
AN INVITATION TO VON NEUMANN ALGEBRAS

LECTURE NOTES
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Abstract. These are the lecture notes of a graduate course given at the Université Paris-
Sud (Orsay) in the Winter of 2017. In Section 1, we review some preliminary background on
C∗-algebras. In Section 2, we review weak and strong operator topologies on B(H) and prove
the spectral theorem for bounded normal operators. In Section 3, we introduce von Neumann
algebras and prove some basic properties. In Section 4, we present two important classes of
von Neumann algebras, namely group von Neumann algebras and Murray–von Neumann’s
group measure space constructions. Finally, in Section 5, we prove Connes’s characterization
of amenable tracial von Neumann algebras.
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1. Preliminary background on C∗-algebras

All the algebras we consider are always over the field C of complex numbers.

1.1. Introduction to C∗-algebras.

1.1.1. Definition and first properties.

Definition 1.1. A C∗-algebra A is a Banach algebra endowed with an involution A→ A : a 7→
a∗ which satisfies the following relation:

‖a∗a‖ = ‖a‖2,∀a ∈ A.

If A admits a unit, we say that A is a unital C∗-algebra. Denote by B(H) the Banach algebra
of all bounded linear operators T : H → H endowed with the supremum norm:

‖T‖∞ = sup
‖ξ‖≤1

‖Tξ‖.

Let T ∈ B(H). The adjoint operator T ∗ is defined by

〈Tξ, η〉 = 〈ξ, T ∗η〉, ∀ξ, η ∈ H.
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Examples 1.2. Here are examples of C∗-algebras.

(1) Norm closed ∗-subalgebras of B(H).
(2) The space of all complex-valued continuous functions C(X) over a compact topological

space X endowed with the supremum norm given by ‖f‖∞ = supx∈X |f(x)|. The

involution is given by f∗(x) = f(x) for all x ∈ X.
(3) Let Γ be a countable discrete group and let λ : Γ → U(`2(Γ)) be the left regular

representation defined by λgδh = δgh for all g, h ∈ Γ. The reduced group C∗-algebra
C∗λ(Γ) is defined as the norm closure of the linear span of {λg : g ∈ Γ}.

From now on, to avoid any technical difficulties, we will always assume that all C∗-algebras are
unital. Moreover, all ∗-homomorphisms are assumed to be unital. For a ∈ A, the spectrum of
a is defined as follows:

σ(a) := {λ ∈ C : a− λ1 is not invertible}.

Proposition 1.3. For all a ∈ A, σ(a) is a nonempty compact subset of C.

Proof. It is clear that σ(a) is closed. Moreover for all |λ| > ‖a‖, 1 − λ−1a is invertible with
inverse

∑
n λ
−nan. It follows that σ(a) is bounded by ‖a‖, whence σ(a) is compact.

By contradiction, assume that σ(a) is the empty set. Then the function λ 7→ (a − λ1)−1 is
entire and vanishing at infinity. By Hahn–Banach and Liouville Theorems, we get that this
function is zero everywhere. Thus a−1 = 0, which is a contradiction. Thus σ(a) is nonempty
and compact. �

Observe that the above proof works more generally for any unital Banach algebra. We have
the following useful corollary.

Corollary 1.4. Any unital Banach algebra A in which every nonzero element is invertible is
isomorphic to C.

Proof. Let x ∈ A and choose λ ∈ σ(a). Since x − λ1 is not invertible, we have x − λ1 = 0.
Thus A = C1. �

Exercise 1.5. Show that σ(ab) ∪ {0} = σ(ba) ∪ {0}, for all a, b ∈ A.

Exercise 1.6. Let A be a unital abelian Banach algebra and m ⊂ A a proper ideal, that is,
1 /∈ m. Show that

inf{‖1− x‖ : x ∈ m} ≥ 1.

Deduce that the closure of any proper ideal is still proper and any maximal proper ideal is
closed.

The spectral radius is defined by

r(a) := sup {|λ| : λ ∈ σ(a)} .

We have r(a) ≤ ‖a‖.

Proposition 1.7. For all a ∈ A, the sequence (‖an‖1/n)n converges to r(a).
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Proof. If λ ∈ σ(a), then λn ∈ σ(an). Thus |λ| ≤ ‖an‖1/n, for all n ∈ N. It follows that

|λ| ≤ lim inf ‖an‖1/n and hence r(a) ≤ lim infn ‖an‖1/n. Next, for |z| < r(a)−1, f : z 7→
(1 − za)−1 is a holomorphic function which coincides with the power series

∑
n z

nan when
moreover |z| < ‖a‖−1. Observe that this power series represents f on the open disk with center

0 and radius r(a)−1. However, this series cannot converge for |z| > (lim sup ‖an‖1/n)−1. Thus,

we get that lim sup ‖an‖1/n ≤ r(a). �

In particular, if a, b ∈ A are commuting elements, we have that

r(ab) = lim ‖(ab)n‖1/n = lim ‖anbn‖1/n

≤ lim ‖an‖1/n lim ‖bn‖1/n

= r(a)r(b).

We say that a is selfadjoint if a∗ = a; normal if a∗a = aa∗; unitary if a∗a = aa∗ = 1. The
group of unitaries is denoted by U(A). The subspace of selfadjoint elements in A is sometimes
denoted by <(A). For any subset V ⊂ A, the unit ball of V will be denoted by (V)1.

Proposition 1.8. Let a ∈ A. The following are true.

(1) If a is invertible, a∗ is invertible and (a∗)−1 = (a−1)∗

(2) a can be uniquely decomposed a = x+ iy, with x, y selfadjoint elements.
(3) If a is a unitary then ‖a‖ = 1.
(4) If a is normal then ‖a‖ = r(a).
(5) If B is another C∗-algebra and ϕ : A→ B is a ∗-homomorphism then ‖ϕ(a)‖ ≤ ‖a‖.

Proof. We leave (1), (2), (3) as an exercise. To prove (4), first assume that a is selfadjoint.

One has ‖a2n‖ = ‖a‖2n for all n ∈ N. Thus, r(a) = limn ‖a2n‖2−n = ‖a‖. If a is normal,
‖a‖2 = ‖a∗a‖ = r(a∗a) ≤ r(a∗)r(a) ≤ ‖a∗‖‖a‖ = ‖a‖2, whence r(a) = ‖a‖. To prove (5), let
a ∈ A. Then

‖ϕ(a)‖2 = ‖ϕ(a)∗ϕ(a)‖ = ‖ϕ(a∗a)‖ = r(ϕ(a∗a)) ≤ r(a∗a) = ‖a∗a‖ = ‖a‖2. �

Corollary 1.9. Any onto ∗-isomorphism ϕ : A→ B is isometric.

1.1.2. Continuous functional calculus.

Lemma 1.10. Let χ : A → C be a unital algebraic homomorphism. Then the following
assertions hold true.

(1) For all a ∈ A, |χ(a)| ≤ ‖a‖.
(2) For all a ∈ <(A), χ(a) ∈ R.

(3) For all a ∈ A, χ(a∗) = χ(a).
(4) For all a ∈ A, χ(a∗a) ≥ 0.
(5) For all a ∈ U(A), |χ(a)| = 1.

Proof. (1) For all a ∈ A, χ(a − χ(a)1) = 0, whence a − χ(a)1 is not invertible. We get
χ(a) ∈ σ(a) and so |χ(a)| ≤ ‖a‖.
(2) Assume that a ∈ A is selfadjoint. Let t ∈ R.

|χ(a+ it)|2 ≤ ‖a+ it‖2 = ‖(a+ it)∗(a+ it)‖ = ‖(a− it)(a+ it)‖ ≤ ‖a‖2 + t2.

Write χ(a) = α+ iβ. We then get

‖a‖2 + t2 ≥ |α+ i(β + t)|2 = α2 + β2 + 2βt+ t2.
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It follows that ‖a‖2 ≥ α2 + β2 + 2βt and thus β = 0.

Now (3) follows easily, while (4) and (5) are trivial. �

Corollary 1.11. Every unital algebraic homomorphism χ : A→ C is a ∗-homomorphism.

For a unital abelian C∗-algebra A, a unital algebraic homomorphism χ : A→ C is simply called
a character. We will denote by Ω := Ω(A) the set of characters of A. Sometimes Ω is called the
spectrum of A. Observe that if χ : A→ C is a character, we have that χ ∈ A∗ and ‖χ‖A∗ = 1.
One checks that Ω is closed for the σ(A∗, A)-topology and thus compact by Banach–Alaoglu
Theorem. The Gelfand Transform γ : A→ C(Ω) is defined by γ(a)(χ) = χ(a).

Theorem 1.12. Let A be any unital abelian C∗-algebra. Then the Gelfand Transform γ : A→
C(Ω) is an onto ∗-isomorphism. Moreover σ(a) = {χ(a) : χ ∈ Ω} for all a ∈ A.

Proof. Let a ∈ A. We have already shown that {χ(a) : χ ∈ Ω} ⊂ σ(a). If λ ∈ σ(a), then a−λ1
is not invertible. It is thus contained in a maximal proper ideal m, which is closed by Exercise
1.6. Observe that the Banach algebra A/m is a division ring and so is isomorphic to C. Whence
there exists χ ∈ Ω such that χ(a−λ1) = 0, that is, χ(a) = λ. Therefore σ(a) = {χ(a) : χ ∈ Ω}.
It is then clear that γ is a ∗-isomorphism and is isometric. Indeed, for all a ∈ A, since a∗a = aa∗,
we have

‖γ(a)‖∞ = sup {|χ(a)| : χ ∈ Ω} = r(a) = ‖a‖.
Thus, γ(A) is a unital closed ∗-subalgebra of C(Ω). It remains to prove that γ is onto. Observe
that γ(A) separates points: for all χ 6= χ′, there exists a ∈ A such that χ(a) 6= χ′(a), that
is, γ(a)(χ) 6= γ(a)(χ′). By Stone–Weierstrass’s Theorem, γ(A) is dense in C(Ω). Therefore
γ(A) = C(Ω). �

Corollary 1.13. If a ∈ A is a unitary, then σ(a) ⊂ T. If a ∈ A is selfadjoint, then σ(a) ⊂ R.

Theorem 1.14 (Continuous functional calculus). Let A be a unital C∗-algebra and b ∈ A be a
normal element. Denote by B the abelian C∗-algebra generated by b. There exists a unique onto
∗-isomorphism Φ : C(σ(b))→ B such that Φ(z) = b. We moreover have σ(Φ(f)) = f(σ(b)).

We will simply denote Φ(f) by f(b). Observe that ‖f(b)‖ ≤ ‖b‖‖f‖∞.

Proof. Let Ω be the set of characters of B. Define the continuous function ψ : Ω → σ(b) by
ψ(χ) = χ(b). We have seen before that ψ is onto. Assume now that ψ(χ) = ψ(χ′), that is,
χ(b) = χ′(b). It follows that χ(p(b, b∗)) = χ′(p(b, b∗)) for all polynomials p. Since b generates

B, we get that χ = χ′. Therefore ψ is a homeomorphism. Then ψ̂ : C(Ω)→ C(σ(b)) defined by

ψ̂(f) = f ◦ ψ is an onto ∗-isomorphism. Now the ∗-isomorphism Φ = γ−1 ◦ ψ̂−1 : C(σ(b))→ B
does the job. �

Exercise 1.15. Let A,B be any C∗-algebras and π : A → B any injective ∗-homomorphism.
Show that π is isometric.

1.1.3. The Gelfand–Naimark–Segal construction.

Definition 1.16. An element a ∈ A is positive if a = a∗ and σ(a) ⊂ R+. We will denote
a ≥ 0. The set of positive elements in A will also be denoted by A+.

An element a ∈ A is negative if −a is positive. The set of negative elements in A will be denoted
by A−. For selfadjoint elements a, b ∈ A, we write a ≤ b when b− a ∈ A+.
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Proposition 1.17. Let A be a unital C∗-algebra and let a ∈ A be a selfadjoint element. There
exists a unique pair (h, k) of positive elements in A such that a = h− k and hk = kh = 0.

Proof. Define the continuous functions f(t) = max(t, 0) and g(t) = max(−t, 0) so that f(t) −
g(t) = t, f(t) ≥ 0, g(t) ≥ 0 and f(t)g(t) = 0. By continuous functional calculus, we have a =
f(a)− g(a), f(a) ≥ 0, g(a) ≥ 0 and f(a)g(a) = g(a)f(a) = 0. We have proven the existence of
the decomposition. To prove the uniqueness, assume that a = u−v for some u, v ∈ A+ such that
uv = vu = 0. It is not hard to see that u and v commute with a so that the C∗-algebra C∗(a, u, v)
is abelian. There exists some compact space X such that C∗(a, u, v) = C(X). Regarding a, u, v
as continuous fonctions on X, it is clear that u = max(a, 0) and v = max(−a, 0). This implies
that u = h and v = k. �

Exercise 1.18. Let A be a unital C∗-algebra.

• Let a ∈ A+ and n ≥ 1. Show that there exists a unique b ∈ A+ such that a = bn. We
then write b := a1/n.
• Let a ∈ A selfadjoint. Show that a ≥ 0 if and only if ‖t − a‖ ≤ t for some t ≥ ‖a‖.

Deduce that if a, b ≥ 0, then a+ b ≥ 0.

Proposition 1.19. Let A be a unital C∗-algebra and a ∈ A. The following are equivalent:

(1) a ≥ 0.
(2) There exists b ∈ A such that a = b∗b.

Proof. (1)⇒ (2) It suffices to put b = a1/2.

(2) ⇒ (1) Assume that a = b∗b and write a = h− k as in Proposition 1.17. We want to show

that k = 0. Set bk1/2 = α+ iβ, with α, β selfadjoint elements in A. On the one hand, we have

(bk1/2)∗(bk1/2) = k1/2b∗bk1/2 = k1/2(h− k)k1/2 = −k2 ≤ 0,

since hk = kh = 0. On the other hand,

(bk1/2)∗(bk1/2) = (α+ iβ)∗(α+ iβ) = α2 + β2 + i(αβ − βα).

