in general for any of the topologies on B(¢(T')).
However, the net of finite sums (zr)r defined by xr = > . rxsAs for F C I' a finite subset

does converge for the || - [|o-norm. Indeed, since (zs) € ¢3(T'), for any € > 0, there exists Fo C T

finite subset such that > . cp\ |zs|> < €2. Thus, for every finite subset & C I' such that
Fo C F, we have ||z — x7||3 = D osel\F 252 < 2.
The notation x = ) x5\s behaves well with respect to taking the adjoint and multiplication.

Proposition 4.3. Let © = ) _rxsAs (resp. y = > ,cpyiAt) be the Fourier expansion of
x € L(T") (resp. y € L(T")). Then we have

o T =3 TN
® Ty => (Eter xsys_lt) Aty with Y xsys—1, € C for allt € T', by Cauchy-Schwarz
nequality.
Proof. For the first item, observe that
(2%)s = 7(x"A5) = T(A\s) = T(2AI_) = T57.
For the second item, observe that using Cauchy—Schwarz inequality, we have

(2y)e = T(xyA}) = Y 2 (AyA)) = Y 2a7(yNi1) = > a1y m

sel sel’ sel
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Thanks to the Fourier expansion, we can compute the center Z(L(I")) of the group von Neumann
algebra. We say that I' is icc (infinite conjugacy classes) if for every s € I'\ {e}, the conjugacy
class {tst™! :t € I'} is infinite.

Proposition 4.4. We havex =) . x:\s € Z(L(I)) if and only if x1q—1 = x4 for all s,t € T,
In particular, L(T') is a factor if and only if T is icc.

Thus, L(T") is a type 11} factor whenever I' is infinite and icc.

Proof. We have

x = sz)\s € Z(IL(T)) & Nz =x,Vse T
sel’
& Tygp-1 = Ts, Vs, 0 €T

If T is icc and @ € Z(L(T)), since (z44-1): € £2(T), for all s € T, it follows that x5 = 0 for all
s eI\ {e}. Hence Z(L(I')) = C1.

If T is not icc, then F' = {tst™' : t € I'} is finite for some s € I'\ {e}. Then >, pAn €
Z(L(T)) \ CL O

Example 4.5. Here are a few examples of icc groups: the subgroup S, < S(N) of finitely
supported permutations; the free groups F,, for n > 2; the lattices PSL(n,Z) for n > 2.

Hence Proposition provides many examples of type II; factors arising from countable dis-
crete groups.

Exercise 4.6. Let T = [Tylsicr € B(/2(I)), with Ty, = (Tdy,6,) for all s,t € T'. Show
that T € L(I') if and only if 7" is constant down the diagonals, that is, Ty = Ty, whenever
st =gh7l.

Example 4.7. Assume that I' is a countable discrete abelian group. Tl}%n the Pontryagin dual
I is a compact second countable abelian group. Write F : £2(T') — L?(T', Haar) for the Fourier
transform which is defined by F(d5)(x) = (s,x). Observe that F is a unitary operator. We
have

~

L>(T) = FL(I)F*.

4.2. Murray—-von Neumann’s group measure space construction. Let I' ~ (X, pu)
be a probability measure preserving (pmp) action. Define the action o : I' ~ L*(X) by
(0s(F))(z) = F(s7x) for all F € L>(X). This action extends to a unitary representation
o: T = UL*X)). Put H = LX) ® *(T). Put us = 0, ® A for all s € T. Observe
that by Fell’s absorption principle, the representation I' — U(H) : s — us is unitarily con-
jugate to a multiple of the left regular representation. We will identify F' € L*°(X) with
F®1lelL*X)®Cl.

We have the following covariance relation:
usFuy = o4(F),VF € L™(X),Vs € T.
Definition 4.8 (Murray—von Neumann [MvN43]). The group measure space construction

L*°(X) x I is defined as the weak closure of the linear span of {Fus: F € L*(X),s € I'}.

Put M = L>®(X) x I'. Define the unital faithful x-representation 7 : L*(X) — B(H) by
T(F)(E® ) = 0¢(F)E ® & Denote by N the von Neumann algebra acting on H generated by
m(L>®(X)) and (1 ® p)(T). Tt is straightforward to check that M C N’.
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Proposition 4.9. The vector state T : M — C defined by 7(z) = (2(1x ® dc),1x ® de) s a
faithful normal trace. Moreover we have M = N'.

