
GROUPS, ACTIONS AND VON NEUMANN ALGEBRAS

LECTURE NOTES

CYRIL HOUDAYER

Abstract. These are the lecture notes of a graduate course given at the Université Paris-Sud
(Orsay) in the Winter of 2016. In Section 1, we first review some preliminary background
on C∗-algebras. In Section 2, we introduce von Neumann algebras and prove some basic
properties. In Section 3, we present two important classes of von Neumann algebras, namely
group von Neumann algebras and Murray–von Neumann’s group measure space constructions.
In Section 4, we prove Connes’s characterization of amenable tracial von Neumann algebras.
Finally in Section 5, we prove Ozawa–Popa’s strong solidity result for free group factors.
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1. Preliminary background on C∗-algebras and functional analysis

All the algebras we consider are always over the field C of complex numbers.

1.1. Introduction to C∗-algebras.

1.1.1. Definition and first properties.

Definition 1.1. A C∗-algebra A is a Banach algebra endowed with an involution A→ A : a 7→
a∗ which satisfies the following relation:

‖a∗a‖ = ‖a‖2,∀a ∈ A.

If A admits a unit, we say that A is a unital C∗-algebra. Denote by B(H) the Banach algebra
of all bounded linear operators T : H → H endowed with the supremum norm:

‖T‖∞ = sup
‖ξ‖≤1

‖Tξ‖.

Let T ∈ B(H). The adjoint operator T ∗ is defined by

〈Tξ, η〉 = 〈ξ, T ∗η〉, ∀ξ, η ∈ H.
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Examples 1.2. Here are examples of C∗-algebras.

(1) Norm closed ∗-subalgebras of B(H).
(2) The space of all complex-valued continuous functions C(X) over a compact topological

space X endowed with the supremum norm given by ‖f‖∞ = supx∈X |f(x)|. The

involution is given by f∗(x) = f(x) for all x ∈ X.
(3) Let Γ be a countable discrete group and let λ : Γ → U(`2(Γ)) be the left regular

representation defined by λgδh = δgh for all g, h ∈ Γ. The reduced group C∗-algebra
C∗λ(Γ) is defined as the norm closure of the linear span of {λg : g ∈ Γ}.

From now on, to avoid any technical difficulties, we will always assume that all C∗-algebras are
unital. For a ∈ A, the spectrum of a is defined as follows:

σ(a) := {λ ∈ C : a− λ1 is not invertible}.
Proposition 1.3. For all a ∈ A, σ(a) is a nonempty compact subset of C.

Proof. It is clear that σ(a) is closed. Moreover for all |λ| > ‖a‖, 1 − λ−1a is invertible with
inverse

∑
n λ
−nan. It follows that σ(a) is bounded by ‖a‖, whence σ(a) is compact.

By contradiction, assume that σ(a) is the empty set. Then the function λ 7→ (a − λ1)−1 is
entire and vanishing at infinity. By Hahn–Banach and Liouville Theorems, we get that this
function is zero everywhere. Thus a−1 = 0, which is a contradiction. Thus σ(a) is nonempty
and compact. �

Observe that the above proof works more generally for any unital Banach algebra. We have
the following useful corollary.

Corollary 1.4. Any unital Banach algebra A in which every nonzero element is invertible is
isomorphic to C.

Proof. Let x ∈ A and choose λ ∈ σ(a). Since x − λ1 is not invertible, we have x − λ1 = 0.
Thus A = C1. �

Exercise 1.5. Show that σ(ab) ∪ {0} = σ(ba) ∪ {0}, for all a, b ∈ A.

Exercise 1.6. Let A be a unital abelian Banach algebra and m ⊂ A a proper ideal, that is,
1 /∈ m. Show that

inf{‖1− x‖ : x ∈ m} ≥ 1.

Deduce that the closure of any proper ideal is still proper and any maximal proper ideal is
closed.

The spectral radius is defined by

r(a) := sup {|λ| : λ ∈ σ(a)} .
We have r(a) ≤ ‖a‖.
Proposition 1.7. For all a ∈ A, the sequence (‖an‖1/n)n converges to r(a).

Proof. If λ ∈ σ(a), then λn ∈ σ(an). Thus |λ| ≤ ‖an‖1/n, for all n ∈ N. It follows that

|λ| ≤ lim inf ‖an‖1/n and hence r(a) ≤ lim infn ‖an‖1/n. Next, for |z| < r(a)−1, f : z 7→
(1 − za)−1 is a holomorphic function which coincides with the power series

∑
n z

nan when
moreover |z| < ‖a‖−1. Observe that this power series represents f on the open disk with center

0 and radius r(a)−1. However, this series cannot converge for |z| > (lim sup ‖an‖1/n)−1. Thus,

we get that lim sup ‖an‖1/n ≤ r(a). �
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In particular, if a, b ∈ A are commuting elements, we have that

r(ab) = lim ‖(ab)n‖1/n = lim ‖anbn‖1/n

≤ lim ‖an‖1/n lim ‖bn‖1/n

= r(a)r(b).

We say that a is selfadjoint if a∗ = a; normal if a∗a = aa∗; unitary if a∗a = aa∗ = 1. The
group of unitaries is denoted by U(A). The subspace of selfadjoint elements in A is sometimes
denoted by <(A).

Proposition 1.8. Let a ∈ A. The following are true.