Thus i(αβ − βα) = −k2 −α2 − β2 ≤ 0. Observe that σ((bk1/2)∗(bk1/2)) and σ((bk1/2)(bk1/2)∗)

only differ by 0 (see Exercise 1.5). Thus (bk1/2)(bk1/2)∗ = −c with c ∈ A+. We get −c =
α2 + β2 + i(βα− αβ), so that i(αβ − βα) = c+ α2 + β2 ≥ 0. Therefore i(αβ − βα) ∈ A+ ∩A−
and so i(αβ−βα) = 0. This implies that −k2 = (bk1/2)∗(bk1/2) = α2 +β2 ∈ A+∩A− and thus
k = 0. �

Exercise 1.20. Show that for all a ∈ A, a∗a ≤ ‖a‖21.

Corollary 1.21. Let A be any unital C∗-algebra. Then A is linearly spanned by U(A).

Proof. Up to considering real and imaginary parts and up to scaling, it suffices to show that
any element a ∈ (<(A))1 is a linear combination of unitaries. Indeed, since a ∈ (<(A))1, we

have 0 ≤ a2 ≤ 1. Put u = a+ i
√

1− a2. Then we have u ∈ U(A) and a = 1
2(u+ u∗). �

Definition 1.22. A state ϕ : A → C is a positive linear functional (ϕ(a) ≥ 0 for all a ≥ 0)
such that ϕ(1) = 1. The state space of A is denoted by Σ(A). A state ϕ is faithful if ϕ(a∗a) > 0
for all a 6= 0.

Example 1.23. Let (π,H, ξ) be a unital ∗-representation of A together with a unit vector.
The linear functional a 7→ 〈π(a)ξ, ξ〉 defines a state on A. We will prove that every state on a
unital C∗-algebra arises this way.
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Proposition 1.24. Let ϕ : A→ C be a positive linear functional. The following hold true.

(1) For all a, b ∈ A, |ϕ(b∗a)|2 ≤ ϕ(a∗a)ϕ(b∗b)
(2) ϕ is bounded and ‖ϕ‖ = ϕ(1). In particular, if ϕ is a state then ‖ϕ‖ = 1.

Proof. Observe that (a, b) 7→ ϕ(b∗a) defines a semi-sesquilinear form on A. Then (1) follows
from the Cauchy–Schwarz Inequality. For (2), observe that since a∗a ≤ ‖a‖21, we have |ϕ(a)|2 ≤
ϕ(1)ϕ(a∗a) ≤ ϕ(1)2‖a‖2. It follows that ‖ϕ‖ = ϕ(1). �

Example 1.25. Let X be a compact space. Any probability measure µ on X gives rise to a
state ϕ on C(X) by ϕ(f) =

∫
X f dµ. By Riesz Representation Theorem, any state on C(X)

arises this way.

Exercise 1.26. Let A be a unital C∗-algebra and let ϕ : A→ C be a bounded linear functional
with ‖ϕ‖ = ϕ(1). Show that ϕ is positive. Deduce that if B ⊂ A is a unital C∗-subalgebra,
then any state on B has an extension on A.

Theorem 1.27 (GNS construction). Let A be a unital C∗-algebra.

(1) For every state ϕ on A, there exists a cyclic ∗-representation (πϕ, Hϕ) together with a
unit vector ξϕ ∈ Hϕ such that ϕ(a) = 〈πϕ(a)ξϕ, ξϕ〉, for all a ∈ A.

(2) If (π,H) is a cyclic ∗-representation with unit cyclic vector ξ ∈ H and ϕ is the state
defined by ϕ(a) = 〈π(a)ξ, ξ〉, then π ∼= πϕ.

Proof. (1) Let ϕ be a state on A. Define the following semi-sesquilinear form 〈a, b〉ϕ = ϕ(b∗a)
on A. After separation and completion, promote (A, 〈 · , · 〉ϕ) to a genuine Hilbert space Hϕ.
Denote by a• ∈ Hϕ the image of a ∈ A in Hϕ. One checks that πϕ(a)b• = (ab)• defines a cyclic
∗-representation with unit cyclic vector ξϕ = 1•. Indeed, for all a, b ∈ A, we have

‖πϕ(a)b•‖2ϕ = 〈πϕ(a)b•, πϕ(a)b•〉ϕ
= 〈πϕ(a∗a)b•, b•〉ϕ
= ϕ(b∗ a∗a b)

≤ ‖a‖2ϕ(b∗b)

= ‖a‖2‖b•‖2ϕ
and hence πϕ(a) ∈ B(Hϕ) is well-defined. For all a ∈ A, we moreover have

〈πϕ(a)ξϕ, ξϕ〉ϕ = 〈a•, 1•〉ϕ = ϕ(a).

We leave (2) as an exercise. �

Corollary 1.28. Every unital C∗-algebra admits a unital faithful ∗-representation (π,H).
Moreover, H can be chosen to be separable if A is separable.

Proof. Let S ⊂ Σ(A) be a weak∗-dense subset. Note that if A is separable, S can be taken
countable. Define π =

⊕
ϕ∈S πϕ. Assume that π(a) = 0, that is, π(a∗a) = 0. We get ϕ(a∗a) = 0

for all ϕ ∈ S. By density, we get ϕ(a∗a) = 0 for all ϕ ∈ Σ(A).

Let now µ be any Borel probability measure on X := σ(a∗a) and define the state ψ(f(a∗a)) =∫
X f dµ for all f ∈ C(X). Extend ψ to ϕ on A. We have∫

X
tdµ(t) = ψ(a∗a) = ϕ(a∗a) = 0.

It follows that µ(X ∩ (0,+∞)) = 0. Since this holds true for any Borel probability measure on
X, we have that X = {0} and so a = 0. �
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The above Corollary shows that the notions of selfadjoint, positive, unitary elements in a unital
C∗-algebra A correspond to the notions of selfadjoint, positive, unitary elements in B(H).

2. Spectral theorem

2.1. Topologies on B(H).

Definition 2.1. Let H be any complex Hilbert space.

• The strong operator topology (SOT) on B(H) is defined by the following family of open
neighbourhoods: for S ∈ B(H), ε > 0, ξ1, . . . , ξn ∈ H, define

U(S, ε, ξi) := {T ∈ B(H) : ‖(T − S)ξi‖ < ε,∀1 ≤ i ≤ n} .
• The weak operator topology (WOT) on B(H) is defined by the following family of open

neighbourhoods: for S ∈ B(H), ε > 0, ξ1, . . . , ξn, η1, . . . , ηn ∈ H, define

V(S, ε, ξi, ηi) := {T ∈ B(H) : |〈(T − S)ξi, ηi〉| < ε,∀1 ≤ i ≤ n} .

The strong operator topology is always stronger than the weak operator topology. It is strictly
stronger when H is infinite dimensional.

Theorem 2.2. Let C ⊂ B(H) be a nonempty convex subset. Then the strong operator closure
and the weak operator closure of C coincide.

Proof. Assume T is in the weak operator closure of C. Let ξ1, . . . , ξn ∈ H. Let K = H⊕· · ·⊕H
be the n-fold direct sum of H with itself. Define the ∗-isomorphism ρ : B(H) → B(K) by
ρ(T )(η1, . . . , ηn) = (Tη1, . . . , Tηn). Let ξ = (ξ1, . . . , ξn) ∈ K. It is clear that ρ(C) is a convex
subset of B(K). Since T is in the weak operator closure of C, ρ(T ) is in the weak operator
closure of ρ(C) and hence ρ(T )ξ is in the weak closure of ρ(C)ξ. Since ρ(C)ξ ⊂ K is convex,
the Hahn–Banach Separation Theorem implies that ρ(T )ξ is also in the norm closure of ρ(C)ξ.
For ε > 0, there exists S ∈ C such that ‖Sξi − Tξi‖ < ε for all 1 ≤ i ≤ n. This shows that T is
in the strong operator closure of C. �

Proposition 2.3. Let V ⊂ B(H) be any weakly closed subspace and ϕ : V → C any linear
functional. The following assertions are equivalent.

(1) There exist ξ1, . . . , ξn, η1, . . . , ηn ∈ H such that

ϕ(T ) =
n∑
i=1

〈Tξi, ηi〉,∀T ∈ V.

(2) ϕ is strongly continuous.
(3) ϕ is weakly continuous.

Proof. (1)⇒ (2) is clear. For (2)⇒ (1), let ε > 0 and ξ1, . . . , ξn ∈ H such that |ϕ(x)| ≤ 1 for

all x ∈ U(0, ε, ξi). It follows that |ϕ(x)| ≤ 1
ε

√∑
i ‖xξi‖2 for all x ∈ V . Let ξ = (ξ1, . . . , ξn) ∈

`2n ⊗ H and K = (1⊗ V )ξ ⊂ `2n ⊗ H. Define the continuous linear functional ψ : K → C by
ψ((1 ⊗ x)ξ) = ϕ(x) for all x ∈ V . By Representation Theorem, there exists η ∈ K such that
ϕ(x) = 〈(1⊗ x)ξ, η〉 for all x ∈ V .

Observe that ϕ is continuous if and only if kerϕ is closed. Since kerϕ ⊂ B(H) is a nonempty
convex subset, the equivalence between (2) and (3) follows from Theorem 2.2. �

Theorem 2.4. The unit ball (B(H))1 is weakly compact.
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Proof. Denote by Dξ,η the closed unit disk in C of center 0 and radius ‖ξ‖‖η‖. The map
(B(H))1 3 T 7→ (〈Tξ, η〉)ξ,η∈H ∈

∏
ξ,η∈H Dξ,η is a homeomorphism from (B(H))1, endowed

with the weak operator topology onto its image X. Note that
∏
ξ,η∈H Dξ,η is compact for the

product topology by Tychonoff’s Theorem. It remains to show that the image X is closed.

Let α = (αξ,η) ∈ X. There exists a net (Si)i∈I of elements in (B(H))1 such that 〈Siξ, η〉 → αξ,η,
for all ξ, η ∈ H. We get that H × H 3 (ξ, η) 7→ αξ,η ∈ C is a sesquilinear form such that
|αξ,η| ≤ ‖ξ‖‖η‖ for all ξ, η ∈ H. By Riesz Representation Theorem for sesquilinear forms, there
exists T ∈ (B(H))1 such that αξ,η = 〈Tξ, η〉, for all ξ, η ∈ H. �

Proposition 2.5. Let (Ti)i∈I be an increasing net of selfadjoint operators such that −C1 ≤
Ti ≤ C1 for all i ∈ I. Then (Ti)i∈I has a limit with respect to the strong operator topology.
Moreover, for all S ∈ B(H) such that Ti ≤ S for all i ∈ I, we have that limTi ≤ S. We denote
limTi = supTi.

Proof. By weak compactness of the unit ball, we can find a subnet (Tj)j∈J which converges
weakly to some selfadjoint operator T ∈ B(H).

Let i ∈ I. For all j ≥ i, ξ ∈ H, we have 〈Tjξ, ξ〉 ≥ 〈Tiξ, ξ〉 so that 〈Tξ, ξ〉 = limj〈Tjξ, ξ〉 ≥
〈Tiξ, ξ〉. Thus, for all i ≥ j, we have 0 ≤ T − Ti ≤ T − Tj so that

‖(T − Ti)1/2ξ‖2 = 〈(T − Ti)ξ, ξ〉 ≤ 〈(T − Tj)ξ, ξ〉 → 0 as j →∞.

We have that (T − Ti)1/2 → 0 strongly as i → ∞. Finally, strong continuity of multiplication
on uniformly bounded sets implies that (T − Ti)→ 0 strongly as i→∞.

We have already seen that Ti ≤ T for all i ∈ I. Assume now that Ti ≤ S for all i ∈ I. Since
Ti → T strongly as i → ∞, we have that Ti → T weakly as i → ∞, whence for all ξ ∈ H, we
have 〈Tξ, ξ〉 = limi〈Tiξ, ξ〉 ≤ 〈Sξ, ξ〉. �

Definition 2.6. Let H be any complex Hilbert space.

• The ultrastrong operator topology on B(H) is defined by the following family of open
neighbourhoods: for S ∈ B(H), ε > 0, (ξn)n ∈ `2(N, H), define

U(S, ε, (ξn)n) :=

{
T ∈ B(H) :

∑
n

‖(T − S)ξn‖2 < ε

}
.

• The ultraweak operator topology on B(H) is defined by the following family of open
neighbourhoods: for S ∈ B(H), ε > 0, (ξn)n, (ηn)n ∈ `2(N, H), define

V(S, ε, (ξn)n, (ηn)n) :=
{
T ∈ B(H) :

∣∣∣∑〈(T − S)ξn, ηn〉
∣∣∣ < ε

}
.

Observe that the ultrastrong (resp. ultraweak) operator topology on B(H) correspond to the
pullback of the strong (resp. weak) operator topology on B(`2(N, H)) under the map π :
B(H)→ B(`2(N, H)) : T 7→ ((ξn)n 7→ (Tξn)n).

Exercise 2.7. Show that on uniformly bounded sets, weak and ultraweak (resp. strong and
ultrastrong) operator topologies coincide.

Proposition 2.8. Let V ⊂ B(H) be any ultraweakly closed subspace and ϕ : V → C any linear
form. The following are equivalent.

(1) There exist (ξn)n, (ηn)n ∈ `2(N, H) such that

ϕ(T ) =
∑
n

〈Tξn, ηn〉,∀T ∈ V.
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(2) ϕ is ultrastrongly continuous.
(3) ϕ is ultraweakly continuous.
(4) ϕ is strongly continuous on (V )1.
(5) ϕ is weakly continuous on (V )1.

Proof. The proof is analogous to Proposition 2.3, so we leave it as an exercise. �

2.2. Spectral measures.

Definition 2.9. Let H be any complex Hilbert space and (X,Ω) any standard Borel space
together with its σ-algebra of Borel subsets. A spectral measure for (X,Ω, H) is a function
Φ : Ω→ B(H) which satisfies the following properties:

(1) Φ(U) is a projection, that is, Φ(U) = Φ(U)∗ = Φ(U)2 for all U ∈ Ω.
(2) Φ(∅) = 0 and Φ(X) = 1.
(3) Φ(U ∩ V) = Φ(U)Φ(V) for all U ,V ∈ Ω.
(4) Whenever (Un)n is a sequence of pairwise disjoint Borel subsets of X, we have

Φ

(⋃
n

Un

)
=
∑
n

Φ(Un).

The above convergence holds with respect to the strong operator topology.