Proof. 1t is clear that 7 is normal. We moreover have
T(Fus Gu) = 7(Fos(G)ust)

255t7€/)(F(x)G(s_1:v) dp(x)
—5ste/ F(sz)G(x)dp(x)

—’5w<2j/ C; t ;t dﬂ( )

= 7(Go(F)uys)

= 7(Gut Fuy).
It follows that 7 is a trace on M. Assume that 7(b*b) = 0, that is, b(1x ® é.) = 0. For all
seI and all F € L*°(X), we have

b(F ©6) = (0,1 (F)(1® ppr)(1x @ 6,)
=m(04-1(F))(1® pp-1) b(1x ®6.) = 0.
It follows that b = 0. Hence 7 is faithful.
We will identify L2(M) with L?(X)®¢%(T") via the unitary mapping Fus&, +— F®5 Under this
identification, the conjugation J : L2(M) — L*(M) is defined by J(£ ® 05) = 04-1(£*) ® d-1.
For all F' € L°°(X) and all s € T, we have
J(os @A) =1 p,

J(F®1)J = n(F)*.

Therefore, we get M = N'. O

Observe that when the probability space X = {e} is a point, then the group von Neumann
algebra and the group measure space construction coincide, that is, L°°(X) x I' = L(TI").

Proposition 4.10 (Fourier expansion). Let I' ~ (X, 1) be a pmp action. Let A = L>(X) and
M =L>°(X) xT'. Denote by E4 : M — A the unique trace preserving conditional expectation.
Every a € M has a unique Fourier expansion of the form a = ) . asus with as = Ea(au})
for all s € I'. The convergence holds for the || - ||2-norm. Moreover, we have the following:

o a¥ =3 ros-1(a})us.
o llall3 =X cr llasll3-

eab=> (ZSGF asas(bsqt)) Ug.

Proof. Define the unitary mapping U : L2(M) — L*(X) ® £2(T") by the formula U(aus&,) =
a ® ds. Then UE, = 1x ® J. is a cyclic separating vector for M represented on the Hilbert
space L2(X) ® £2(I"). We identify L?(M) with L?(X) ® £2(I"). Under this identification, e, is
the orthogonal projection L*(X) ® ¢2(T') — L?(X) ® Cd.. Moreover, useau’ is the orthogonal
projection L*(X) ® ¢*(I') — L*(X) ® Cd, and thus > useaul = 1. Let a € M. Regarding
a(ly ®4.) € L2(X) ® £3(T"), we know that there exists a, € L%(X) such that

a(lx ®6:) = a; @05, and a3 = [las3.

sel sel
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Then we have
as ® 05 = usequya(lx @ de)
= usequzaes(lx ® dc)
=usEa(uza)(lx ® o)
=Ea(aul) ® 0.
It follows that as = Ea(au}). Therefore, we have a = > . Ea(au})us and the convergence

holds for the || - [|-norm. Moreover, |lall3 = > cr [Ea(au?)||3. The rest of the proof is left to
the reader. O

Like in the group case, the sum a = ) asu; does not converge in general for any of the
operator topologies on B(L?(X) ® £2(I)).

Definition 4.11. Let I' ~ (X, ) be a pmp action.

e We say that the action is (essentially) freeif u({x € X : st = z}) =0forall s € I'\ {e}.
e We say that the action is ergodic if every I'-invariant measurable subset U C X has
measure 0 or 1.

Lemma 4.12. LetT ~ (X, ;1) be a pmp action and denote by o : T' — L2(X)? the corresponding
Koopman representation where L2(X)? = L%(X) © Clx. The following are equivalent:

(1) The action T' ~ (X, ) is ergodic.
(2) The Koopman representation o — U(L*(X)°) has no nonzero invariant vectors.

Proof. (1) = (2) Let ¢ € L%(X)? such that o4(¢) = ¢ for all s € T'. By considering the real part
and the imaginary part of ¢ € L2(X)?, we may further assume that ¢ € L2(X)? is real-valued.
For every t € R, define Uy = {x € X : &{(x) > t}. It follows that U; is I-invariant for all t € R
and thus u(U;) € {0,1} by ergodicity. Since the fonction ¢ — u(U;) is decreasing and since
¢ € L%(X), there exists tg € R such that u(l) = 1 for all t < tq and u(U;) = 0 for all ¢ > to.
Therefore &(z) = to for p-almost every 2 € X. Since & € L?(X)°, we get to = 0 and so £ = 0.