(1) If a is invertible, a∗ is invertible and (a∗)−1 = (a−1)∗

(2) a can be uniquely decomposed a = x+ iy, with x, y selfadjoint elements.
(3) If a is a unitary then ‖a‖ = 1.
(4) If a is normal then ‖a‖ = r(a).
(5) If B is another C∗-algebra and ϕ : A→ B is a ∗-homomorphism then ‖ϕ(a)‖ ≤ ‖a‖.

Proof. We leave (1), (2), (3) as an exercise. To prove (4), first assume that a is selfadjoint.

One has ‖a2n‖ = ‖a‖2n for all n ∈ N. Thus, r(a) = limn ‖a2n‖2−n = ‖a‖. If a is normal,
‖a‖2 = ‖a∗a‖ = r(a∗a) ≤ r(a∗)r(a) ≤ ‖a∗‖‖a‖ = ‖a‖2, whence r(a) = ‖a‖. To prove (5), let
a ∈ A. Then

‖ϕ(a)‖2 = ‖ϕ(a)∗ϕ(a)‖ = ‖ϕ(a∗a)‖ = r(ϕ(a∗a)) ≤ r(a∗a) = ‖a∗a‖ = ‖a‖2.
�

Corollary 1.9. Any onto ∗-isomorphism ϕ : A→ B is isometric.

1.1.2. Continuous functional calculus.

Lemma 1.10. Let χ : A → C be a unital algebraic homomorphism. Then the following
assertions hold true.

(1) For all a ∈ A, |χ(a)| ≤ ‖a‖.
(2) For all a ∈ <(A), χ(a) ∈ R.

(3) For all a ∈ A, χ(a∗) = χ(a).
(4) For all a ∈ A, χ(a∗a) ≥ 0.
(5) For all a ∈ U(A), |χ(a)| = 1.

Proof. (1) For all a ∈ A, χ(a − χ(a)1) = 0, whence a − χ(a)1 is not invertible. We get
χ(a) ∈ σ(a) and so |χ(a)| ≤ ‖a‖.
(2) Assume that a ∈ A is selfadjoint. Let t ∈ R.

|χ(a+ it)|2 ≤ ‖a+ it‖2 = ‖(a+ it)∗(a+ it)‖ = ‖(a− it)(a+ it)‖ ≤ ‖a‖2 + t2.

Write χ(a) = α+ iβ. We then get

‖a‖2 + t2 ≥ |α+ i(β + t)|2 = α2 + β2 + 2βt+ t2.

It follows that ‖a‖2 ≥ α2 + β2 + 2βt and thus β = 0.

Now (3) follows easily, while (4) and (5) are trivial. �

Corollary 1.11. Every unital algebraic homomorphism χ : A→ C is necessarily a ∗-homomorphism.
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For a unital abelian C∗-algebra A, a unital algebraic homomorphism χ : A→ C is simply called
a character. We will denote by Ω := Ω(A) the set of characters of A. Sometimes Ω is called the
spectrum of A. Observe that if χ : A→ C is a character, we have that χ ∈ A∗ and ‖χ‖A∗ = 1.
One checks that Ω is closed for the σ(A∗, A)-topology and thus compact by Banach-Alaoglu
Theorem. The Gelfand Transform γ : A→ C(Ω) is defined by γ(a)(χ) = χ(a).

Theorem 1.12. The Gelfand Transform γ : A → C(Ω) is an onto ∗-isomorphism. Moreover
σ(a) = {χ(a) : χ ∈ Ω}, for all a ∈ A.

Proof. Let a ∈ A. We have already shown that {χ(a) : χ ∈ Ω} ⊂ σ(a). If λ ∈ σ(a), then a−λ1
is not invertible. It is thus contained in a maximal proper ideal m, which is closed by Exercise
1.6. Observe that the Banach algebra A/m is a division ring and so is isomorphic to C. Whence
there exists χ ∈ Ω such that χ(a−λ1) = 0, that is, χ(a) = λ. Therefore σ(a) = {χ(a) : χ ∈ Ω}.
It is then clear that γ is a ∗-isomorphism and is isometric. Indeed, for all a ∈ A, we have

‖γ(a)‖2∞ = ‖γ(a)∗γ(a)‖∞ = ‖γ(a∗a)‖∞ = r(a∗a) = ‖a∗a‖ = ‖a‖2.
Thus, γ(A) is a closed ∗-subalgebra of C(Ω). It remains to prove that γ is onto. Observe
that γ(A) separates points: for all χ 6= χ′, there exists a ∈ A such that χ(a) 6= χ′(a), that
is, γ(a)(χ) 6= γ(a)(χ′). By Stone–Weierstrass’s Theorem, γ(A) is dense in C(Ω). Therefore
γ(A) = C(Ω). �

Corollary 1.13. If a ∈ A is a unitary, then σ(a) ⊂ T. If a ∈ A is selfadjoint, then σ(a) ⊂ R.

Theorem 1.14 (Continuous functional calculus). Let A be a unital C∗-algebra and b ∈ A be
a normal element. Denote by B the abelian C∗-algebra generated by b. There exists a unique
onto ∗-isomorphism Φ : C(σ(b))→ B such that σ(Φ(f)) = f(σ(b)).

We will simply denote Φ(f) by f(b). Observe that, in particular, we have that ‖f(b)‖ = ‖f‖∞.