Example 2.10. Let (X,Ω, µ) be any standard Borel probability space. Regard L∞(X,µ) ⊂
B(L2(X,µ)) where L∞(X,µ) acts by multiplication. Then the map Φ : Ω→ L∞(X,µ) defined
by Φ(U) = 1U is a spectral measure for (X,Ω,L2(X,µ)).

The next lemma will be useful. The proof is left to the reader.

Lemma 2.11. Let Φ be any spectral measure for (X,Ω, H). Let ξ, η ∈ H. Then the map
Φξ,η : Ω → C : U 7→ 〈Φ(U)ξ, η〉 defines a Borel complex measure on X with ‖Φξ,η‖ ≤ ‖ξ‖‖η‖.
In particular, Φξ,ξ is a Borel probability measure on X for every ξ ∈ H such that ‖ξ‖ = 1.

Denote by B(X) the C∗-algebra of all bounded Borel functions on X.

Proposition 2.12. Let Φ be any spectral measure for (X,Ω, H) and f ∈ B(X). Then there
exists a unique operator T ∈ B(H) which satisfies the following property: for every ε > 0 and
every Ω-partition (U1, . . . ,Un) of X such that sup {|f(x)− f(y)| : 1 ≤ k ≤ n, x, y ∈ Uk} ≤ ε and
for every xk ∈ Uk, we have ∥∥∥∥∥T −

n∑
k=1

f(xk)Φ(Uk)

∥∥∥∥∥
∞

≤ ε.

Proof. Define the sesquilinear form on H × H by ϕ(ξ, η) =
∫
X f dΦξ,η. We have |ϕ(ξ, η)| ≤

‖f‖∞‖ξ‖‖η‖ by Lemma 2.11 and hence ϕ is bounded. By Riesz Representation Theorem, there
exists a unique operator T ∈ B(H) such that 〈Tξ, η〉 = ϕ(ξ, η) =

∫
X f dΦξ,η for all ξ, η ∈ H.
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Let now ε > 0 and xk ∈ Uk for every 1 ≤ k ≤ n as in the statement. We have∣∣∣∣∣
〈

(T −
n∑
k=1

f(xk)Φ(Uk))ξ, η

〉∣∣∣∣∣ =

∣∣∣∣∣
n∑
k=1

∫
Uk

(f(x)− f(xk)) dΦξ,η(x)

∣∣∣∣∣
≤

n∑
k=1

∫
Uk
|f(x)− f(xk)| d|Φξ,η|(x)

≤ ε
∫
X

d|Φξ,η|(x)

≤ ε‖ξ‖‖η‖.
This implies the inequality in the statement. �

The operator T will be denoted by
∫
X f dΦ. We have

∀ξ, η ∈ H,
〈(∫

X
f dΦ

)
ξ, η

〉
=

∫
X
f dΦξ,η.

The proof of the next proposition is left as an exercise.

Proposition 2.13. Let Φ be any spectral measure for (X,Ω, H). The map π : B(X)→ B(H)
defined by π(f) =

∫
X f dΦ is a unital ∗-representation. Moreover π(f) is a normal operator

for every f ∈ B(X).

Let X be any compact space. Let M(X) be the Banach space of all finite Borel measures on
X. By Riesz Representation Theorem, we have C(X)∗ =M(X). Identify B(X) as a subspace
of M(X)∗ in the following way: for every f ∈ B(X), we have µ 7→

∫
X f dµ ∈ M(X)∗ and

‖f‖∞ = ‖µ 7→
∫
X f dµ‖. Since (C(X))1 is weak∗-dense in (C(X)∗∗)1 = (M(X)∗)1, it follows

that for every f ∈ B(X) ⊂M(X)∗, there exists a net (fi)i∈I in C(X) such that ‖fi‖∞ ≤ ‖f‖∞
for every i ∈ I and limi

∫
X fi dµ =

∫
X f dµ for every µ ∈M(X).

Theorem 2.14. Let X be any compact space and π : C(X)→ B(H) any unital ∗-representation.
Then there exists a unique spectral measure Φ for (X,Ω, H) such that Φξ,η is a regular Borel
complex measure on X and π(f) =

∫
X f dΦ for every f ∈ C(X).

Proof. Let ξ, η ∈ H. The map C(X)→ C : f 7→ 〈π(f)ξ, η〉 defines a bounded linear functional
with norm at most ‖ξ‖‖η‖. By Riesz Representation Theorem, there exists a unique Borel
complex measure µξ,η ∈ M(X) such that ‖µξ,η‖ ≤ ‖ξ‖‖η‖ and 〈π(f)ξ, η〉 =

∫
X f dµξ,η for

every f ∈ C(X).

Let f ∈ B(X). The sesquilinear form defined by ϕ(ξ, η) =
∫
X f dµξ,η is bounded by ‖f‖∞. By

Riesz Representation Theorem, there is a unique bounded operator π̃(f) ∈ B(H) such that
〈π̃(f)ξ, η〉 =

∫
X f dµξ,η for all ξ, η ∈ H.

Claim 2.15. The map π̃ : B(X) → B(H) is a unital ∗-representation such that π̃(f) = π(f)
for every f ∈ C(X).

The fact that π̃(f) = π(f) for every f ∈ C(X) is clear from the definitions. We only prove
that π̃ is multiplicative. Let f ∈ B(X), g ∈ C(X) and let (fi)i∈I be a net in C(X) such that
‖fi‖∞ ≤ ‖f‖∞ for every i ∈ I and fi → f with respect to the weak∗-topology as i → ∞.
We have π̃(fi) → π̃(f) weakly as i → ∞. Regarding gµξ,η as an element in M(X), we have
π̃(fig)→ π̃(fg) weakly as well. This yields

π̃(fg) = lim
i
π̃(fig) = lim

i
π(fig) = (lim

i
π(fi))π(g) = π̃(f)π̃(g).
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Repeating the same reasoning with g ∈ B(X) proves that π̃ is indeed multiplicative. This
finishes the proof of the Claim.

Define now Φ(U) = π̃(1U ) for every U ∈ Ω. It is easy to check that Φ is a spectral measure for
(X,Ω, H) for which π̃(f) =

∫
X f dΦ for every f ∈ B(X). In particular, we have π(f) =

∫
X f dΦ

for every f ∈ C(X). �

2.3. Spectral Theorem.

Theorem 2.16 (Fuglede Theorem). Let T ∈ B(H) be any normal operator and S ∈ B(H). If
TS = ST , then T ∗S = ST ∗.

Proof. By continuous functional calculus, we get exp(izT )S = S exp(izT ) for every z ∈ C.
Define the entire analytic function f : C→ B(H) by

f(z) = exp(−izT ∗)S exp(izT ∗)

= exp(−izT ∗) exp(−izT )S exp(izT ) exp(izT ∗)

= exp(−i(zT ∗ + zT ))S exp(i(zT + zT ∗))

since T and T ∗ commute. Observe that since zT ∗ + zT is selfadjoint, exp(i(zT ∗ + zT )) is
a unitary and thus f(z) is uniformly bounded. By Liouville’s Theorem and Hahn-Banach
Theorem, f is a constant function and hence f ′ = 0. Therefore 0 = f ′(z) = −iT ∗f(z)+if(z)T ∗

for every z ∈ C. With z = 0, we get 0 = −iT ∗S + iST ∗. �

Let T ∈ B(H) be any normal operator. The continuous functional calculus gives rise to a
unital ∗-representation π : C(σ(T ))→ C∗(T ) ⊂ B(H) where π(z) = T . We will simply denote
π(f) = f(T ).

Theorem 2.17 (Spectral Theorem). Let T ∈ B(H) be any normal operator. Then there exists
a unique spectral measure Φ for (σ(T ),Ω, H) such that the following assertions hold:

(1) f(T ) =
∫
σ(T ) f dΦ for every f ∈ C(σ(T )).

(2) If U ⊂ σ(T ) is a nonempty open subset, then Φ(U) 6= 0.
(3) For every S ∈ B(H), ST = TS if and only if SΦ(U) = Φ(U)S for every U ∈ Ω.

Proof. The existence of Φ has already been proven in Theorem 2.14. To prove (2), choose a
nonzero continuous function f ∈ C(σ(T )) such that 0 ≤ f ≤ 1U . We have 0 6= π(f) ≤ π̃(1U ) =
Φ(U).

To prove (3) first assume that ST = TS. By Fuglede Theorem, we have ST ∗ = T ∗S as well.
By continuous functional calculus, we get Sπ(f) = π(f)S for every f ∈ C(σ(T )). Now given
f ∈ B(σ(T )), let (fi)i∈I be a net in C(σ(T )) such that ‖fi‖∞ ≤ ‖f‖∞ for every i ∈ I and
fi → f with respect to the weak∗ topology as i → ∞. It follows that π(fi) → π̃(f) weakly as
i → ∞. Therefore Sπ̃(f) = π̃(f)S for every f ∈ B(σ(T )). In particular, SΦ(U) = Φ(U)S for
every U ∈ Ω. It is easy to check that if SΦ(U) = Φ(U)S for every U ∈ Ω then Sπ̃(f) = π̃(f)S
for every f ∈ B(σ(T )). This finishes the proof. �

We will simply denote π̃(f) = f(T ) for every f ∈ B(σ(T )). The unital ∗-representation
B(σ(T ))→ B(H) : f 7→ f(T ) is called the Borel functional calculus.
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Theorem 2.18. Let T ∈ B(H) be any normal operator together with its spectral measure
defined for (σ(T ),Ω, H). The unital ∗-representation B(σ(T )) → B(H) : f 7→ f(T ) satisfies
the following property: whenever (fi)i∈I is a net in B(σ(T )) such that fi → 0 weak∗ as i→∞,
we have fi(T )→ 0 weakly as i→∞.

Moreover, if ρ : B(σ(T )) → B(H) is another unital ∗-representation such that ρ(z) = T and
ρ(fi) → 0 weakly as i → ∞ whenever fi → 0 weak∗ as i → ∞, then ρ(f) = f(T ) for every
f ∈ B(σ(T )).

3. Introduction to von Neumann algebras

3.1. Definition and first examples of von Neumann algebras. For any nonempty subset
S ⊂ B(H), the commutant of S is defined by

S ′ := {T ∈ B(H) : ST = TS,∀S ∈ S} .
It is easy to see that one always has S ⊂ S ′′. Moreover, if S is stable under the adjoint
operation, then S ′ ⊂ B(H) is a weakly closed unital ∗-subalgebra.

Theorem 3.1 (Bicommutant Theorem). Let M ⊂ B(H) be any unital ∗-subalgebra. The
following assertions are equivalent.

(1) M = M ′′.
(2) M is strongly closed.
(3) M is weakly closed.
(4) M is ultrastrongly closed.
(5) M is ultraweakly closed.

Proof. (1) ⇒ (2). Let (xi)i∈I be a net in M such that xi → x strongly as i → ∞. Since
xiT = Txi for all i ∈ I and T ∈ M ′, by passing to the limit we get xT = Tx, for all T ∈ M ′.
Thus x ∈M . (2)⇒ (4) is obvious.

(4)⇒ (1). Let x ∈M ′′ and (ξn)n ∈ `2(N, H). Let

U(x, ε, (ξn)n) :=

{
y ∈ B(H) :

∑
n∈N
‖(x− y)ξn‖2 < ε2

}
be an ultrastrong neighborhood of x in B(H). Let K = `2(N, H) and define ρ : B(H) →
B(`2(N, H)) : T 7→ 1`2(N) ⊗ T . Let ξ = (ξn)n ∈ K. Define V = ρ(M)ξ ⊂ K. Denote by
PV : K → V ∈ B(K) the corresponding orthogonal projection. We have ρ(a)PV = PV ρ(a) for
all a ∈ M and hence PV ∈ ρ(M)′. Observe that ρ(M)′ can be identified inside B(`2(N, H))
as the set of infinite matrices indexed by N × N with coefficients in M ′. Since x ∈ (M ′)′,
it follows that ρ(x)PV = PV ρ(x). Thus ρ(x)ξ ∈ V and hence we can find y ∈ M such that
‖(ρ(x)− ρ(y))ξ‖ < ε. In particular, we have that y ∈ U(x, ε, (ξn)n). Then M ′′ is contained in
the ultrastrong closure of M and hence M = M ′′.

Since M ⊂ B(H) is convex, (2)⇔ (3) follows from Theorem 2.2. Likewise, (4)⇔ (5). �

Definition 3.2. A von Neumann algebra M is a unital ∗-subalgebra of B(H) which satisfies
one of the equivalent conditions of Theorem 3.1.

The first important example of von Neumann algebras we discuss comes from measure theory.
Let (X,µ) be a standard probability space. Define the unital ∗-representation π : L∞(X,µ)→
B(L2(X,µ)) given by multiplication: (π(f)ξ)(x) = f(x)ξ(x) for all f ∈ L∞(X,µ) and all
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ξ ∈ L2(X,µ). Since π is a C∗-algebraic isometric isomorphism, we will identify f ∈ L∞(X,µ)
with its image π(f) ∈ B(L2(X,µ)). When no confusion is possible, we will simply denote
L∞(X,µ) by L∞(X).

Proposition 3.3. We have L∞(X)′ ∩ B(L2(X,µ)) = L∞(X), that is, L∞(X) is maximal
abelian in B(L2(X,µ)). In particular, L∞(X) is a von Neumann algebra.

Proof. Let T ∈ L∞(X)′ ∩B(L2(X,µ)) and denote f = T1X ∈ L2(X,µ). For all ξ ∈ L∞(X) ⊂
L2(X,µ), we have

Tξ = Tξ 1X = ξT 1X = ξf = fξ.

For every n ≥ 1, put Un :=
{
x ∈ X : |f(x)| ≥ ‖T‖∞ + 1

n

}
. We have(

‖T‖∞ +
1

n

)
µ(Un)1/2 ≤ ‖f1Un‖2 = ‖T1Un‖2 ≤ ‖T‖∞ µ(Un)1/2,

hence µ(Un) = 0 for every n ≥ 1. This implies that ‖f‖∞ ≤ ‖T‖∞ and so T = f . �

The von Neumann algebra M = L∞(X) comes equipped with the faithful trace τµ given by
integration against the probability measure µ,

τµ(f) =

∫
X
f dµ, ∀f ∈ L∞(X).

Theorem 3.4 (Borel functional calculus in von Neumann algebras). Let H be any separable
Hilbert space and T ∈ B(H) any normal operator. Denote by AT = {T, T ∗}′′ the abelian von
Neumann subalgebra generated by T and T ∗.