(2) = (1) Let U C X be a I'-invariant measurable subset. Put & = 1y — u(U)1x € L*(X)O.
Since 04(§) =& for all s € T', we get £ = 0 and so 1y = u(U)1x. Hence pu(U) € {0,1}. O

Examples 4.13. Here are a few examples of pmp free ergodic actions I' ~ (X, ).

(1) Bernoulli actions. Let I' be an infinite group and (Y, n) a nontrivial probability space,
that is, 7 is not a Dirac point mass. Put (X, u) = (Y',v®"). Consider the Bernoulli
action I' ~ YT defined by

s (Yt)ter = (Ys-1¢)ter-
Then the Bernoulli action is pmp free and mixing, so in particular ergodic.

(2) Profinite actions. Let I" be an infinite residually finite group together with a decreas-
ing chain of finite index normal subgroups I';, 9T such that I'g = I" and NpenI'y = {e}.
Then for all n > 1, the action I' ~ (I'/T',,, 14y, is transitive and preserves the normalized
counting measure pu,. Consider the profinite action defined as the projective limit

' (Gp) = r&lr ~ (/T pin)-

Then I sits as a dense subgroup of the compact group G which is the profinite comple-
tion of T' with respect to the decreasing chain (I';,)p,en. Observe that u is the unique
Haar probability measure on G. The profinite action is pmp free and ergodic.
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(3) Actions on tori. Let n > 2. Consider the action SL(n,Z) ~ (T™, \,) where T" =
R"™/Z" is the n-torus and A, is the unique Haar probability measure. This action is
pmp free and ergodic.

We always assume that (X, u) is a standard probability space. In particular, X is countably
separated in the sense that there exists a sequence of Borel subsets V,, C X such that | J,, V., =
X, u(Vy) > 0 for all n € N and with the property that whenever z,y € X and x # vy, there
exists n € N for which x € V,, and y ¢ V,.

Proposition 4.14. Let T' ~ (X, pu) be a pmp action. Put A =1L°(X) and M =L>*(X) x T.

(1) The action is free if and only if A C M is mazimal abelian, that is, A’ M = A.
(2) Under the assumption that the action is free, the action is ergodic if and only if M is
a factor.

Proof. (1) Assume that the action is free. Let b € A'N M and write b = Y bsus for its
Fourier expansion. Then for all a € A and all s € T, we have abs = 04(a)bs. Fix s € T\ {e}
and put Us = {x € X : bg(x) # 0, sz # x}. We have 1;1,a = 13,05(a) for all a € A.

By assumption, we have Us = Us NJ,,(Vn N s(Vn)¢). So, if u(Us) > 0, there exists n € N such
that ,U,(usﬂvnﬂs(vn)c) > 0. With a = 1y, , we get 1y,ny, = 1y, 1y, = 11/1805(1);”) = llxlsﬁs(Vn)
and thus 1/,qy, ns(v,)e = 0, which is a contradiction. Therefore, pu(Us) = 0. Since the action is
moreover free, we get by = 0. This implies that b € A.

Conversely, assume that A'NM = A. For all s € T'\ {e}, put a5 = 1{zex:50—2}- We have asus €
A'NM = A. Hence asus = E4(asus) = 0 and so ag = 0. Therefore u({z € X : sz = 2}) = 0.

(2) Under the assumption that the action is free, we have Z(M) = M'NM = M'N A = A",
Therefore, the action is ergodic if and only if Z(M) = C1. O

Let A C M be any inclusion of von Neumann algebras. Denote by Ny (A) := {u € U(M) :
uAu* = A} the group of unitaries normalizing A inside M and by Ny (A)” the normalizer of
A inside M. We say that A C M is a Cartan subalgebra when the following three conditions
are satisfied:

(1) A is maximal abelian, that is, A = A" N M;
(2) There exists a faithful normal conditional expectation E4 : M — A;

(3) Nu(A)" = A.

For every free pmp action I' ~ (X, p), L™(X) € L*(X) x I' is a Cartan subalgebra by
Proposition [£.14]

5. AMENABLE VON NEUMANN ALGEBRAS

5.1. Connes’s theory of bimodules. The discovery of the appropriate notion of representa-
tions for von Neumann algebras, as so-called correspondences or bimodules, is due to Connes.
Whenever M is a von Neumann algebra, we denote by M°P its opposite von Neumann algebra.