Proof. Let Ω be the set of characters of B. Define the continuous function ψ : Ω → σ(b) by
ψ(χ) = χ(b). We have seen before that ψ is onto. Assume now that ψ(χ) = ψ(χ′), that is,
χ(b) = χ′(b). It follows that χ(p(b, b∗)) = χ′(p(b, b∗)) for all polynomials p. Since b generates B,
we get that χ = χ′ by Stone–Weierstrass’s Theorem. Therefore ψ is a homeomorphism. Then

ψ̂ : C(Ω)→ C(σ(b)) defined by ψ̂(f) = f ◦ψ is an onto ∗-isomorphism. Now the ∗-isomorphism

Φ = γ−1 ◦ ψ̂−1 : C(σ(b))→ B does the job. �

1.1.3. The Gelfand–Naimark–Segal construction.

Definition 1.15. An element a ∈ A is positive if a = a∗ and σ(a) ⊂ R+. We will denote
a ≥ 0. The set of positive elements in A will be also denoted by A+.

An element a ∈ A is negative if −a is positive. The set of negative elements in A will be denoted
by A−. For selfadjoint elements a, b ∈ A, we write a ≤ b when b− a ∈ A+.

Proposition 1.16. Let A be a unital C∗-algebra and let a ∈ A be a selfadjoint element. There
exists a unique pair (h, k) of positive elements in A such that a = h− k and hk = kh = 0.

Proof. Define the continuous functions f(t) = max(t, 0) and g(t) = max(−t, 0) so that f(t) −
g(t) = t, f(t) ≥ 0, g(t) ≥ 0 and f(t)g(t) = 0. By continuous functional calculus, we have
a = f(a)−g(a), f(a) ≥ 0, g(a) ≥ 0 and f(a)g(a) = g(a)f(a) = 0. We have proven the existence
of the decomposition. To prove the uniqueness, assume that a = u− v for some u, v ∈ A+ such
that uv = vu = 0. It is not hard to see that u and v commute with a so that the C∗-algebra
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C∗(a, u, v) is abelian. There exists some compact space X such that C∗(a, u, v) = C(X). It
only remains to prove the uniqueness of the decomposition for continuous functions on X which
is fairly easy. �

Exercise 1.17. Let A be a unital C∗-algebra.

• Let a ∈ A+ and n ≥ 1. Show that there exists a unique b ∈ A+ such that a = bn.
• Let a ∈ A selfadjoint. Show that a ≥ 0 if and only if ‖t − a‖ ≤ t for some t ≥ ‖a‖.

Deduce that if a, b ≥ 0, then a+ b ≥ 0.

Proposition 1.18. Let A be a unital C∗-algebra and a ∈ A. The following are equivalent:

• a ≥ 0.
• There exists b ∈ A such that a = b∗b.

Proof. Assume that a = b∗b and write a = h− k as in Proposition 1.16. We want to show that
k = 0. Set bk1/2 = α+ iβ, with α, β selfadjoint elements in A. On the one hand, we have

(bk1/2)∗(bk1/2) = k1/2b∗bk1/2 = k1/2(h− k)k1/2 = −k2 ≤ 0,

since hk = kh = 0. On the other hand,

(bk1/2)∗(bk1/2) = (α+ iβ)∗(α+ iβ) = α2 + β2 + i(αβ − βα).

Thus i(αβ − βα) = −k2 −α2 − β2 ≤ 0. Observe that σ((bk1/2)∗(bk1/2)) and σ((bk1/2)(bk1/2)∗)

only differ by 0 (see Exercise 1.5). Thus (bk1/2)(bk1/2)∗ = −c with c ∈ A+. We get −c =
α2 + β2 + i(βα− αβ), so that i(αβ − βα) = c+ α2 + β2 ≥ 0. Therefore i(αβ − βα) ∈ A+ ∩A−
and so i(αβ−βα) = 0. This implies that −k2 = (bk1/2)∗(bk1/2) = α2 +β2 ∈ A+∩A− and thus
k = 0. �

Exercise 1.19. Show that for all a ∈ A, a∗a ≤ ‖a‖21.

Definition 1.20. A state ϕ : A → C is a positive linear functional (ϕ(a) ≥ 0 for all a ≥ 0)
such that ϕ(1) = 1. The state space of A is denoted by Σ(A). A state ϕ is faithful if ϕ(a∗a) > 0
for all a 6= 0.

Example 1.21. Let (π,H, ξ) be a unital ∗-representation of A together with a unit vector.
The linear functional a 7→ 〈π(a)ξ, ξ〉 defines a state on A. We will prove that every state on a
unital C∗-algebra arises this way.

Proposition 1.22. Let ϕ : A→ C be a positive linear functional. The following hold true.

(1) For all a, b ∈ A, |ϕ(b∗a)|2 ≤ ϕ(a∗a)ϕ(b∗b)
(2) ϕ is bounded and ‖ϕ‖ = ϕ(1). In particular, if ϕ is a state then ‖ϕ‖ = 1.

Proof. Observe that (a, b) 7→ ϕ(b∗a) defines a semi-inner product on A. Then (1) follows from
the Cauchy–Schwarz Inequality. For (2), observe that since a∗a ≤ ‖a‖21, we have |ϕ(a)|2 ≤
ϕ(1)ϕ(a∗a) ≤ ϕ(1)2‖a‖2. It follows that ‖ϕ‖ = ϕ(1). �

Example 1.23. Let X be a compact space. Any probability measure µ on X gives rise to a
state ϕ on C(X) by ϕ(f) =

∫
X f dµ. By Riesz Representation Theorem, any state on C(X)

arises this way.

Exercise 1.24. Let A be a unital C∗-algebra and let ϕ : A→ C be a bounded linear functional
with ‖ϕ‖ = ϕ(1). Show that ϕ is positive. Deduce that if B ⊂ A is a unital C∗-subalgebra,
then any state on B has an extension on A.
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Theorem 1.25 (GNS construction). Let A be a unital C∗-algebra.