Then the map B(σ(T ))→ AT : f 7→ f(T ) is an onto ∗-homomorphism. Moreover, there exists
a Borel probability measure µT on Sp(σ(T )) such that L∞(σ(T ), µT ) ∼= AT .

Proof. Let S ∈ {T, T ∗}′ ∩ B(H). Then for every f ∈ B(σ(T )), we have Sf(T ) = f(T )S by
Theorem 2.17 (3). This implies that f(T ) ∈ {T, T ∗}′′ = AT . Observe that C(σ(T )) is weak∗-
dense in B(σ(T )) and C∗(T, T ∗) is weakly dense in AT . Since the map B(σ(T )) → AT : f 7→
f(T ) is weak∗-weak continuous, it follows that it is onto.

By Zorn’s Lemma, there exists a maximal family (ξi)i∈I of pairwise orthogonal unit vectors in H
such that H =

⊕
i∈I AT ξi. Since H is separable, I is at most countable. Choose a sequence of

positive reals (αi)i∈I such that
∑

i∈I α
2
i = 1. Put ξ =

∑
i∈I αiξi ∈ H and µT (U) = 〈1U (T )ξ, ξ〉

for every U ⊂ σ(T ) Borel subset. Then µT is a Borel probability measure on σ(T ). For every
f ∈ B(σ(T )), we have

f(T ) = 0 if and only if f(T )ξ = 0 if and only if f = 0 µT -almost everywhere.

Thus, ker (B(σ(T ))→ AT : f 7→ f(T )) = {f ∈ B(σ(T )) : f = 0 µT -almost everywhere} and hence
L∞(σ(T ), µT ) ∼= AT . �

Observe that for any von Neumann M , the center of M defined by Z(M) = M ′ ∩M is an
abelian von Neumann algebra.

Definition 3.5. Let M ⊂ B(H) be a von Neumann algebra. We say that

• p ∈M is a projection if p = p∗ = p2.
• v ∈M is an isometry if v∗v = 1.
• u ∈M is a partial isometry if u∗u is a projection.
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Observe that if u∗u is a projection, then uu∗ is a projection as well. The set of projections of
M will be denoted by P(M). If K ⊂ H is a closed subspace, we denote by [K] ∈ B(H) the
orthogonal projection [K] : H → K.

We will always assume that M is σ-finite, that is, any family (pi)i∈I of pairwise orthogonal
projections in M is (at most) countable.

Exercise 3.6. Let M be any von Neumann algebra. The closed subspace K ⊂ H is u-invariant
for all u ∈ U(M) if and only if [K] ∈M ′.

Exercise 3.7. Let M be any von Neumann algebra and I ⊂ M any ultraweakly closed two-
sided ∗-ideal. Show that there exists a central projection z ∈ Z(M) such that I = Mz.

If (pi)i∈I is a family of projections, we denote by∨
i∈I

pi =

[∑
i∈I

ran(pi)

]
and

∧
i∈I

pi =

[⋂
i∈I

ran(pi)

]
.

If p ∈ B(H) is a projection, write p⊥ = 1− p. It is easy to check that (
∨
i∈I pi)

⊥ =
∧
i∈I p

⊥
i .

Proposition 3.8. Let M ⊂ B(H) be a von Neumann algebra. Then P(M) is a complete
lattice.

Proof. Let (pi)i∈I be a family of projections in M . Since M = (M ′)′, we have that ran(pi) is

u-invariant for all u ∈ U(M ′) and all i ∈ I. Thus
∑

i∈I ran(pi) is u-invariant for all u ∈ U(M ′),

whence
∨
i∈I pi ∈M . Moreover

∧
i∈I pi = (

∨
p⊥i )⊥ ∈M . �

Theorem 3.9 (Polar decomposition). Let M ⊂ B(H) be any von Neumann algebra and T ∈M
any element. Then T can be written T = U |T | where |T | ∈M and U ∈M is a partial isometry

with initial support ran(T ∗) and final support ran(T ).

Moreover, if T = V S with S ≥ 0 and V a partial isometry such that V ∗V = [ran(S)], then
S = |T | and V = U .

Proof. Since T ∈M , we have |T | = (T ∗T )1/2 ∈M . Observe that ker(T ) = ker(T ∗T ) = ker(|T |)
so that ran(T ∗) = ker(T )⊥ = ker(|T |)⊥ = ran(|T |). Define Uη = 0 for η ∈ ran(|T |)⊥ and
U |T |ξ = Tξ for all ξ ∈ H. One checks that U ∈ B(H) is a well-defined partial isometry such

that U∗U = [ran(T ∗)], UU∗ = [ran(T )] and T = U |T |.

Assume now that T = V S with S ≥ 0 and V ∗V = [ran(S)]. Then T ∗T = SV ∗V S = S2. Thus

S = (T ∗T )1/2 = |T |. The formula T = V |T | clearly shows that V = U .

Finally, using uniqueness, we can prove that U ∈ M . Indeed, let v ∈ U(M ′) be any unitary.

Then vTv∗ = vUv∗ v|T |v∗. Since T = vTv∗, we obtain |T | = v|T |v∗. Since U∗U = [ran(|T |)] ∈
M , we have (vUv∗)∗(vUv∗) = vU∗Uv∗ = U∗U and hence U = vUv∗ by uniqueness. This
implies that U ∈ (M ′)′ = M . �

3.2. The predual. Let M be any von Neumann algebra. Denote by M∗ ⊂ M∗ the subspace
of all ultraweakly continuous functionals on M . Recall the following fact.

Proposition 3.10. We have that M∗ is a closed subspace of M∗. Therefore, (M∗, ‖ · ‖) is a
Banach space.
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Proof. Let ϕ ∈ M∗ and (ϕi)i∈I be a net in M∗ such that lim ‖ϕ − ϕi‖ = 0. We have to show
that ϕ is strongly continuous on (M)1. Let x ∈ (M)1 and (xj)j∈J a net in (M)1 such that
xj → x strongly as j →∞. We have

|ϕ(x)− ϕ(xj)| ≤ |ϕ(x)− ϕi(x)|+ |ϕi(x)− ϕi(xj)|+ |ϕi(xj)− ϕ(xj)|
≤ 2‖ϕ− ϕi‖+ |ϕi(x)− ϕi(xj)|.

Let ε > 0. Choose i ∈ I such that ‖ϕ− ϕi‖ ≤ ε/3. Since ϕi is ultraweakly continuous, choose
j0 ∈ J such that for all j ≥ j0, |ϕi(x) − ϕi(xj)| ≤ ε/3. We obtain |ϕ(x) − ϕ(xj)| ≤ ε for all
j ≥ j0. This shows that ϕ is strongly continuous on (M)1 and hence ϕ ∈M∗. �

Theorem 3.11. Let M be any von Neumann algebra. The map Φ : M → (M∗)
∗ defined by

Φ(x)(ϕ) = ϕ(x) is an onto isometric linear map. Moreover, under the identification M =
(M∗)

∗, the ultraweak topology on M and the weak∗ topology on (M∗)
∗ coincide.

Proof. Assume M ⊂ B(H). For all x ∈M , we have

‖x‖∞ = sup {|〈xξ, η〉| : ξ, η ∈ H, ‖ξ‖ ≤ 1, ‖η‖ ≤ 1} .
Put ωξ,η = 〈· ξ, η〉. Since ωξ,η|M ∈ (M∗)1 for all ξ, η ∈ H such that ‖ξ‖ ≤ 1, ‖η‖ ≤ 1, it follows
that ‖x‖∞ = sup {|ϕ(x)| : ϕ ∈ (M∗)1}. Therefore Φ is an isometric embedding. It remains to
show that Φ is onto.

Let L ∈ (M∗)
∗. Define the bounded sesquilinear form b on H ×H by b(ξ, η) = L(ωξ,η|M ). By

Riesz Representation Theorem for sesquilinear forms, let T ∈ B(H) be the unique bounded
operator such that b(ξ, η) = 〈Tξ, η〉 for all ξ, η ∈ H. Let S ∈M ′ be a selfadjoint element. For
all x ∈M , we have ωSξ,η(x) = 〈xSξ, η〉 = 〈Sxξ, η〉 = 〈xξ, Sη〉 = ωξ,Sη(x) so that ωSξ,η = ωξ,Sη.
We obtain

〈TSξ, η〉 = b(Sξ, η) = L(ωSξ,η|M ) = L(ωξ,Sη|M ) = b(ξ, Sη) = 〈STξ, η〉.
Therefore T ∈M ′′ = M by the Bicommutant Theorem. We have

ωξ,η(T ) = 〈Tξ, η〉 = b(ξ, η) = L(ωξ,η|M ).

Since any ϕ ∈ M∗ can be written ϕ =
∑

n ωξn,ηn |M for some (ξn)n, (ηn)n ∈ `2(N, H) (see
Proposition 2.8) and since L is continuous, we obtain ϕ(T ) = L(ϕ) for all ϕ ∈ M∗. Thus
L = Φ(T ) and Φ is onto. �

Definition 3.12. Let M and N be any von Neumann algebras. A positive linear map π :
M → N is normal if for every uniformly bounded increasing net of selfadjoint elements (xi)i∈I
in M , we have

π

(
sup
i∈I

xi

)
= sup

i∈I
π(xi).

We have the following characterization of normal states.

Theorem 3.13. Let M be a von Neumann algebra together with a state ϕ ∈M∗. The following
are equivalent.

(1) ϕ is normal.
(2) Whenever (pi)i∈I is a family of pairwise orthogonal projections in M , we have

ϕ

(∑
i∈I

pi

)
=
∑
i∈I

ϕ(pi).

(3) ϕ is ultraweakly continuous.
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Proof. (1) ⇒ (2). Let (pi)i∈I be a family of pairwise orthogonal projections in M . Consider
the increasing net xJ =

∑
i∈J pi, where J ⊂ I is a finite subset. We have supJ xJ =

∑
i∈I pi

and so

ϕ

(∑
i∈I

pi

)
= ϕ

(
sup
J
xJ

)
= sup

J
ϕ(xJ) = sup

J

∑
i∈J

ϕ(pi) =
∑
i∈I

ϕ(pi).

(2)⇒ (3). Fix q ∈M a nonzero projection and ξ ∈ ran(q) such that ϕ(q) ≤ 1 < 〈qξ, ξ〉. There
exists a nonzero projection p ≤ q such that ϕ(pxp) ≤ 〈pxpξ, ξ〉 for all x ∈ M . Indeed, by
Zorn’s Lemma, let (pi)i∈I be a maximal family of pairwise orthogonal projections in M such
that ϕ(pi) ≥ 〈piξ, ξ〉 for all i ∈ I. By assumption, we have

ϕ

(∑
i∈I

pi

)
=
∑
i∈I

ϕ(pi) ≥
∑
i∈I
〈piξ, ξ〉 =

〈(∑
i∈I

pi

)
ξ, ξ

〉
.

Put p = q −
∑

i∈I pi and observe that p 6= 0. By maximality of the family (pi)i∈I , we have
ϕ(r) < 〈rξ, ξ〉 for every nonzero projection r ≤ p. Therefore, using the Spectral Theorem and
since ϕ is ‖ · ‖∞-continuous, we get ϕ(pxp) ≤ 〈pxpξ, ξ〉 for all x ∈ M+. By Cauchy–Schwarz
Inequality, we have for all x ∈ (M)1,

|ϕ(xp)|2 = |ϕ(1∗xp)|2 ≤ ϕ(px∗xp)ϕ(1) ≤ 〈px∗xpξ, ξ〉 = ‖xpξ‖2.

It follows that ϕ( · p) is strongly continuous on (M)1.

By Zorn’s Lemma, let (pi)i∈I be a maximal family of pairwise orthogonal projections such
that ϕ( · pi) is strongly continuous on (M)1 for all i ∈ I. By maximality of the family and
the previous reasoning, we have

∑
i∈I pi = 1. Therefore

∑
i∈I ϕ(pi) = ϕ(1) = 1. Let ε > 0.

There exists a finite subset F ⊂ I such for all finite subsets F ⊂ J ⊂ I, we have ϕ(p⊥J ) = 1−
ϕ(pJ) ≤ ε, where pJ =

∑
i∈J pi. Moreover the Cauchy–Schwarz Inequality yields |ϕ(xp⊥J )|2 ≤

ϕ(p⊥J )ϕ(xx∗) ≤ ε for all x ∈ (M)1 and all F ⊂ J ⊂ I. We have ‖ϕ − ϕ( · pJ)‖ ≤
√
ε for all

F ⊂ J ⊂ I. Since the net (ϕ( · pJ))J converges to ϕ in M∗ and since ϕ( · pJ) ∈M∗ for all finite
subsets J ⊂ I, we have ϕ ∈M∗. (3)⇒ (1) is trivial. �

Lemma 3.14. Let M ⊂ B(H) be any von Neumann algebra. Any ϕ ∈ M∗ is a linear combi-
nation of four elements in (M∗)+.

Proof. By Proposition 2.8, there exist (ξn)n, (ηn)n ∈ `2(N, H) such that ϕ(x) =
∑

n〈xξn, ηn〉
for all x ∈M . A simple calculation shows that we have

∀x ∈M, 〈xξn, ηn〉 =
1

4

3∑
k=0

ik〈x(ξn + ikηn), ξn + ikηn〉.

Put ϕk(x) =
∑

n〈x(ξn + ikηn), ξn + ikηn〉 for all x ∈ M . For every 0 ≤ k ≤ 3, we have
ϕk ∈ (M∗)+ and

ϕ =
1

4

3∑
k=0

ikϕk. �

Theorem 3.15. Any ∗-isomorphism between von Neumann algebras is normal and ultraweakly
continuous.

Proof. Let π : M → N be a ∗-isomorphism. Let (xi) be a uniformly bounded net of selfadjoint
operators in M and write x = supxi. We have π(xi) ≤ π(x) so that supπ(xi) ≤ π(x). Write
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y = supπ(xi). We have xi = π−1(π(xi)) ≤ π−1(y) so that x ≤ π−1(y). Thus y = π(x) and π is
normal.

For all ϕ ∈ (N∗)+, ϕ ◦ π is normal and thus ultraweakly continuous by Theorem 3.13. By
Lemma 3.14, we have ϕ ◦ π ∈M∗ for all ϕ ∈ N∗. Therefore, π is ultraweakly continuous. �

3.3. Kaplansky’s Density Theorem.

Theorem 3.16. Let A ⊂ B(H) be a unital ∗-subalgebra. Denote by M the strong closure of
A. The following are true.