Definition 5.1. Let M, N be tracial von Neumann algebras. A Hilbert space H is said to be
an M-N-bimodule if it comes equipped with two commuting normal unital *-representations
A: M — B(H) and p: NP — B(H). We shall intuitively write

x€y = Nz)p(y*P)E, V€ € H,Vo € M,Vy € N.
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We will sometimes denote by my : M ®,15 NP — B(H) the unital *-representation associated
with the M-N-bimodule structure on H.

Examples 5.2. Here are important examples of bimodules:

(1) The identity M-M-bimodule L?(M) with €y = x Jy*JE.

(2) The coarse M-N-bimodule L?(M) ® L?(N) with 2(¢ ® n)y = ( §)®(n )

(3) For any 7-preserving automorphism 6 € Aut(M), we regard L3(M) =
following M-M-bimodule structure: z€y = x£6(y).

L2(M) with the

We will say that two M-N-bimodules yHy and 3K are isomorphic and write py Hy = Ky
if there exists a unitary mapping U : H — K such that

U(z&y) = 2U(§)y,VE € H,Vx € M,Vy € N.

Like for unitary group representations, we can define a notion of weak containment of Hilbert
bimodules. Let M, N be any tracial von Neumann algebras and pyHy, p/Kn any bimodules.
Consider the unital *-representations my : M ®a1; NP — B(H) and g : M ®q14 NP — B(K).

Definition 5.3 (Weak containment). We say that H is weakly contained in K and write H Cyeak
K if |7y (T)|| < ||mic(T)]| for all T € M @415 NP.

Let 7 : I' = U(K ) be a unitary representation of a countable discrete group . Put M =L(TI)
and denote by (\s)ser the canonical unitaries in M. Define on H(7) = K, ®¢?(T") the following
M-M-bimodule structure. For all £ € K and all s,t € I', define

Xs (E® 0) = my(€) ® Oy
(€ ®01) As = § @ by

It is clear that the right multiplication extends to the whole von Neumann algebra M. Observe

now that the unitary representations 7 ® A and 1x_® A are unitarily conjugate. Indeed, define
U:K;® I = K, ®T) by

U(€ ®6;) = mi(§) @ .

It is routine to check that U is a unitary and U (1, ®@As)U* = ms®As for every s € I'. Therefore,
the left multiplication extends to M. Denote by 1p : I' — U(C) the trivial representation.

Proposition 5.4 (Representations and Bimodules). The formulae above endow the Hilbert
space H(m) = K,@0*(T') with a structure of M -M -bimodule. Moreover, the following assertions
hold true:

(1) MH(r)ar = yLP (M) and yHAr)ar =y (L(M) @ L2 (M) -
(2) For all unitary T-representations w1 and mo such that 1 Cyeak T2, we have

MH(T1) M Cweak MH(T2) 01

Proof. The proof is left as an exercise. O
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5.2. Powers—Stgrmer’s inequality. For an inclusion of von Neumann algebra M C N, we
say that a state ¢ € N* is M-central if p(2T) = p(Tx) for all z € M and all T € N. We will
be using the following notation: for all z € M, put 7 = (x°P)* € M°P.

Regarding M ®,; M°P C B(L?*(M) ® L?(M)), we will denote by || - || min the operator norm on
M ®a1g M°P induced by B(L?(M) ® L?(M)). It is called the minimal tensor norm. We will
also denote by M ® M°P := (M ®,, M°P)" C B(L*(M) ® L*(M)).

Let H be any complex Hilbert space. For every p > 1, define the pth-Schatten class S,(H) by
Sp(H) ={T € B(H) : Tr(|T'|?) < o0} .

It is a Banach space with norm given by ||T, = Tr(|T|P)'/P. Observe that S;(H) is the space
of trace-class operators and Sy(H) is the Hilbert space of Hilbert—Schmidt operators. It is also
denoted by HS(H).

Let (M, 7) be a tracial von Neumann algebra. The unitary mapping U : HS(L?*(M)) —
L2(M) ® L?(M) defined by U((-,1)¢) = £ ® Jn is an M-M-bimodule isomorphism.

We will be using the following technical results.