(1) For every state ϕ on A, there exists a cyclic ∗-representation (πϕ, Hϕ) together with a
unit vector ξϕ ∈ Hϕ such that ϕ(a) = 〈πϕ(a)ξϕ, ξϕ〉, for all a ∈ A.

(2) If (π,H) is a cyclic ∗-representation with unit cyclic vector ξ ∈ H and ϕ is the state
defined by ϕ(a) = 〈π(a)ξ, ξ〉, then π ∼= πϕ.

Proof. (1) Let ϕ be a state on A. Define the following semi-inner product 〈a, b〉ϕ = ϕ(b∗a)
on A. After separation and completion, promote (A, 〈·, ·〉ϕ) to a genuine Hilbert space Hϕ.
Denote by a• the image of a ∈ A in Hϕ. One checks that πϕ(a)b• = (ab)• defines a cyclic
∗-representation with unit cyclic vector ξϕ = 1•. Indeed, for all a, b ∈ A, we have

‖πϕ(a)b•‖2ϕ = 〈πϕ(a)b•, πϕ(a)b•〉ϕ
= 〈πϕ(a∗a)b•, b•〉ϕ
= ϕ(b∗ a∗a b)

≤ ‖a‖2ϕ(b∗b)

= ‖a‖2‖b•‖2ϕ
and hence πϕ(a) ∈ B(Hϕ) is well-defined. For all a ∈ A, we moreover have

〈πϕ(a)ξϕ, ξϕ〉ϕ = 〈a•, 1•〉ϕ = ϕ(a).

We leave (2) as an exercise. �

Corollary 1.26. Every unital C∗-algebra admits a unital faithful ∗-representation (π,H).
Moreover, H can be chosen to be separable if A is separable.

Proof. Let S ⊂ Σ(A) be a weak∗-dense subset. Note that if A is separable, S can be taken
countable. Define π =

⊕
ϕ∈S πϕ. Assume that π(a) = 0, that is, π(a∗a) = 0. We get ϕ(a∗a) = 0

for all ϕ ∈ S. By density, we get ϕ(a∗a) = 0, for all ϕ ∈ Σ(A).

Let now µ be a probability measure on X := σ(a∗a) and define the state ψ(f(a∗a)) =
∫
X f dµ

for all f ∈ C(X). Extend ψ to ϕ on A. We have∫
X
tdµ(t) = ψ(a∗a) = ϕ(a∗a) = 0.

It follows that X = {0} and so a = 0. �

1.2. Topologies on B(H).

Definition 1.27. Let H be a complex Hilbert space.

• The strong operator topology (SOT) on B(H) is defined by the following family of open
neighbourhoods: for S ∈ B(H), ε > 0, ξ1, . . . , ξn ∈ H, define

U(S, ε, ξi) := {T ∈ B(H) : ‖(T − S)ξi‖ < ε,∀1 ≤ i ≤ n} .
• The weak operator topology (WOT) on B(H) is defined by the following family of open

neighbourhoods: for S ∈ B(H), ε > 0, ξ1, . . . , ξn, η1, . . . , ηn ∈ H, define

V(S, ε, ξi, ηi) := {T ∈ B(H) : |〈(T − S)ξi, ηi〉| < ε,∀1 ≤ i ≤ n} .

The strong operator topology is always stronger than the weak operator topology. It is strictly
stronger when H is infinite dimensional.



GROUPS, ACTIONS AND VON NEUMANN ALGEBRAS 7

Theorem 1.28. Let C ⊂ B(H) be a nonempty convex subset. Then the strong operator closure
and the weak operator closure of C coincide.

Proof. Assume T is in the weak operator closure of C. Let ξ1, . . . , ξn ∈ H. Let K = H⊕· · ·⊕H
be the n-fold direct sum of H with itself. Define the ∗-isomorphism ρ : B(H) → B(K) by
ρ(T )(η1, . . . , ηn) = (Tη1, . . . , Tηn). Let ξ = (ξ1, . . . , ξn) ∈ K. It is clear that ρ(C) is a convex
subset of B(K). Since ρ(T ) is in the weak operator closure of ρ(C), ρ(T )ξ is in the weak closure
of ρ(C)ξ. Since ρ(C)ξ ⊂ K is convex, the Hahn–Banach Separation Theorem implies that ρ(T )ξ
is also in the norm closure of ρ(C)ξ. For ε > 0, there exists S ∈ C such that ‖Sξi − Tξi‖ < ε,
for all 1 ≤ i ≤ n. This shows that T is in the strong operator closure of C. �

Proposition 1.29. Let V ⊂ B(H) be a weakly closed subspace and ϕ : V → C a linear
functional. The following are equivalent.

(1) There exist ξ1, . . . , ξn, η1, . . . , ηn ∈ H such that

ϕ(T ) =

n∑
i=1

〈Tξi, ηi〉,∀T ∈ V.

(2) ϕ is strongly continuous.
(3) ϕ is weakly continuous.