• The strong closure of (A)1 is (M)1.
• The strong closure of (<(A))1 is (<(M))1.

Proof. We may assume that A is a unital C∗-algebra. First assume that x ∈ (<(M))1. Let
U(x, ε, ξi) be a strong neighbourhood of x with ε > 0 and ξ1, . . . , ξn ∈ H. Consider the
continuous function f(t) = 2t/(1 + t2) and observe that f is a homeomorphism from [−1, 1]
onto itself. By continuous functional calculus, let X ∈ (<(M))1 such that x = f(X). By strong
density of <(A) in <(M), we can find Y ∈ <(A) such that

‖(Y −X)xξi‖ < ε and

∥∥∥∥(Y −X)
1

1 +X2
ξi

∥∥∥∥ < ε/4 for all 1 ≤ i ≤ n.

Define y = f(Y ) and observe that y ∈ (<(A))1. We have

y − x =
2Y

1 + Y 2
− 2X

1 +X2

= 2
1

1 + Y 2
(Y (1 +X2)− (1 + Y 2)X)

1

1 +X2

= 2

(
1

1 + Y 2
(Y −X)

1

1 +X2
+

Y

1 + Y 2
(X − Y )

X

1 +X2

)
= 2

1

1 + Y 2
(Y −X)

1

1 +X2
+

1

2
y(X − Y )x.

It follows that ‖(y − x)ξi‖ < ε and so y ∈ U(x, ε, ξi).

Assume now that x ∈ (M)1. Consider

a =

(
0 x
x∗ 0

)
∈ (<(M2(M)))1.

The previous proof shows that there exists a net bi ∈ (<(M2(A)))1 of the form

bi =

(
αi βi
β∗i γi

)
which converges strongly to a. Since ‖bi‖ ≤ 1, we have ‖βi‖ ≤ 1. Finally, we obtain that
βi → x strongly as i→∞. �

Corollary 3.17. Let M be any von Neumann algebra, K any complex Hilbert space and π :
M → B(K) any unital ultraweakly continuous ∗-homomorphism. Then π(M) ⊂ B(K) is a von
Neumann algebra.

Proof. Observe that ker(π) ⊂ M is an ultraweakly closed two-sided ∗-ideal and hence of the
form ker(π) = Mz where z ∈ Z(M) is a central projection. Up to restrincting π|Mz : Mz →
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B(K), we may assume without loss of generality that π : M → B(K) is a unital ultraweakly
continuous ∗-isomorphism.

Denote byM the SOT closure of π(M) in B(K). Let T ∈M. By Kaplansky Density Theorem,
there exists a net Ti ∈ π(M) such that ‖Ti‖∞ ≤ ‖T‖∞ for every i ∈ I and Ti → T with respect
to SOT as i → ∞. Write Si = π−1(Ti) ∈ M and observe that ‖Si‖∞ = ‖Ti‖∞ ≤ ‖T‖∞ for
every i ∈ I. Since (M)1 is weakly compact and up to passing to a subnet, we may assume that
there exists S ∈ M such that Si → S with respect to WOT as i→∞. Since π is ultraweakly
continuous, we have that Ti = π(Si) → π(S) with respect to WOT as i → ∞. Since Ti → T
with respect to SOT as i → ∞, we have that Ti → T with respect to WOT as i → ∞. By
uniqueness of the limit, we obtain T = π(S) and hence π(M) is closed with respect to SOT. �

3.4. Tracial von Neumann algebras. A von Neumann algebra M is said to be tracial if it
is endowed with a faithful normal state τ which satisfies the trace relation:

τ(xy) = τ(yx), ∀x, y ∈M.

Such a tracial state will be refered to as a trace. We will say that M is a II1 factor if M is an
infinite dimensional tracial von Neumann algebra and a factor.

Let (M, τ) be a tracial von Neumann algebra. We endow M with the following inner product

〈x, y〉τ = τ(y∗x),∀x, y ∈M.

Denote by (πτ ,L
2(M), ξτ ) the GNS representation of M with respect to τ . To simplify the

notation, we identify πτ (x) with x ∈ M and regard M ⊂ B(L2(M)). Define J : Mξτ →
L2(M) : xξτ 7→ x∗ξτ . For all x, y ∈M , we have

〈Jxξτ , Jyξτ 〉 = 〈x∗ξτ , y∗ξτ 〉 = τ(yx∗) = τ(x∗y) = 〈yξτ , xξτ 〉.

Thus J : L2(M)→ L2(M) is a conjugate linear unitary such that J2 = 1.

Theorem 3.18. We have JMJ = M ′.

Proof. We first prove JMJ ⊂M ′. Let x, y, a ∈M . We have

JxJy aξτ = Jxa∗y∗ξτ = yax∗ξτ = yJxa∗ξτ = yJxJ aξτ

so that JxJy = yJxJ .

Claim 3.19. The faithful normal state x 7→ 〈xξτ , ξτ 〉 is a trace on M ′.

Let x ∈M ′. We first show that Jxξτ = x∗ξτ . Indeed, for every a ∈M , we have

〈Jxξτ , aξτ 〉 = 〈Jaξτ , xξτ 〉 = 〈x∗a∗ξτ , ξτ 〉
= 〈a∗x∗ξτ , ξτ 〉 = 〈x∗ξτ , aξτ 〉.

Let now x, y ∈M ′. We have

〈xyξτ , ξτ 〉 = 〈yξτ , x∗ξτ 〉 = 〈yξτ , Jxξτ 〉 = 〈xξτ , Jyξτ 〉
= 〈xξτ , y∗ξτ 〉 = 〈yxξτ , ξτ 〉.

Put τ ′ : M ′ → C : x 7→ 〈xξτ , ξτ 〉. Define the canonical antiunitary K on L2(M ′, τ ′) = M ′ξτ =
L2(M) by Kxξτ = x∗ξτ for all x ∈ M ′. The first part of the proof yields KM ′K ⊂ M ′′ = M .
Since K and J coincide on M ′ξτ , which is dense in L2(M), it follows that K = J . Therefore,
we have JM ′J ⊂M and so JMJ = M ′. �
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Definition 3.20. Let N ⊂ M be any inclusion of von Neumann algebras. A conditional
expectation E :M→N is a contractive unital N -N -bimodular linear map.

We next show that for inclusions of tracial von Neumann algebras N ⊂M , there always exists
a conditional expectation E : M → N .

Theorem 3.21. Let N ⊂ M be any inclusion of tracial von Neumann algebras and τ ∈ M∗
a distinguished faithful normal trace. Then there exists a unique trace preserving conditional
expectation EN : M → N .

Proof. We still denote by τ the faithful normal trace τ |N ∈ N∗. Regard L2(N) as a closed
subspace of L2(M) via the identity mapping L2(N) → L2(M) : xξτ 7→ xξτ . For all T ∈ M ,
define a sesquilinear form κT : L2(N)× L2(N)→ C by the formula

κT (xξτ , yξτ ) = τ(y∗Tx).

By Cauchy–Schwarz inequality, we have |κT (xξτ , yξτ )| ≤ ‖T‖∞‖xξτ‖‖yξτ‖ for all x, y ∈ N .
By Riesz Representation Theorem, there exists EN (T ) ∈ B(L2(N)) such that κT (xξτ , yξτ ) =
〈EN (T )xξτ , yξτ 〉 for all x, y ∈ N . Observe that ‖EN (T )‖∞ ≤ ‖T‖∞. For all x, y, a ∈ N , we
have

〈EN (T )Ja∗J xξτ , yξτ 〉 = 〈EN (T )xaξτ , yξτ 〉
= τ(y∗Txa)

= τ((ya∗)∗Tx)

= 〈EN (T )xξτ , ya
∗ξτ 〉

= 〈EN (T )xξτ , JaJyξτ 〉
= 〈Ja∗JEN (T )xξτ , yξτ 〉.

This implies that E(T ) ∈ (JNJ)′ = N . It is routine to check that EN : M → N is a trace
preserving conditional expectation.

We next show that there is a unique trace preserving conditional expectation E : M → N .
Indeed, for all T ∈M and all x, y ∈ N , we have

〈E(T )xξτ , yξτ 〉 = τ(y∗E(T )x)

= τ(E(y∗Tx))

= τ(y∗Tx)

= 〈EN (T )xξτ , yξτ 〉.
This shows that E(T ) = EN (T ) for every T ∈M and hence E = EN . �

3.5. Type II1 factors. The next result is a WOT version of Dixmier averaging property.

Theorem 3.22 (WOT-Dixmier property). Let M be any type II1 factor. Then for every
x ∈M , we have

co {uxu∗ : u ∈ U(M)}WOT ∩C1 6= ∅.
In particular, there exists a unique normal tracial state on M .

Proof. Let x ∈M be any element. Denote by Kx = co {uxu∗ : u ∈ U(M)}WOT
the weak closure

of the convex hull of the uniformly bounded set {uxu∗ : u ∈ U(M)}. Observe that Kx ⊂ M
is a uniformly bounded WOT-closed convex subset of M . We claim that Kxξτ ⊂ L2(M) is
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a weakly closed convex subset. Indeed, let (xi)i∈I be a net in Kx and η ∈ L2(M) such that
xiξτ → η weakly as i → ∞. Since (xi)i∈I is uniformly bounded, up to passing to a subnet,
we may assume that there exists y ∈ M such that xi → y with respect to WOT as i → ∞.
Since Kx is WOT-closed, we have y ∈ Kx. Since xi → y with respect to WOT as i → ∞,
it follows that xiξτ → yξτ weakly as i → ∞. By uniqueness of the limit, we have η = yξτ .
This shows that Kxξτ ⊂ L2(M) is a weakly closed convex subset. By Hahn–Banach Theorem,
Kxξτ ⊂ L2(M) is a ‖ · ‖-closed convex subset.

Denote by z ∈ Kx the unique element such that zξτ has minimal ‖ · ‖2-norm. Observe that
uJuJ Kx = Kx and ‖uJuJ zξτ‖ = ‖zξτ‖ for every u ∈ U(M). By uniqueness, it follows that
for every u ∈ U(M), we have uJuJ zξτ = zξτ , that is, uzu∗ = z and hence z ∈ C1. This shows
that z ∈ Kx ∩C1 6= ∅.
Let τ be any normal tracial state on M . By traciality and ultraweak continuity, we have that
τ is constant on Kx and moreover Kx ∩C1 = {τ(x)1}. This shows that τ is indeed unique. �

Theorem 3.23 (Equivalence of projections). Let M be any type II1 factor. Denote by τ the
unique (faithful) normal trace on M . Let p, q ∈M be any projections. The following assertions
are equivalent:

(1) τ(p) = τ(q).
(2) There exists u ∈ U(M) such that upu∗ = q.

Proof. Since (2) ⇒ (1) is obvious, we only have to prove (1) ⇒ (2). We may assume that
p /∈ {0, 1} so that q /∈ {0, 1}. We claim that there exists a nonzero partial isometry v ∈M such
that v∗v ≤ p and vv∗ ≤ q. Indeed, since p, q 6= 0 and since M is a factor, there exists x ∈ M
such that qxp 6= 0. Write qxp = v|qxp| for the polar decomposition of qxp ∈ M . Then v ∈ M
is a nonzero partial isometry such that v∗v ≤ p and vv∗ ≤ q.
Next, denote by J the directed set of all families ((pi)i∈I , (qi)i∈I) such that pi ≤ p and qi ≤ q
for all i ∈ I; the projections (pi)i∈I (resp. (qi)i∈I) are pairwise orthogonal; for every i ∈ I,
there exists a partial isometry vi ∈ M such that v∗i vi = pi and viv

∗
i = qi. The set J is clearly

inductive. By Zorn’s Lemma, let ((pi)i∈I , (qi)i∈I) ∈ J be a maximal element. Assume by
contradiction that

∑
i∈I pi 6= p. Since τ(p) = τ(q) and since τ(pi) = τ(qi) for every i ∈ I, we

also have
∑

i∈I qi 6= q. Applying the previous claim to p−
∑

i∈I pi and q −
∑

i∈I qi, we obtain
a nonzero partial isometry v ∈ M such that v∗v ≤ p −

∑
i∈I pi and vv∗ ≤ q −

∑
i∈I qi. Then

(((pi)i∈I , v
∗v), ((qi)i∈I , vv

∗)) ∈ J , which contradicts the maximality of ((pi)i∈I , (qi)i∈I) ∈ J .

If we let v =
∑

i∈I vi, then v ∈ M is a partial isometry such that v∗v = p and vv∗ = q. Since

τ(p⊥) = τ(q⊥), the same reasoning as before shows that there exists a partial isometry w ∈M
such that w∗w = p⊥ and ww∗ = q. Then u = v + w ∈ U(M) satisfies upu∗ = q. �

3.6. The hyperfinite type II1 factor. We start by proving a noncommutative version of the
‖ · ‖2-convergence theorem for martingales.

Lemma 3.24 (Noncommutative martingales). Let (M, τ) be any tracial von Neumann algebra.
Let Bn ⊂M be an increasing sequence of von Neumann subalgebras such that

∨
n∈NBn = M .

For every n ∈ N, denote by En : M → Bn the unique trace preserving conditional expectation.
The following assertions are true.

• For every x ∈M , we have limn ‖En(x)− x‖2 = 0.
• Let (xn)n be a uniformly bounded sequence in M such that xn ∈ Bn and xn = EBn(xn+1)

for all n ∈ N. Then there exists x ∈ M such that xn = En(x) for all n ∈ N and
limn ‖x− xn‖2 = 0.
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Proof. Denote by en : L2(M) → L2(Bn) the orthogonal projection corresponding to the con-
ditional expectation En : M → Bn. Since (Bn)n is an increasing sequence of von Neumann
subalgebras, we have that (en)n is an increasing sequence of projections in B(L2(M)). Since∨
n∈NBn = M , we have

∨
n∈N en = 1. It is easy to see that this implies that limn ‖En(x)−x‖2 =

0 for all x ∈M .