Lemma 5.5. Let A be any unital C*-algebra, u € (A); and w € A* any state. Then we have
max {[|w —w(u- )|, [lo —w(- v, lo —we Ad(u)[|} < 2v/2[1 —w(u)].

Proof. Let (7, Huy, &) be the GNS representation associated with the state w on A. Then
w(a) = (my(a)éy, &) for all a € A. We have

lo = w(-u) | < M€ — mo(u)"&ull < V201 = R(w(w))) < V201 = w(u)].
Likewise, we get |jw —w(u-)|| < /2|1 —w(u)|. Moreover, we have
lw —wo Ad(u)| < 2[|€ — o (u) &l < 2v/2[1 = w(u)]. O

The previous lemma implies in particular that when w(u) = 1, then
w=w(u")=wu-)=woAd(u).

Lemma 5.6 (Powers—Stgrmer’s Inequality). Let H be any Hilbert space and S,T € Sy(H).
Then we have

IS =T[5 < 15* = T?[1 < ||S = Tl2[1S + Tl

Before starting the proof, we make the following observations:

e Whenever A, B € B(H) have finite rank and if we write AB = U|AB)| for the polar
decomposition, by the Cauchy—Schwarz Inequality, we have
|AB||1 = Tr(|AB|) = Te(U"AB) < [[U*All2|| B2 < [|Al[2[| Bl|2-

e Whenever A, B € B(H)4 and A or B has finite rank, we have Tr(AB) > 0. Indeed,
without loss of generality, we may assume that B has finite rank and we write B =
Yo Ail 5 &) & Then AB =371 4 Ai( -, &) AG and so Tr(AB) = 3714 Ai(A&, &) > 0.

Proof of Lemmal[5.6. We reproduce the elegant proof given in [BO0S|, Proposition 6.2.4]. First
observe that using the Spectral Theorem, we may assume that S, T have both finite rank and
still satisfy S, T > 0.
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The identity
(5.1) SQfTQZ%((S+T)(57T)+(57T)(S+T))

together with the first observation give the right inequality.
Put p = 19 4)(S —T). We have (S —T)p > 0 and (T — S)p™ > 0. Observe that we also have

(5-2) Te((S+T)(S = T)p) = Te((S + T)p(S = T))
= Tr((S =T)(S + T)p)

(5-3) Te((T + 8)(T — S)p™) = Te((T + S)p=(T — 5))
=Te((T — S)(T + S)p™).

Then we have

IS =TI} = Te((S - T)?)
=Tr((S—T)°p+ (S —T)%p")
— TR(S — T)(S — T)p+ (T — §)(T - S)p")
<Tr((S+T)(S—T)p+ (T+S)(T - S)p*) (using the second obsevation)
=Tr((S* - T*)p + (T% — S*)p*) (using (5.1)), and (5.3))
< T]r(\S2 —T%p+ |T? — $?|pt)  (using the second observation)

Te(|$* - T2)) = ||$? — T?||x. O

5.3. Connes’s fundamental theorem. This section is devoted to proving Connes’s charac-
terization of amenability for tracial von Neumann algebras.

Definition 5.7. Let M C B(H) be any von Neumann algebra with separable predual. We say
that

e M is amenable if there exists a conditional expectation ® : B(H) — M.
e M is hyperfinite if there exists an increasing sequence of unital finite dimensional -
subalgebras @, C M such that M =\/, Q.

Theorem 5.8 (Connes [CoT5]). Let (M, T) be a tracial von Neumann algebra with separable
predual. The following are equivalent:

(1) There exists a conditional expectation ® : B(L?(M)) — M.

(2) There exists an M-central state @ on B(L2(M)) such that ¢|p = 7.

(3) There exists a net of unit vectors &, € L2(M) @ L*(M) such that lim,, ||2&, — &uxlla =0
and limy, (x&,, &) = 7(x) for allx € M.

(4) wL2(M) s Cweax m(L2(M) @ L2(M)) .

(5) For all ay,...,ak,by,...,bp € M, we have

Whenever M = L(T') is the von Neumann algebra of a countable discrete group, conditions
(1 —6) are equivalent to:

'®b(i)p

min

(6) M is hyperfinite.
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(7) T is amenable.

Proof. We show that (1) & (2) & (3) & (4) & (5) < (7) and (6) = (1). The proof of
(1) = (6) is beyond the scope of these notes.

(1)= (2) Put p=70®.