Proof. (1)⇒ (2) is clear. For (2)⇒ (1), let ε > 0 and ξ1, . . . , ξn ∈ H such that |ϕ(x)| ≤ 1 for

all x ∈ U(0, ε, ξi). It follows that |ϕ(x)| ≤ 1
ε

√∑
i ‖xξi‖2 for all x ∈ V . Let ξ = (ξ1, . . . , ξn) ∈

`2n ⊗ H and K = (1⊗ V )ξ ⊂ `2n ⊗ H. Define the continuous linear functional ψ : K → C by
ψ((1 ⊗ x)ξ) = ϕ(x) for all x ∈ V . By Representation Theorem, there exists η ∈ K such that
ϕ(x) = 〈(1⊗ x)ξ, η〉 for all x ∈ V .

Notice that ϕ is continuous if and only if kerϕ is closed. Since kerϕ ⊂ B(H) is a nonempty
convex subset, the equivalence between (2) and (3) follows from Theorem 1.28. �

Theorem 1.30. The unit ball (B(H))1 is weakly compact.

Proof. Denote by Dξ,η the closed unit disk in C of center 0 and radius ‖ξ‖‖η‖. The map
(B(H))1 3 T 7→ (〈Tξ, η〉)ξ,η∈H ∈

∏
ξ,η∈H Dξ,η is a homeomorphism from (B(H))1, endowed

with the weak operator topology onto its image X. Note that
∏
ξ,η∈H Dξ,η is compact for the

product topology by Tychonoff’s Theorem. It remains to show that the image X is closed.

Let α = (αξ,η) ∈ X. There exists a net (Si) of elements in (B(H))1 such that 〈Siξ, η〉 → αξ,η,
for all ξ, η ∈ H. We get that H × H 3 (ξ, η) 7→ αξ,η ∈ C is a conjugate-bilinear form such
that |αξ,η| ≤ ‖ξ‖‖η‖, for all ξ, η ∈ H. By Riesz Representation Theorem for conjugate-bilinear
forms, there exists T ∈ (B(H))1 such that αξ,η = 〈Tξ, η〉, for all ξ, η ∈ H. �

Proposition 1.31. Let (Ti) be an increasing net of selfadjoint operators such that Ti ≤ C1, for
all i ∈ I. Then (Ti) has a limit with respect to the strong operator topology. Moreover, for all
S ∈ B(H) such that Ti ≤ S, for all i ∈ I, we have that limTi ≤ S. We denote limTi = supTi.

Proof. Without loss of generality, we may assume that (Ti) is bounded from below as well, that
is, −C1 ≤ Ti ≤ C1, for all i ∈ I. By weak compactness of the unit ball, we can find a subnet
(Tj) which converges weakly to some selfadjoint operator T ∈ B(H).

Let i ∈ I. For all j ≥ i, ξ ∈ H, 〈Tjξ, ξ〉 ≥ 〈Tiξ, ξ〉 so that 〈Tξ, ξ〉 = limj〈Tjξ, ξ〉 ≥ 〈Tiξ, ξ〉.
Thus, for all i ≥ j, 0 ≤ T − Ti ≤ T − Tj so that

‖(T − Ti)1/2ξ‖2 ≤ 〈(T − Ti)ξ, ξ〉 ≤ 〈(T − Tj)ξ, ξ〉 → 0.
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We have that (T−Ti)1/2 → 0 strongly. Finally, strong continuity of multiplication on uniformly
bounded sets yields (T − Ti)→ 0 strongly.

We have already seen that Ti ≤ T , for all i ∈ I. Assume now that Ti ≤ S, for all i ∈ I. Since
Ti → T strongly, we have that Ti → T weakly, whence for all ξ ∈ H, 〈Tξ, ξ〉 = lim〈Tiξ, ξ〉 ≤
〈Sξ, ξ〉. �

Definition 1.32. Let H be a complex Hilbert space.

• The ultrastrong operator topology on B(H) is defined by the following family of open
neighbourhoods: for S ∈ B(H), ε > 0, (ξn) ∈ `2(N, H), define

U(S, ε, (ξn)) :=

{
T ∈ B(H) :

∑
n

‖(T − S)ξn‖2 < ε

}
.

• The ultraweak operator topology on B(H) is defined by the following family of open
neighbourhoods: for S ∈ B(H), ε > 0, (ξn), (ηn) ∈ `2(N, H), define

V(S, ε, (ξn), (ηn)) :=
{
T ∈ B(H) :

∣∣∣∑〈(T − S)ξn, ηn〉
∣∣∣ < ε

}
.

Exercise 1.33. Show that on uniformly bounded sets, weak (resp. strong) and ultraweak (resp.
ultrastrong) topologies coincide.

Proposition 1.34. Let ϕ : B(H)→ C be a linear form. The following are equivalent.

(1) There exists (ξn), (ηn) ∈ `2(N, H) such that

ϕ(T ) =
∑
n

〈Tξn, ηn〉, ∀T ∈ B(H).

(2) ϕ is ultrastrongly continuous.
(3) ϕ is ultraweakly continuous.
(4) ϕ is strongly continuous on (B(H))1.
(5) ϕ is weakly continuous on (B(H))1.

Proof. The proof is analogous to Proposition 1.29, so we leave it as an exercise. �

2. Introduction to von Neumann algebras

2.1. Definition and first examples of von Neumann algebras. For a nonempty subset
S ⊂ B(H), the commutant of S is defined by

S ′ := {T ∈ B(H) : ST = TS,∀S ∈ S} .

It is easy to see that one always has S ⊂ S ′′. Moreover, if S is stable under the adjoint
operation, then S ′ is a unital ∗-algebra.

Theorem 2.1 (Bicommutant Theorem). Let M ⊂ B(H) be a unital ∗-subalgebra. The follow-
ing are equivalent.

(1) M = M ′′.
(2) M is strongly closed.
(3) M is weakly closed.