Next, let (xn)n be a uniformly bounded sequence in M such that xn ∈ Bn and xn = EBn(xn+1)
for all n ∈ N. We have En(xp) = xn for all p ≥ n. Let x ∈ M be a weak limit point for
the sequence (xn)n. In particular, we have En(x) = xn for all n ∈ N. By the first item, we
moreover have limn ‖x− xn‖2 = 0. �

Let An := M2n(C) and regard An ⊂ An+1 via the unital embedding

A 7→
(
A 0
0 A

)
.

This unital embedding preserves the normalized trace on matrices as well as the uniform norm.
Let A∞ =

⋃
n∈NAn and observe that A∞ is a unital ∗-algebra endowed with a norm ‖·‖ which

satisfies ‖a∗a‖ = ‖a‖2 for all a ∈ A∞. Moreover, the normalized trace on matrices induces a
faithful trace τ∞ : A∞ → C which satisfies |τ∞(a)| ≤ ‖a‖ and τ∞(a∗a) ≥ 0 for all a ∈ A∞.

As we did for unital C∗-algebras, we may perform the GNS construction for (A∞, τ∞). We
obtain a unital isometric ∗-representation

πτ∞ : A∞ → B(L2(A∞, τ∞)) : a 7→ (bξτ∞ 7→ abξτ∞) .

For simplicity, write H = L2(A∞, τ∞).

Theorem 3.25. We have that R := πτ∞(A∞)′′ ⊂ B(H) is a type II1 factor and the vector
state 〈 · ξτ∞ , ξτ∞〉 defines a faithful normal trace on R.

Proof. Let ϕ = 〈 · ξτ∞ , ξτ∞〉 be the vector state defined on R. In order to show that ϕ is faithful,
we have to show that ξτ∞ is separating for πτ∞(A∞)′′, that is, ξτ∞ is cyclic for πτ∞(A∞)′. Define

J : πτ∞(A∞)→ H : πτ∞(a)ξτ∞ 7→ πτ∞(a∗)ξτ∞ .

As in the proof of Theorem 3.18, we check that J defines an antiunitary and that Jπτ∞(A∞)′′J ⊂
πτ∞(A∞)′. Since ξτ∞ is cyclic for Jπτ∞(A∞)′′J , this implies that ξτ∞ is cyclic for πτ∞(A∞)′

and hence ξτ∞ is separating for πτ∞(A∞)′′.

The state ϕ is clearly normal and since ϕ(πτ∞(x)πτ∞(y)) = ϕ(πτ∞(y)πτ∞(x)) for all x, y ∈ A∞,
we obtain that ϕ is a trace on R. We will simply denote it by τ from now on.

Observe that Qn := πτ∞(An) = πτ∞(An)′′ is an increasing sequence of finite dimensional von
Neumann subalgebras of R such that

∨
n∈NQn = R. Denote by En : R → Qn the unique

trace preserving conditional expectation. Let z ∈ Z(R) and define zn = En(z). We have
zn ∈ Z(Qn), whence zn = τ(zn)1 = τ(z)1 for all n ∈ N. Since limn ‖z − zn‖2 = 0, we have
z = τ(z)1. Therefore R is a type II1 factor. �

The type II1 factor R is called the hyperfinite type II1 factor of Murray–von Neumann. In their
seminal work [MvN43], Murray–von Neumann showed the uniqueness of the hyperfinite type
II1 factor.

Exercise 3.26. Let N be any type II1 factor. Show that there exists a unital ∗-isomorphism
π : R→ N .
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4. Group von Neumann algebras and group measure space constructions

4.1. Group von Neumann algebras. Let Γ be a countable discrete group. The left regular
representation λ : Γ→ U(`2(Γ)) is defined by λsδt = δst for all s, t ∈ Γ.

Definition 4.1 (Group von Neumann algebra). The group von Neumann algebra L(Γ) is de-
fined as the weak closure of the linear span of {λs : s ∈ Γ}.

Likewise, we can define the right regular representation ρ : Γ → U(`2(Γ)) by ρsδt = δts−1 for
all s, t ∈ Γ. The right von Neumann algebra R(Γ) is defined as the weak closure of the linear
span of {ρs : s ∈ Γ}. We obviously have L(Γ) ⊂ R(Γ)′.

Proposition 4.2. The vector state τ : L(Γ) → C : x 7→ 〈xδe, δe〉 is a faithful normal trace.
Moreover L(Γ) = R(Γ)′.

Proof. It is clear that τ is normal. We moreover have

τ(λsλt) = τ(λst) = δst,e = δts,e = τ(λts) = τ(λtλs).

It follows that τ is a trace on L(Γ). Assume now that τ(x∗x) = 0, that is, xδe = 0 for x ∈ L(Γ).
For all t ∈ Γ, we have xδt = xρt−1δe = ρt−1xδe = 0. Therefore x = 0. Hence τ is faithful.

We can identify `2(Γ) with L2(L(Γ)) via the unitary mapping δg 7→ ug. Under this identification,
we have Jδt = δt−1 . An easy calculation shows that for all s, t ∈ Γ, we have

JλsJ δt = Jλsδt−1 = Jδst−1 = δts−1 = ρs δt.

Therefore, JλsJ = ρs for all s ∈ Γ. It follows that L(Γ)′ = JL(Γ)J = R(Γ) and thus L(Γ) =
R(Γ)′. �

Let x ∈ L(Γ) and write xδe =
∑

s∈Γ xsδs ∈ `2(Γ) with xs = 〈xδe, δs〉 = τ(xλ∗s) for all s ∈ Γ.
As we have seen, the family (xs)s∈Γ completely determines x ∈ L(Γ). We shall denote by
x =

∑
s∈Γ xsλs the Fourier expansion of x ∈ L(Γ).

The above sum
∑

s∈Γ xsλs does not converge in general for any of the topologies on B(`2(Γ)).
However, the net of finite sums (xF )F defined by xF =

∑
s∈F xsλs for F ⊂ Γ a finite subset

does converge for the ‖ · ‖2-norm. Indeed, since (xs) ∈ `2(Γ), for any ε > 0, there exists F0 ⊂ Γ
finite subset such that

∑
s∈Γ\F0

|xs|2 ≤ ε2. Thus, for every finite subset F ⊂ Γ such that

F0 ⊂ F , we have ‖x− xF‖22 =
∑

s∈Γ\F |xs|2 ≤ ε2.

The notation x =
∑

s∈Γ xsλs behaves well with respect to taking the adjoint and multiplication.

Proposition 4.3. Let x =
∑

s∈Γ xsλs (resp. y =
∑

t∈Γ ytλt) be the Fourier expansion of
x ∈ L(Γ) (resp. y ∈ L(Γ)). Then we have

• x∗ =
∑

s∈Γ xs−1λs.

• xy =
∑

t∈Γ

(∑
t∈Γ xsys−1t

)
λt, with

∑
s∈Γ xsys−1t ∈ C for all t ∈ Γ, by Cauchy–Schwarz

inequality.

Proof. For the first item, observe that

(x∗)s = τ(x∗λ∗s) = τ(λsx) = τ(xλ∗
s−1) = xs−1 .

For the second item, observe that using Cauchy–Schwarz inequality, we have

(xy)t = τ(xyλ∗t ) =
∑
s∈Γ

xsτ(λsyλ
∗
t ) =

∑
s∈Γ

xsτ(yλ∗s−1t) =
∑
s∈Γ

xsys−1t. �
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Thanks to the Fourier expansion, we can compute the center Z(L(Γ)) of the group von Neumann
algebra. We say that Γ is icc (infinite conjugacy classes) if for every s ∈ Γ \ {e}, the conjugacy
class {tst−1 : t ∈ Γ} is infinite.

Proposition 4.4. We have x =
∑

s∈Γ xsλs ∈ Z(L(Γ)) if and only if xtst−1 = xs for all s, t ∈ Γ.
In particular, L(Γ) is a factor if and only if Γ is icc.

Thus, L(Γ) is a type II1 factor whenever Γ is infinite and icc.

Proof. We have

x =
∑
s∈Γ

xsλs ∈ Z(L(Γ))⇔ λ∗txλt = x,∀s ∈ Γ

⇔ xtst−1 = xs,∀s, t ∈ Γ.

If Γ is icc and x ∈ Z(L(Γ)), since (xtst−1)t ∈ `2(Γ), for all s ∈ Γ, it follows that xs = 0 for all
s ∈ Γ \ {e}. Hence Z(L(Γ)) = C1.

If Γ is not icc, then F = {tst−1 : t ∈ Γ} is finite for some s ∈ Γ \ {e}. Then
∑

h∈F λh ∈
Z(L(Γ)) \C1. �

Example 4.5. Here are a few examples of icc groups: the subgroup S∞ < S(N) of finitely
supported permutations; the free groups Fn for n ≥ 2; the lattices PSL(n,Z) for n ≥ 2.

Hence Proposition 4.4 provides many examples of type II1 factors arising from countable dis-
crete groups.

Exercise 4.6. Let T = [Tst]s,t∈Γ ∈ B(`2(Γ)), with Tst = 〈Tδt, δs〉 for all s, t ∈ Γ. Show
that T ∈ L(Γ) if and only if T is constant down the diagonals, that is, Tst = Tgh whenever
st−1 = gh−1.

Example 4.7. Assume that Γ is a countable discrete abelian group. Then the Pontryagin dual

Γ̂ is a compact second countable abelian group. Write F : `2(Γ)→ L2(Γ̂,Haar) for the Fourier
transform which is defined by F(δs)(χ) = 〈s, χ〉. Observe that F is a unitary operator. We
have

L∞(Γ̂) = FL(Γ)F∗.

4.2. Murray–von Neumann’s group measure space construction. Let Γ y (X,µ)
be a probability measure preserving (pmp) action. Define the action σ : Γ y L∞(X) by
(σs(F ))(x) = F (s−1x) for all F ∈ L∞(X). This action extends to a unitary representation
σ : Γ → U(L2(X)). Put H = L2(X) ⊗ `2(Γ). Put us = σs ⊗ λs for all s ∈ Γ. Observe
that by Fell’s absorption principle, the representation Γ → U(H) : s 7→ us is unitarily con-
jugate to a multiple of the left regular representation. We will identify F ∈ L∞(X) with
F ⊗ 1 ∈ L∞(X)⊗C1.

We have the following covariance relation:

usFu
∗
s = σs(F ), ∀F ∈ L∞(X), ∀s ∈ Γ.

Definition 4.8 (Murray–von Neumann [MvN43]). The group measure space construction
L∞(X) o Γ is defined as the weak closure of the linear span of {Fus : F ∈ L∞(X), s ∈ Γ}.

Put M = L∞(X) o Γ. Define the unital faithful ∗-representation π : L∞(X) → B(H) by
π(F )(ξ ⊗ δt) = σt(F )ξ ⊗ δt. Denote by N the von Neumann algebra acting on H generated by
π(L∞(X)) and (1⊗ ρ)(Γ). It is straightforward to check that M ⊂ N ′.
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Proposition 4.9. The vector state τ : M → C defined by τ(x) = 〈x(1X ⊗ δe),1X ⊗ δe〉 is a
faithful normal trace. Moreover we have M = N ′.

Proof. It is clear that τ is normal. We moreover have

τ(FusGut) = τ(Fσs(G)ust)

= δst,e

∫
X
F (x)G(s−1x) dµ(x)

= δst,e

∫
X
F (sx)G(x) dµ(x)

= δts,e

∫
X
G(x)F (t−1x) dµ(x)

= τ(Gσt(F )uts)

= τ(Gut Fus).

It follows that τ is a trace on M . Assume that τ(b∗b) = 0, that is, b(1X ⊗ δe) = 0. For all
s ∈ Γ and all F ∈ L∞(X), we have

b (F ⊗ δt) = b π(σt−1(F ))(1⊗ ρt−1)(1X ⊗ δe)
= π(σt−1(F ))(1⊗ ρt−1) b(1X ⊗ δe) = 0.

It follows that b = 0. Hence τ is faithful.

We will identify L2(M) with L2(X)⊗`2(Γ) via the unitary mapping Fusξτ 7→ F⊗δs. Under this
identification, the conjugation J : L2(M) → L2(M) is defined by J(ξ ⊗ δs) = σs−1(ξ∗) ⊗ δs−1 .
For all F ∈ L∞(X) and all s ∈ Γ, we have

J(σs ⊗ λs)J = 1⊗ ρs
J(F ⊗ 1)J = π(F )∗.

Therefore, we get M = N ′. �

Observe that when the probability space X = {•} is a point, then the group von Neumann
algebra and the group measure space construction coincide, that is, L∞(X) o Γ = L(Γ).

Proposition 4.10 (Fourier expansion). Let Γ y (X,µ) be a pmp action. Let A = L∞(X) and
M = L∞(X) o Γ. Denote by EA : M → A the unique trace preserving conditional expectation.
Every a ∈ M has a unique Fourier expansion of the form a =

∑
s∈Γ asus with as = EA(au∗s)

for all s ∈ Γ. The convergence holds for the ‖ · ‖2-norm. Moreover, we have the following:

• a∗ =
∑

s∈Γ σs−1(a∗s)us.

• ‖a‖22 =
∑

s∈Γ ‖as‖22.

• ab =
∑

t∈Γ

(∑
s∈Γ asσs(bs−1t)

)
ut.

Proof. Define the unitary mapping U : L2(M) → L2(X) ⊗ `2(Γ) by the formula U(ausξτ ) =
a ⊗ δs. Then Uξτ = 1X ⊗ δe is a cyclic separating vector for M represented on the Hilbert
space L2(X)⊗ `2(Γ). We identify L2(M) with L2(X)⊗ `2(Γ). Under this identification, eA is
the orthogonal projection L2(X)⊗ `2(Γ)→ L2(X)⊗Cδe. Moreover, useAu

∗
s is the orthogonal

projection L2(X)⊗ `2(Γ) → L2(X)⊗Cδs and thus
∑

s∈Γ useAu
∗
s = 1. Let a ∈ M . Regarding

a(1X ⊗ δe) ∈ L2(X)⊗ `2(Γ), we know that there exists as ∈ L2(X) such that

a(1X ⊗ δe) =
∑
s∈Γ

as ⊗ δs and ‖a‖22 =
∑
s∈Γ

‖as‖22.
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Then we have

as ⊗ δs = useAu
∗
sa(1X ⊗ δe)

= useAu
∗
saeA(1X ⊗ δe)

= usEA(u∗sa)(1X ⊗ δe)
= EA(au∗s)⊗ δs.