(2) = (3) Let ¢ be an M-central state on B(L?*(M)). Since the set of normal states is
o(B(L?(M))*,B(L?(M)))-dense in the set of states, we may choose a net of normal states
(¢j)jes on B(L}(M)) such that lim; ¢;(T) = ¢(T) for all T € B(L*(M)). We get that
¢ 0 Ad(u) — ¢; — 0 with respect to the o(B(L?(M))., B(L?(M)))-topology for all u € U(M).
Using Hahn-Banach Theorem and up to replacing the net (¢;)jcs by a net (¢ )rex where
each ¢} is equal to a finite convex combination of some of the ¢;’s, we may assume that
lim; [|¢j o Ad(u) — ¢;|| = 0 for all u € U(M). For every j € J, let T;j € S1(L*(M))+ be the
unique trace-class operator such that ¢;(S) = Tr(7;S) for all S € B(L*(M)). We get || T}|[1 = 1
and lim; ||uTju* — T}||; = 0 for all w € U(M). Put & = le/z € S(L*(M)) and observe that
|&]l2 = 1. Since &; is a Hilbert-Schmidt operator, we may regard &; € L*(M) ® L*(M). By
the Powers-Stgrmer Inequality, we get lim; [|u&;u* — &;|l2 = 0 for all uw € U(M). Moreover, we

have
lim(x¢;, &) = im Tr(Tjz) = limg;(z) = o(x) = 7(z), Vo € M.
J J J

(3) = (4) Let ay,...,ax,b1,...,bpy € M and put T = Zle a; ® b;°P. Let ¢,d € M. Then

T (Zd a;ch; >
<Z d*a;cb; £n7€n>

i=1
k
<Zai fani,d§n>‘
i=1
< 72 anyer2 o (D) im [|€qef| lim [|dE, |
= 172 (e any (Dl HCSTHHd&H
This implies that [|7p2 (T < [7r2anen2an (D)

(4) = (5) Let a1, ...,ap,bi,...,bp € M and put T = 3% a; @ bP. Since L2(M) @ L?(M) is
a left M ® M°P-module, we have

(2 M)( )&z, dér)

= lim
n

= lim
n

Z a; @ bOp

Since by assumption, we have |2, (T)[| < ||7rL2(M)®L2(M)( )|, we get

T (f: aibi) ‘ = ’<7TL2(M)(T)§T,§T> zk:ai ® bP
=1 i=1

(5) = (2) Denote by Q : M @y MP — C the || - ||min-bounded functional such that Q(a®b°P) =
7(ab). By the Hahn-Banach Theorem and since M ®,; M°P C B(L*(M) ® L*(M)), we may
extend the functional Q to B(L?(M) ® L*(M)) without increasing the norm of Q. We still

H7TL2 M)®L?(M

min

< mezan (D <

min
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denote this extension by Q. Since [|Q| =1 = Q(1), Q is a state on B(L?(M) ® L?(M)). Since
Queu) =7(uu*) =1 for all u € U(M), we have

QS(ueu))=S5)=2ueu)s)
for all S € B(L*(M) ® L?(M)) and all u € U(M) (see Lemma [5.5).
Put o(T) = Q(T ® 1°P) for all T € B(L?(M)). Observe that ¢(z) = Q(z ® 1°P) = 7(z) for all
x € M. Moreover, for all T € B(L*(M)) and all u € U(M), we have
e(ul) = QuT @ 1°P) = Q((u @ u)(T ® uP))
QUT @ u®)(u@u)) =Q(Tu ® 1°P)
o(Tu).

(2) = (1) For all T € B(L?(M)), define the sesquilinear form sp : L>(M) x L?(M) — C by
the formula
rr (s, yr) = ¢(y"T).

By Cauchy-Schwarz inequality, we have |kr(x&-, y&-)| < [T oollz||2]|y]|2 for all x,y € M and
hence there exists ®(T) € B(L2(M)) such that ky(zé,, y&;) = (®(T)xé,, y&,) for all z,y € M.
Observe that ||®(T)|cc < ||T||oo- For all z,y,a € M, we have

(®(T)Ja*J x&r,y&r) = (P(T)xa:, y&r)

(
(T)xér, ya™&r)
BTVt JaTye,)
= (Ja* J®(T) x&-, y&s).

This implies that ®(T) € (JMJ) = M. Tt is routine to check that ® : B(L?(M)) — M is a
conditional expectation.