GROUPS, ACTIONS AND VON NEUMANN ALGEBRAS 9

Proof. (1)⇒ (2). Let (xi)i∈I be a net in M such that xi → x strongly. Since xiT = Txi for all
i ∈ I and T ∈M ′, by passing to the limit we get xT = Tx, for all T ∈M ′. Thus x ∈M .

(2)⇒ (1). Let x ∈M ′′ and ξ1, . . . , ξn ∈ H. Let

U(x, ε, ξi) := {y ∈ B(H) : ‖xξi − yξi‖ < ε,∀i = 1, . . . , n}
be a strong neighborhood of x in B(H). Let K = `2n ⊗H and observe that B(K) = Mn(C)⊗
B(H). Let η = (ξ1, . . . , ξn) ∈ K. Define V = (1⊗M)η ⊂ K. Denote by PV ∈ B(K) the
corresponding orthogonal projection. Since (1 ⊗ a)PV = PV (1 ⊗ a), ∀a ∈ M , it follows that
1⊗ x commutes with PV , since x ∈M ′′. Thus (1⊗ x)η ∈ V and we can find y ∈M such that
‖(1⊗ x)η − (1⊗ y)η‖ < ε, so in particular y ∈ U(x, ε, ξi). Then M ′′ is contained in the strong
closure of M and hence M = M ′′.

Since M ⊂ B(H) is convex, (2)⇔ (3) follows from Theorem 1.28. �

Definition 2.2. A von Neumann algebra M is a unital ∗-subalgebra of B(H) which satisfies
one of the equivalent conditions of Theorem 2.1.

Definition 2.3. Let M ⊂ B(H) be a von Neumann algebra. We say that

• p ∈M is a projection if p = p∗ = p2.
• v ∈M is an isometry if v∗v = 1.
• u ∈M is a partial isometry if u∗u is a projection.

Observe that if u∗u is a projection, then uu∗ is a projection as well. The set of projections of
M will be denoted by P(M). If K ⊂ H is a closed subspace, we denote by [K] ∈ B(H) the
orthogonal projection [K] : H → K.

We will always assume that M is σ-finite, that is, any family (pi)i∈I of pairwise orthogonal
projections in M is (at most) countable.

Exercise 2.4. Let M be a von Neumann algebra. The closed subspace K ⊂ H is u-invariant
for all u ∈ U(M) if and only if [K] ∈M ′.

If (pi)i∈I is a family of projections, we denote by∨
i∈I

pi =

[∑
i∈I

ran(pi)

]
∧
i∈I

pi =

[⋂
i∈I

ran(pi)

]
.

If p ∈ B(H) is a projection, write p⊥ = 1− p. It is easy to check that (
∨
i∈I pi)

⊥ =
∧
i∈I p

⊥
i .

Proposition 2.5. Let M ⊂ B(H) be a von Neumann algebra. Then P(M) is a complete
lattice.

Proof. Let (pi)i∈I be a family of projections in M . Since M = (M ′)′, we have that ran(pi) is

u-invariant for all u ∈ U(M ′) and all i ∈ I. Thus
∑

i∈I ran(pi) is u-invariant for all u ∈ U(M ′),

whence
∨
i∈I pi ∈M . Moreover

∧
i∈I pi = (

∨
p⊥i )⊥ ∈M . �

Theorem 2.6 (Polar decomposition). Let T ∈ B(H). Then T can be written T = U |T |
where U ∈ B(H) is a partial isometry with initial support ran(T ∗) and final support ran(T ).

Moreover, if T = V S with S ≥ 0 and V a partial isometry such that V ∗V = ran(S), then
S = |T | and V = U .
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Proof. Observe that ker(T ) = ker(T ∗T ) = ker(|T |) so that ran(T ∗) = ker(T )⊥ = ker(|T |)⊥ =

ran(|T |). Define Uη = 0 for η ∈ ran(|T |)⊥ and U |T |ξ = Tξ, for all ξ ∈ H. One checks that

U ∈ B(H) is a well-defined partial isometry such that U∗U = [ran(T ∗)], UU∗ = [ran(T )] and
T = U |T |.

Assume now that T = V S with S ≥ 0 and V ∗V = ran(S). Then T ∗T = SV ∗V S = S2. Thus

S = (T ∗T )1/2 = |T |. The formula T = V |T | clearly shows that V = U . �

The first important example of von Neumann algebras we discuss comes from measure theory.
Let (X,µ) be a standard probability space. Define the unital ∗-representation π : L∞(X,µ)→
B(L2(X,µ)) given by multiplication: (π(f)ξ)(x) = f(x)ξ(x) for all f ∈ L∞(X,µ) and all
ξ ∈ L2(X,µ). Since π is a C∗-algebraic isomorphism, we will identify f ∈ L∞(X,µ) with its
image π(f) ∈ B(L2(X,µ)). From now on, we will simply denote L∞(X,µ) by L∞(X).

Proposition 2.7. We have L∞(X)′ ∩ B(L2(X,µ)) = L∞(X), that is, L∞(X) is maximal
abelian in B(L2(X,µ)). In particular, L∞(X) is a von Neumann algebra.

Proof. Let T ∈ L∞(X)′ ∩B(L2(X,µ)) and denote f = T1X ∈ L2(X,µ). For all ξ ∈ L∞(X) ⊂
L2(X,µ), we have

Tξ = Tξ 1X = ξT 1X = ξf = fξ.