It follows that as = EA(au∗s). Therefore, we have a =
∑

s∈Γ EA(au∗s)us and the convergence

holds for the ‖ · ‖2-norm. Moreover, ‖a‖22 =
∑

s∈Γ ‖EA(au∗s)‖22. The rest of the proof is left to
the reader. �

Like in the group case, the sum a =
∑

s∈Γ asus does not converge in general for any of the

operator topologies on B(L2(X)⊗ `2(Γ)).

Definition 4.11. Let Γ y (X,µ) be a pmp action.

• We say that the action is (essentially) free if µ({x ∈ X : sx = x}) = 0 for all s ∈ Γ\{e}.
• We say that the action is ergodic if every Γ-invariant measurable subset U ⊂ X has

measure 0 or 1.

Lemma 4.12. Let Γ y (X,µ) be a pmp action and denote by σ : Γ→ L2(X)0 the corresponding
Koopman representation where L2(X)0 = L2(X)	C1X . The following are equivalent:

(1) The action Γ y (X,µ) is ergodic.
(2) The Koopman representation σ → U(L2(X)0) has no nonzero invariant vectors.

Proof. (1)⇒ (2) Let ξ ∈ L2(X)0 such that σs(ξ) = ξ for all s ∈ Γ. By considering the real part
and the imaginary part of ξ ∈ L2(X)0, we may further assume that ξ ∈ L2(X)0 is real-valued.
For every t ∈ R, define Ut = {x ∈ X : ξ(x) ≥ t}. It follows that Ut is Γ-invariant for all t ∈ R
and thus µ(Ut) ∈ {0, 1} by ergodicity. Since the fonction t 7→ µ(Ut) is decreasing and since
ξ ∈ L2(X), there exists t0 ∈ R such that µ(Ut) = 1 for all t < t0 and µ(Ut) = 0 for all t > t0.
Therefore ξ(x) = t0 for µ-almost every x ∈ X. Since ξ ∈ L2(X)0, we get t0 = 0 and so ξ = 0.

(2) ⇒ (1) Let U ⊂ X be a Γ-invariant measurable subset. Put ξ = 1U − µ(U)1X ∈ L2(X)0.
Since σs(ξ) = ξ for all s ∈ Γ, we get ξ = 0 and so 1U = µ(U)1X . Hence µ(U) ∈ {0, 1}. �

Examples 4.13. Here are a few examples of pmp free ergodic actions Γ y (X,µ).

(1) Bernoulli actions. Let Γ be an infinite group and (Y, η) a nontrivial probability space,
that is, η is not a Dirac point mass. Put (X,µ) = (Y Γ, ν⊗Γ). Consider the Bernoulli
action Γ y Y Γ defined by

s · (yt)t∈Γ = (ys−1t)t∈Γ.

Then the Bernoulli action is pmp free and mixing, so in particular ergodic.
(2) Profinite actions. Let Γ be an infinite residually finite group together with a decreas-

ing chain of finite index normal subgroups ΓnCΓ such that Γ0 = Γ and ∩n∈NΓn = {e}.
Then for all n ≥ 1, the action Γ y (Γ/Γn, µn) is transitive and preserves the normalized
counting measure µn. Consider the profinite action defined as the projective limit

Γ y (G, µ) = lim←−Γ y (Γ/Γn, µn).

Then Γ sits as a dense subgroup of the compact group G which is the profinite comple-
tion of Γ with respect to the decreasing chain (Γn)n∈N. Observe that µ is the unique
Haar probability measure on G. The profinite action is pmp free and ergodic.
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(3) Actions on tori. Let n ≥ 2. Consider the action SL(n,Z) y (Tn, λn) where Tn =
Rn/Zn is the n-torus and λn is the unique Haar probability measure. This action is
pmp free and ergodic.

We always assume that (X,µ) is a standard probability space. In particular, X is countably
separated in the sense that there exists a sequence of Borel subsets Vn ⊂ X such that

⋃
n Vn =

X, µ(Vn) > 0 for all n ∈ N and with the property that whenever x, y ∈ X and x 6= y, there
exists n ∈ N for which x ∈ Vn and y /∈ Vn.

Proposition 4.14. Let Γ y (X,µ) be a pmp action. Put A = L∞(X) and M = L∞(X) o Γ.

(1) The action is free if and only if A ⊂M is maximal abelian, that is, A′ ∩M = A.
(2) Under the assumption that the action is free, the action is ergodic if and only if M is

a factor.

Proof. (1) Assume that the action is free. Let b ∈ A′ ∩M and write b =
∑

s∈Γ bsus for its
Fourier expansion. Then for all a ∈ A and all s ∈ Γ, we have abs = σs(a)bs. Fix s ∈ Γ \ {e}
and put Us = {x ∈ X : bs(x) 6= 0, sx 6= x}. We have 1Usa = 1Usσs(a) for all a ∈ A.

By assumption, we have Us = Us ∩
⋃
n(Vn ∩ s(Vn)c). So, if µ(Us) > 0, there exists n ∈ N such

that µ(Us∩Vn∩s(Vn)c) > 0. With a = 1Vn , we get 1Us∩Vn = 1Us1Vn = 1Usσs(1Vn) = 1Us∩s(Vn)

and thus 1Us∩Vn∩s(Vn)c = 0, which is a contradiction. Therefore, µ(Us) = 0. Since the action is
moreover free, we get bs = 0. This implies that b ∈ A.

Conversely, assume that A′∩M = A. For all s ∈ Γ\{e}, put as = 1{x∈X:sx=x}. We have asus ∈
A′ ∩M = A. Hence asus = EA(asus) = 0 and so as = 0. Therefore µ({x ∈ X : sx = x}) = 0.

(2) Under the assumption that the action is free, we have Z(M) = M ′ ∩M = M ′ ∩ A = AΓ.
Therefore, the action is ergodic if and only if Z(M) = C1. �

Let A ⊂ M be any inclusion of von Neumann algebras. Denote by NM (A) := {u ∈ U(M) :
uAu∗ = A} the group of unitaries normalizing A inside M and by NM (A)′′ the normalizer of
A inside M . We say that A ⊂ M is a Cartan subalgebra when the following three conditions
are satisfied:

(1) A is maximal abelian, that is, A = A′ ∩M ;
(2) There exists a faithful normal conditional expectation EA : M → A;
(3) NM (A)′′ = A.

For every free pmp action Γ y (X,µ), L∞(X) ⊂ L∞(X) o Γ is a Cartan subalgebra by
Proposition 4.14.

5. Amenable von Neumann algebras

5.1. Connes’s theory of bimodules. The discovery of the appropriate notion of representa-
tions for von Neumann algebras, as so-called correspondences or bimodules, is due to Connes.
Whenever M is a von Neumann algebra, we denote by Mop its opposite von Neumann algebra.

Definition 5.1. Let M,N be tracial von Neumann algebras. A Hilbert space H is said to be
an M -N -bimodule if it comes equipped with two commuting normal unital ∗-representations
λ : M → B(H) and ρ : Nop → B(H). We shall intuitively write

xξy = λ(x)ρ(yop)ξ, ∀ξ ∈ H,∀x ∈M,∀y ∈ N.
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We will sometimes denote by πH : M ⊗alg N
op → B(H) the unital ∗-representation associated

with the M -N -bimodule structure on H.

Examples 5.2. Here are important examples of bimodules:

(1) The identity M -M -bimodule L2(M) with xξy = xJy∗Jξ.
(2) The coarse M -N -bimodule L2(M)⊗ L2(N) with x(ξ ⊗ η)y = (xξ)⊗ (ηy).
(3) For any τ -preserving automorphism θ ∈ Aut(M), we regard L2

θ(M) = L2(M) with the
following M -M -bimodule structure: xξy = xξθ(y).

We will say that two M -N -bimodules MHN and MKN are isomorphic and write MHN ∼= MKN
if there exists a unitary mapping U : H → K such that

U(xξy) = xU(ξ)y,∀ξ ∈ H, ∀x ∈M,∀y ∈ N.

Like for unitary group representations, we can define a notion of weak containment of Hilbert
bimodules. Let M,N be any tracial von Neumann algebras and MHN ,MKN any bimodules.
Consider the unital ∗-representations πH : M ⊗alg N

op → B(H) and πK : M ⊗alg N
op → B(K).

Definition 5.3 (Weak containment). We say thatH is weakly contained inK and writeH ⊂weak

K if ‖πH(T )‖ ≤ ‖πK(T )‖ for all T ∈M ⊗alg N
op.

Let π : Γ→ U(Kπ) be a unitary representation of a countable discrete group Γ. Put M = L(Γ)
and denote by (λs)s∈Γ the canonical unitaries in M . Define on H(π) = Kπ⊗`2(Γ) the following
M -M -bimodule structure. For all ξ ∈ Kπ and all s, t ∈ Γ, define

λs (ξ ⊗ δt) = πs(ξ)⊗ δst
(ξ ⊗ δt)λs = ξ ⊗ δts.

It is clear that the right multiplication extends to the whole von Neumann algebra M . Observe
now that the unitary representations π⊗λ and 1Kπ ⊗λ are unitarily conjugate. Indeed, define
U : Kπ ⊗ `2(Γ)→ Kπ ⊗ `2(Γ) by

U(ξ ⊗ δt) = πt(ξ)⊗ δt.

It is routine to check that U is a unitary and U(1Kπ⊗λs)U∗ = πs⊗λs for every s ∈ Γ. Therefore,
the left multiplication extends to M . Denote by 1Γ : Γ→ U(C) the trivial representation.

Proposition 5.4 (Representations and Bimodules). The formulae above endow the Hilbert
space H(π) = Kπ⊗`2(Γ) with a structure of M -M -bimodule. Moreover, the following assertions
hold true:

(1) MH(1Γ)M ∼= ML2(M)M and MH(λΓ)M ∼= M (L2(M)⊗ L2(M))M .
(2) For all unitary Γ-representations π1 and π2 such that π1 ⊂weak π2, we have

MH(π1)M ⊂weak MH(π2)M .

Proof. The proof is left as an exercise. �
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5.2. Powers–Størmer’s inequality. For an inclusion of von Neumann algebra M ⊂ N , we
say that a state ϕ ∈ N ∗ is M -central if ϕ(xT ) = ϕ(Tx) for all x ∈M and all T ∈ N . We will
be using the following notation: for all x ∈M , put x = (xop)∗ ∈Mop.

Regarding M ⊗alg M
op ⊂ B(L2(M)⊗ L2(M)), we will denote by ‖ · ‖min the operator norm on

M ⊗alg M
op induced by B(L2(M) ⊗ L2(M)). It is called the minimal tensor norm. We will

also denote by M ⊗Mop := (M ⊗alg M
op)′′ ⊂ B(L2(M)⊗ L2(M)).

Let H be any complex Hilbert space. For every p ≥ 1, define the pth-Schatten class Sp(H) by

Sp(H) = {T ∈ B(H) : Tr(|T |p) <∞} .

It is a Banach space with norm given by ‖T‖p = Tr(|T |p)1/p. Observe that S1(H) is the space
of trace-class operators and S2(H) is the Hilbert space of Hilbert–Schmidt operators. It is also
denoted by HS(H).

Let (M, τ) be a tracial von Neumann algebra. The unitary mapping U : HS(L2(M)) →
L2(M)⊗ L2(M) defined by U(〈 · , η〉ξ) = ξ ⊗ Jη is an M -M -bimodule isomorphism.

We will be using the following technical results.

Lemma 5.5. Let A be any unital C∗-algebra, u ∈ (A)1 and ω ∈ A∗ any state. Then we have

max {‖ω − ω(u · )‖, ‖ω − ω( ·u∗)‖, ‖ω − ω ◦Ad(u)‖} ≤ 2
√

2|1− ω(u)|.

Proof. Let (πω,Hω, ξω) be the GNS representation associated with the state ω on A. Then
ω(a) = 〈πω(a)ξω, ξω〉 for all a ∈ A. We have

‖ω − ω( ·u∗)‖ ≤ ‖ξω − πω(u)∗ξω‖ ≤
√

2(1−<(ω(u))) ≤
√

2|1− ω(u)|.

Likewise, we get ‖ω − ω(u · )‖ ≤
√

2|1− ω(u)|. Moreover, we have

‖ω − ω ◦Ad(u)‖ ≤ 2‖ξω − πω(u)∗ξω‖ ≤ 2
√

2|1− ω(u)|. �

The previous lemma implies in particular that when ω(u) = 1, then

ω = ω( ·u∗) = ω(u · ) = ω ◦Ad(u).

Lemma 5.6 (Powers–Størmer’s Inequality). Let H be any Hilbert space and S, T ∈ S2(H)+.
Then we have

‖S − T‖22 ≤ ‖S2 − T 2‖1 ≤ ‖S − T‖2‖S + T‖2.

Before starting the proof, we make the following observations:

• Whenever A,B ∈ B(H) have finite rank and if we write AB = U |AB| for the polar
decomposition, by the Cauchy–Schwarz Inequality, we have

‖AB‖1 = Tr(|AB|) = Tr(U∗AB) ≤ ‖U∗A‖2‖B‖2 ≤ ‖A‖2‖B‖2.

• Whenever A,B ∈ B(H)+ and A or B has finite rank, we have Tr(AB) ≥ 0. Indeed,
without loss of generality, we may assume that B has finite rank and we write B =∑n

i=1 λi〈 · , ξi〉 ξi. Then AB =
∑n

i=1 λi〈 · , ξi〉Aξi and so Tr(AB) =
∑n

i=1 λi〈Aξi, ξi〉 ≥ 0.

Proof of Lemma 5.6. We reproduce the elegant proof given in [BO08, Proposition 6.2.4]. First
observe that using the Spectral Theorem, we may assume that S, T have both finite rank and
still satisfy S, T ≥ 0.
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The identity

(5.1) S2 − T 2 =
1

2
((S + T )(S − T ) + (S − T )(S + T ))

together with the first observation give the right inequality.

Put p = 1[0,+∞)(S−T ). We have (S−T )p ≥ 0 and (T −S)p⊥ ≥ 0. Observe that we also have

Tr((S + T )(S − T )p) = Tr((S + T )p(S − T ))(5.2)

= Tr((S − T )(S + T )p)

Tr((T + S)(T − S)p⊥) = Tr((T + S)p⊥(T − S))(5.3)

= Tr((T − S)(T + S)p⊥).