(6) = (1) Assume that M = \/, Q, with @, C M an increasing sequence of unital finite
dimensional x-subalgebras. Denote by u, the unique Haar probability measure on the compact
group U(Q,,). Choose a nonprincipal ultrafilter w on N. For all T € B(L?(M)), put

E(T) = lim uTu* dpy, (u).
" Ju@n)

Then ® : B(L?(M)) — M defined by ®(T) = JE(T)J is a conditional expectation.
Put M = L(T") and denote by Ay € M the canonical unitaries.

(1) = (7) Let ¢ € B(¢*(I'))* be an L(T')-central state such that |,y = 7. Define a state
m € £°(I')* by m = ¢[geo(r). Then m is a left invariant mean and I is amenable.

(7) = (1) Simply put M = L(I") and identify L?(M) = ¢2(I"). Since I is amenable, there exists
a left invariant mean m : £°°(T') — C. For every T € B(¢%(T")), define the bounded sesquilinear
form ky : 2(0)x£2(T) = C: (§,1) = m(y = (pyTpi&,n)). By Riesz Representation Theorem,
there exists ®(T') € B(£*(I')) such that (®(T)¢,n) = m(y — (p,Tpi&,n)) for all £,n € (*(T).
Observe that ® : B(¢2(T')) — B(¢3(T")) : T + ®(T) is a contractive unital L(T")-L(T")-bimodular
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linear map. It remains to show that ®(T") € L(T) for every T € B(¢*(T")). Indeed, for all g € T
and all £,n € ¢2(T'), we have

(pg®(T)pg€,m) = ((T) g, pgm)

m(y = (0105 pyk, pgm))
m(y = (pgy TPy, &, m))
m(
m(

)\g—l o (’Y = <p7ij;£7 77>))
v = {p,TpiE,m))

= (®(T)&;n)-
This implies that p,®(T")p, = ®(T) for every g € I and hence ®(T') € p(T) NB(F(T)) = L(I).
Therefore ® : B(¢?(I')) — L(T") is a conditional expectation. O

We say that a tracial von Neumann algebra (M, 7) is diffuse if there exists a sequence of
unitaries u, € U(M) such that u,, — 0 with respect to WOT as n — oco. One can show that
M is diffuse if and only if M has no nonzero minimal projection.

We record the following well-known fact.

Proposition 5.9. Let M C B(H) be any diffuse tracial von Neumann algebra. Then for any
M -central state p € B(H)* we have ¢|k ) = 0.

Proof. Fix a sequence of unitaries w, € U(M) such that u, — 0 with respect to WOT as
n — oo. For any § € H, denote by e : H — C£ the corresponding orthogonal projection.
Since ¢ € B(H)* is M-central, we have p(ey,¢) = @(urecuy) = p(e¢) for every k € N and
every & € H. Write ||T|, = o(T*T)"/? for every T € B(H).

Fix £ € H and N > 1. By Cauchy—Schwarz inequality, we have

1 1 N 1 | &

®

We may choose ki,...,kx € N such that [ley, ¢ ey, ¢lloo = [(ur; &, up,€)| < + foralll<i<
J 7
7 < N. Then we also have

N 2 N
Z Cu,€|| = Z (p(eukif) + Z @(eukjg eukif)
i=1 o i=1 1<i#£j<N

SN+2 ) ewceuels

1<i<j<N
1
SN+NWN -1 =2N-1

Thus, we obtain
< 2N —1
pleg) < —x—
Since this holds for every N > 1, it follows that ¢(e¢) = 0. By Cauchy-Schwarz inequality, we

also have p(Seg) = 0 for every S € B(H). It follows that ¢(T") = 0 for every rank one operator
T € B(H) and hence ¢|gg) = 0. O
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Proposition [5.9[shows that whenever (M, 7) is a diffuse amenable tracial von Neumann algebra,
neither the conditional expectation ® : B(L2(M)) — M nor the M-central state o € B(L?(M))*
such that ¢|p; = 7 are normal.

Exercise 5.10. Let I' ~ (X, ;) be a pmp action of a countable discrete group on a standard
probability space. Show that L°°(X) x I' is amenable if and only if I is amenable.

Exercise 5.11. Let A C M be any inclusion of tracial von Neumann algebras. Assume that
A is amenable. Show that for every u € Ny (A), the von Neumann subalgebra (A,u) C M is
amenable.
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