For every n ≥ 1, put Un :=
{
x ∈ X : |f(x)| ≥ ‖T‖∞ + 1

n

}
. We have(

‖T‖∞ +
1

n

)
µ(Un)1/2 ≤ ‖f1Un‖2 = ‖T1Un‖2 ≤ ‖T‖∞ µ(Un)1/2,

hence µ(Un) = 0 for every n ≥ 1. This implies that ‖f‖∞ ≤ ‖T‖∞ and so T = f . �

The von Neumann algebra M = L∞(X) comes equipped with the faithful trace τµ given by
integration against the probability measure µ,

τµ(f) =

∫
X
f dµ, ∀f ∈ L∞(X).

2.2. The predual. Let M be a von Neumann algebra. Denote by M∗ ⊂ M∗ the subspace of
all ultraweakly continuous functionals on M . Recall the following fact.

Proposition 2.8. We have that M∗ is a closed subspace of M∗. Therefore, (M∗, ‖ · ‖) is a
Banach space.

Proof. Let ϕ ∈ M∗ and (ϕi)i∈I be a net in M∗ such that lim ‖ϕ − ϕi‖ = 0. We have to show
that ϕ is strongly continuous on (M)1. Let (xj)j∈J be a net in (M)1 such that xj → x strongly.

|ϕ(x)− ϕ(xj)| ≤ |ϕ(x)− ϕi(x)|+ |ϕi(x)− ϕi(xj)|+ |ϕi(xj)− ϕ(xj)|
≤ 2‖ϕ− ϕi‖+ |ϕi(x)− ϕi(xj)|.

Let ε > 0. Choose i ∈ I such that ‖ϕ− ϕi‖ ≤ ε/3. Since ϕi is ultraweakly continuous, choose
j0 ∈ J such that for all j ≥ j0, |ϕi(x) − ϕi(xj)| ≤ ε/3. We get |ϕ(x) − ϕ(xj)| ≤ ε, for all
j ≥ j0. �

Theorem 2.9. Let M be any von Neumann algebra. The map Φ : M → (M∗)
∗ defined by

Φ(x)(ϕ) = ϕ(x) is an onto isometric linear map. Moreover, under the identification M =
(M∗)

∗, the ultraweak topology on M and the weak∗ topology on (M∗)
∗ coincide.
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Proof. Assume M ⊂ B(H). For all x ∈M , we have

‖x‖∞ = sup {|〈xξ, η〉| : ξ, η ∈ H, ‖ξ‖ ≤ 1, ‖η‖ ≤ 1} .
Put ωξ,η = 〈· ξ, η〉. Since ωξ,η|M ∈ (M∗)1 for all ξ, η ∈ H such that ‖ξ‖ ≤ 1, ‖η‖ ≤ 1, it follows
that ‖x‖∞ = sup {|ϕ(x)| : ϕ ∈ (M∗)1}. Therefore Φ is an isometric embedding. It remains to
show that Φ is onto.

Let L ∈ (M∗)
∗. Define the bounded conjugate-bilinear form b on H×H by b(ξ, η) = L(ωξ,η|M ).

By Riesz Representation Theorem for conjugate-bilinear forms, let T ∈ B(H) be the unique
bounded operator such that b(ξ, η) = 〈Tξ, η〉 for all ξ, η ∈ H. Let S ∈ M ′ be a selfadjoint
element. For all x ∈ M , we have ωSξ,η(x) = 〈xSξ, η〉 = 〈Sxξ, η〉 = 〈xξ, Sη〉 = ωξ,Sη(x) so that
ωSξ,η = ωξ,Sη. We obtain

〈TSξ, η〉 = b(Sξ, η) = L(ωSξ,η|M ) = L(ωξ,Sη|M ) = b(ξ, Sη) = 〈STξ, η〉.
Therefore T ∈M ′′ = M by the Bicommutant Theorem. We have

ωξ,η(T ) = 〈Tξ, η〉 = b(ξ, η) = L(ωξ,η|M ).

Since any ϕ ∈M∗ can be written ϕ =
∑

n ωξn,ηn |M for some (ξn), (ηn) ∈ `2(N, H) (see Proposi-
tion 1.34) and since L is continuous, we get ϕ(T ) = L(ϕ), for all ϕ ∈M∗. Thus L = Φ(T ). �

Definition 2.10. Let M and N be any von Neumann algebras. A positive linear map π :
M → N is normal if for every uniformly bounded increasing net of selfadjoint elements (xi)i∈I
in M , we have

π

(
sup
i∈I

xi

)
= sup

i∈I
π(xi).

We have the following characterization of normal states.

Theorem 2.11. Let M be a von Neumann algebra together with a state ϕ ∈M∗. The following
are equivalent.

(1) ϕ is normal.
(2) Whenever (pi)i∈I is a family of pairwise orthogonal projections in M , we have

ϕ

(∑
i∈I

pi

)
=
∑
i∈I

ϕ(pi).

(3) ϕ is ultraweakly continuous.

Proof. (1) ⇒ (2). Let (pi)i∈I be a family of pairwise orthogonal projections in M . Consider
the increasing net xJ =

∑
i∈J pi, where J ⊂ I is a finite subset. We have supJ xJ =

∑
i∈I pi

and so

ϕ

(∑
i∈I

pi

)
= ϕ

(
sup
J
xJ

)
= sup

J
ϕ(xJ) = sup

J

∑
i∈J

ϕ(pi) =
∑
i∈I

ϕ(pi).