Then we have

‖S − T‖22 = Tr((S − T )2)

= Tr((S − T )2p+ (S − T )2p⊥)

= Tr((S − T )(S − T )p+ (T − S)(T − S)p⊥)

≤ Tr((S + T )(S − T )p+ (T + S)(T − S)p⊥) (using the second obsevation)

= Tr((S2 − T 2)p+ (T 2 − S2)p⊥) (using (5.1), (5.2) and (5.3))

≤ Tr(|S2 − T 2|p+ |T 2 − S2|p⊥) (using the second observation)

= Tr(|S2 − T 2|) = ‖S2 − T 2‖1. �

5.3. Connes’s fundamental theorem. This section is devoted to proving Connes’s charac-
terization of amenability for tracial von Neumann algebras.

Definition 5.7. Let M ⊂ B(H) be any von Neumann algebra with separable predual. We say
that

• M is amenable if there exists a conditional expectation Φ : B(H)→M .
• M is hyperfinite if there exists an increasing sequence of unital finite dimensional ∗-

subalgebras Qn ⊂M such that M =
∨
nQn.

Theorem 5.8 (Connes [Co75]). Let (M, τ) be a tracial von Neumann algebra with separable
predual. The following are equivalent:

(1) There exists a conditional expectation Φ : B(L2(M))→M .
(2) There exists an M -central state ϕ on B(L2(M)) such that ϕ|M = τ .
(3) There exists a net of unit vectors ξn ∈ L2(M)⊗L2(M) such that limn ‖xξn− ξnx‖2 = 0

and limn〈xξn, ξn〉 = τ(x) for all x ∈M .
(4) ML2(M)M ⊂weak M (L2(M)⊗ L2(M))M .
(5) For all a1, . . . , ak, b1, . . . , bk ∈M , we have∣∣∣∣∣τ

(
k∑
i=1

aibi

)∣∣∣∣∣ ≤
∥∥∥∥∥

k∑
i=1

ai ⊗ bop
i

∥∥∥∥∥
min

.

(6) M is hyperfinite.

Whenever M = L(Γ) is the von Neumann algebra of a countable discrete group, conditions
(1− 6) are equivalent to:
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(7) Γ is amenable.

Proof. We show that (1) ⇔ (2) ⇔ (3) ⇔ (4) ⇔ (5) ⇔ (7) and (6) ⇒ (1). The proof of
(1)⇒ (6) is beyond the scope of these notes.

(1)⇒ (2) Put ϕ = τ ◦ Φ.

(2) ⇒ (3) Let ϕ be an M -central state on B(L2(M)). Since the set of normal states is
σ(B(L2(M))∗,B(L2(M)))-dense in the set of states, we may choose a net of normal states
(ϕj)j∈J on B(L2(M)) such that limj ϕj(T ) = ϕ(T ) for all T ∈ B(L2(M)). We get that

ϕj ◦Ad(u)− ϕj → 0 with respect to the σ(B(L2(M))∗,B(L2(M)))-topology for all u ∈ U(M).
Using Hahn–Banach Theorem and up to replacing the net (ϕj)j∈J by a net (ϕ′k)k∈K where
each ϕ′k is equal to a finite convex combination of some of the ϕj ’s, we may assume that

limj ‖ϕj ◦ Ad(u) − ϕj‖ = 0 for all u ∈ U(M). For every j ∈ J , let Tj ∈ S1(L2(M))+ be the
unique trace-class operator such that ϕj(S) = Tr(TjS) for all S ∈ B(L2(M)). We get ‖Tj‖1 = 1

and limj ‖uTju∗ − Tj‖1 = 0 for all u ∈ U(M). Put ξj = T
1/2
j ∈ S2(L2(M)) and observe that

‖ξj‖2 = 1. Since ξj is a Hilbert–Schmidt operator, we may regard ξj ∈ L2(M) ⊗ L2(M). By
the Powers–Størmer Inequality, we get limj ‖uξju∗ − ξj‖2 = 0 for all u ∈ U(M). Moreover, we
have

lim
j
〈xξj , ξj〉 = lim

j
Tr(Tjx) = lim

j
ϕj(x) = ϕ(x) = τ(x),∀x ∈M.

(3)⇒ (4) Let a1, . . . , ak, b1, . . . , bk ∈M and put T =
∑k

i=1 ai ⊗ biop. Let c, d ∈M . Then∣∣∣〈πL2(M)(T )cξτ , dξτ 〉
∣∣∣ =

∣∣∣∣∣τ
(

k∑
i=1

d∗aicbi

)∣∣∣∣∣
= lim

n

∣∣∣∣∣
〈

k∑
i=1

d∗aicbi ξn, ξn

〉∣∣∣∣∣
= lim

n

∣∣∣∣∣
〈

k∑
i=1

ai ξnc bi, dξn

〉∣∣∣∣∣
≤ ‖πL2(M)⊗L2(M)(T )‖ lim

n
‖ξnc‖ lim

n
‖dξn‖

= ‖πL2(M)⊗L2(M)(T )‖ ‖cξτ‖‖dξτ‖.

This implies that ‖πL2(M)(T )‖ ≤ ‖πL2(M)⊗L2(M)(T )‖.

(4) ⇒ (5) Let a1, . . . , ak, b1, . . . , bk ∈ M and put T =
∑k

i=1 ai ⊗ b
op
i . Since L2(M) ⊗ L2(M) is

a left M ⊗Mop-module, we have

‖πL2(M)⊗L2(M)(T )‖ =

∥∥∥∥∥
k∑
i=1

ai ⊗ bop
i

∥∥∥∥∥
min

.

Since by assumption, we have ‖πL2(M)(T )‖ ≤ ‖πL2(M)⊗L2(M)(T )‖, we get∣∣∣∣∣τ
(

k∑
i=1

aibi

)∣∣∣∣∣ =
∣∣∣〈πL2(M)(T )ξτ , ξτ

〉∣∣∣ ≤ ‖πL2(M)(T )‖ ≤

∥∥∥∥∥
k∑
i=1

ai ⊗ bop
i

∥∥∥∥∥
min

.

(5)⇒ (2) Denote by Ω : M⊗algM
op → C the ‖ · ‖min-bounded functional such that Ω(a⊗bop) =

τ(ab). By the Hahn–Banach Theorem and since M ⊗alg M
op ⊂ B(L2(M) ⊗ L2(M)), we may

extend the functional Ω to B(L2(M) ⊗ L2(M)) without increasing the norm of Ω. We still
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denote this extension by Ω. Since ‖Ω‖ = 1 = Ω(1), Ω is a state on B(L2(M)⊗ L2(M)). Since
Ω(u⊗ u) = τ(uu∗) = 1 for all u ∈ U(M), we have

Ω(S(u⊗ u)) = Ω(S) = Ω((u⊗ u)S)

for all S ∈ B(L2(M)⊗ L2(M)) and all u ∈ U(M) (see Lemma 5.5).

Put ϕ(T ) = Ω(T ⊗ 1op) for all T ∈ B(L2(M)). Observe that ϕ(x) = Ω(x⊗ 1op) = τ(x) for all
x ∈M . Moreover, for all T ∈ B(L2(M)) and all u ∈ U(M), we have

ϕ(uT ) = Ω(uT ⊗ 1op) = Ω((u⊗ u)(T ⊗ uop))

= Ω((T ⊗ uop)(u⊗ u)) = Ω(Tu⊗ 1op)

= ϕ(Tu).

(2) ⇒ (1) For all T ∈ B(L2(M)), define the sesquilinear form κT : L2(M) × L2(M) → C by
the formula

κT (xξτ , yξτ ) = ϕ(y∗Tx).

By Cauchy–Schwarz inequality, we have |κT (xξτ , yξτ )| ≤ ‖T‖∞‖x‖2‖y‖2 for all x, y ∈ M and
hence there exists Φ(T ) ∈ B(L2(M)) such that κT (xξτ , yξτ ) = 〈Φ(T )xξτ , yξτ 〉 for all x, y ∈M .
Observe that ‖Φ(T )‖∞ ≤ ‖T‖∞. For all x, y, a ∈M , we have

〈Φ(T )Ja∗J xξτ , yξτ 〉 = 〈Φ(T )xaξτ , yξτ 〉
= ϕ(y∗Txa)

= ϕ((ya∗)∗Tx)

= 〈Φ(T )xξτ , ya
∗ξτ 〉

= 〈Φ(T )xξτ , JaJyξτ 〉
= 〈Ja∗JΦ(T )xξτ , yξτ 〉.

This implies that Φ(T ) ∈ (JMJ)′ = M . It is routine to check that Φ : B(L2(M)) → M is a
conditional expectation.

(6) ⇒ (1) Assume that M =
∨
nQn with Qn ⊂ M an increasing sequence of unital finite

dimensional ∗-subalgebras. Denote by µn the unique Haar probability measure on the compact
group U(Qn). Choose a nonprincipal ultrafilter ω on N. For all T ∈ B(L2(M)), put

E(T ) = lim
n→ω

∫
U(Qn)

uTu∗ dµn(u).

Then Φ : B(L2(M))→M defined by Φ(T ) = JE(T )J is a conditional expectation.

Put M = L(Γ) and denote by λs ∈M the canonical unitaries.

(1) ⇒ (7) Let ϕ ∈ B(`2(Γ))∗ be an L(Γ)-central state such that ϕ|L(Γ) = τ . Define a state
m ∈ `∞(Γ)∗ by m = ϕ|`∞(Γ). Then m is a left invariant mean and Γ is amenable.

(7)⇒ (1) Simply put M = L(Γ) and identify L2(M) = `2(Γ). Since Γ is amenable, there exists
a left invariant mean m : `∞(Γ)→ C. For every T ∈ B(`2(Γ)), define the bounded sesquilinear
form κT : `2(Γ)×`2(Γ)→ C : (ξ, η) 7→ m(γ 7→ 〈ργTρ∗γξ, η〉). By Riesz Representation Theorem,

there exists Φ(T ) ∈ B(`2(Γ)) such that 〈Φ(T )ξ, η〉 = m(γ 7→ 〈ργTρ∗γξ, η〉) for all ξ, η ∈ `2(Γ).

Observe that Φ : B(`2(Γ))→ B(`2(Γ)) : T 7→ Φ(T ) is a contractive unital L(Γ)-L(Γ)-bimodular



32 CYRIL HOUDAYER

linear map. It remains to show that Φ(T ) ∈ L(Γ) for every T ∈ B(`2(Γ)). Indeed, for all g ∈ Γ
and all ξ, η ∈ `2(Γ), we have

〈ρgΦ(T )ρ∗gξ, η〉 = 〈Φ(T )ρ∗gξ, ρ
∗
gη〉

= m(γ 7→ 〈ργTρ∗γ ρ∗gξ, ρ∗gη〉)
= m(γ 7→ 〈ρgγTρ∗gγξ, η〉)
= m(λg−1 ◦ (γ 7→ 〈ργTρ∗γξ, η〉))
= m(γ 7→ 〈ργTρ∗γξ, η〉)
= 〈Φ(T )ξ, η〉.

This implies that ρgΦ(T )ρ∗g = Φ(T ) for every g ∈ Γ and hence Φ(T ) ∈ ρ(Γ)′∩B(`2(Γ)) = L(Γ).

Therefore Φ : B(`2(Γ))→ L(Γ) is a conditional expectation. �

We say that a tracial von Neumann algebra (M, τ) is diffuse if there exists a sequence of
unitaries un ∈ U(M) such that un → 0 with respect to WOT as n → ∞. One can show that
M is diffuse if and only if M has no nonzero minimal projection.

We record the following well-known fact.

Proposition 5.9. Let M ⊂ B(H) be any diffuse tracial von Neumann algebra. Then for any
M -central state ϕ ∈ B(H)∗ we have ϕ|K(H) = 0.

Proof. Fix a sequence of unitaries un ∈ U(M) such that un → 0 with respect to WOT as
n → ∞. For any ξ ∈ H, denote by eξ : H → Cξ the corresponding orthogonal projection.
Since ϕ ∈ B(H)∗ is M -central, we have ϕ(eukξ) = ϕ(ukeξu

∗
k) = ϕ(eξ) for every k ∈ N and

every ξ ∈ H. Write ‖T‖ϕ = ϕ(T ∗T )1/2 for every T ∈ B(H).

Fix ξ ∈ H and N ≥ 1. By Cauchy–Schwarz inequality, we have

ϕ(eξ) =
1

N

N∑
i=1

ϕ(eukiξ) =
1

N
ϕ

(
N∑
i=1

eukiξ

)
≤ 1

N

∥∥∥∥∥
N∑
i=1

eukiξ

∥∥∥∥∥
ϕ

.

We may choose k1, . . . , kN ∈ N such that ‖eukj ξ eukiξ‖∞ = |〈ukjξ, ukiξ〉| ≤ 1
N for all 1 ≤ i <

j ≤ N . Then we also have∥∥∥∥∥
N∑
i=1

eukiξ

∥∥∥∥∥
2

ϕ

=
N∑
i=1

ϕ(eukiξ) +
∑

1≤i 6=j≤N
ϕ(eukj ξ eukiξ)

≤ N + 2
∑

1≤i<j≤N
‖eukj ξ eukiξ‖∞

≤ N +N(N − 1)
1

N
= 2N − 1.

Thus, we obtain

ϕ(eξ) ≤
√

2N − 1

N
.

Since this holds for every N ≥ 1, it follows that ϕ(eξ) = 0. By Cauchy–Schwarz inequality, we
also have ϕ(Seξ) = 0 for every S ∈ B(H). It follows that ϕ(T ) = 0 for every rank one operator
T ∈ B(H) and hence ϕ|K(H) = 0. �
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Proposition 5.9 shows that whenever (M, τ) is a diffuse amenable tracial von Neumann algebra,
neither the conditional expectation Φ : B(L2(M))→M nor theM -central state ϕ ∈ B(L2(M))∗

such that ϕ|M = τ are normal.

Exercise 5.10. Let Γ y (X,µ) be a pmp action of a countable discrete group on a standard
probability space. Show that L∞(X) o Γ is amenable if and only if Γ is amenable.

Exercise 5.11. Let A ⊂ M be any inclusion of tracial von Neumann algebras. Assume that
A is amenable. Show that for every u ∈ NM (A), the von Neumann subalgebra 〈A, u〉 ⊂ M is
amenable.
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