(2)⇒ (3). Fix q ∈M a nonzero projection and ξ ∈ ran(q) such that ϕ(q) ≤ 1 < 〈qξ, ξ〉. There
exists a nonzero projection p ≤ q such that ϕ(pxp) ≤ 〈pxpξ, ξ〉 for all x ∈ M . Indeed, by
Zorn’s Lemma, let (pi)i∈I be a maximal family of pairwise orthogonal projections in M such
that ϕ(pi) ≥ 〈piξ, ξ〉 for all i ∈ I. By assumption, we have

ϕ

(∑
i∈I

pi

)
=
∑
i∈I

ϕ(pi) ≥
∑
i∈I
〈piξ, ξ〉 =

〈(∑
i∈I

pi

)
ξ, ξ

〉
.
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Put p = q −
∑

i∈I pi and observe that p 6= 0. By maximality of the family (pi)i∈I , we have
ϕ(r) < 〈rξ, ξ〉 for every nonzero projection r ≤ p. Therefore, using the Spectral Theorem and
since ϕ is ‖ · ‖∞-continuous, we get ϕ(pxp) ≤ 〈pxpξ, ξ〉 for all x ∈ M+. By Cauchy–Schwarz
Inequality, we have for all x ∈ (M)1,

|ϕ(xp)|2 = |ϕ(1∗xp)|2 ≤ ϕ(px∗xp)ϕ(1) ≤ 〈px∗xpξ, ξ〉 = ‖xpξ‖2.
It follows that ϕ( · p) is strongly continuous on (M)1.

By Zorn’s Lemma, let (pi)i∈I be a maximal family of pairwise orthogonal projections such
that ϕ( · pi) is strongly continuous on (M)1 for all i ∈ I. By maximality of the family and
the previous reasoning, we have

∑
i∈I pi = 1. Therefore

∑
i∈I ϕ(pi) = ϕ(1) = 1. Let ε > 0.

There exists a finite subset F ⊂ I such for all finite subsets F ⊂ J ⊂ I, we have ϕ(p⊥J ) = 1−
ϕ(pJ) ≤ ε, where pJ =

∑
i∈J pi. Moreover the Cauchy–Schwarz Inequality yields |ϕ(xp⊥J )|2 ≤

ϕ(p⊥J )ϕ(xx∗) ≤ ε for all x ∈ (M)1 and all F ⊂ J ⊂ I. We have ‖ϕ − ϕ( · pJ)‖ ≤
√
ε for all

F ⊂ J ⊂ I. Since the net (ϕ( · pJ))J converges to ϕ in M∗ and since ϕ( · pJ) ∈M∗ for all finite
subsets J ⊂ I, we have ϕ ∈M∗. (3)⇒ (1) is trivial. �

Lemma 2.12. Let M ⊂ B(H) be a von Neumann algebra. Any ϕ ∈M∗ is a linear combination
of four elements in (M∗)+.

Proof. By Proposition 1.34, there exist (ξn), (ηn) ∈ `2(N, H) such that ϕ(x) =
∑

n〈xξn, ηn〉. A
simple calculation shows that we have

〈xξn, ηn〉 =
1

4

3∑
k=0

ik〈x(ξn + ikηn), ξn + ikηn〉.

It follows that for all x ∈M , we have

ϕ(x) =
1

4

3∑
k=0

ik
∑
n

〈x(ξn + ikηn), ξn + ikηn〉.

�

Theorem 2.13. Any ∗-isomorphism between von Neumann algebras is normal and ultraweakly
continuous.

Proof. Let π : M → N be a ∗-isomorphism. Let (xi) be a uniformly bounded net of selfadjoint
operators in M and write x = supxi. We have π(xi) ≤ π(x) so that supπ(xi) ≤ π(x). Write
y = supπ(xi). We have xi = π−1(π(xi)) ≤ π−1(y) so that x ≤ π−1(y). Thus y = π(x) and π is
normal.

For all ϕ ∈ (N∗)+, ϕ ◦ π is normal and thus ultraweakly continuous by Theorem 2.11. By
Lemma 2.12, we have ϕ ◦ π ∈M∗, for all ϕ ∈ N∗. Therefore π is ultraweakly continuous. �

2.3. Tracial von Neumann algebras. A von Neumann algebra M is said to be tracial if it
is endowed with a faithful normal state τ which satisfies the trace relation:

τ(xy) = τ(yx), ∀x, y ∈M.

Such a tracial state will be refered to as a trace. We will say that M is a II1 factor if M is an
infinite dimensional tracial von Neumann algebra and a factor.

Let (M, τ) be a tracial von Neumann algebra. We endow M with the following inner product

〈x, y〉τ = τ(y∗x),∀x, y ∈M.
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Denote by (πτ ,L
2(M), ξτ ) the GNS representation of M with respect to τ . To simplify the

notation, we identify πτ (x) with x ∈ M and regard M ⊂ B(L2(M)). Define J : Mξτ 3 xξτ 7→
x∗ξτ ∈ L2(M). For all x, y ∈M , we have

〈Jxξτ , Jyξτ 〉 = 〈x∗ξτ , y∗ξτ 〉 = τ(yx∗) = τ(x∗y) = 〈yξτ , xξτ 〉.

Thus J : L2(M)→ L2(M) is a conjugate linear unitary such that J2 = 1.

Theorem 2.14. We have JMJ = M ′.

Proof. We first prove JMJ ⊂M ′. Let x, y, a ∈M . We have

JxJy aξτ = Jxa∗y∗ξτ = yax∗ξτ = yax∗ξτ = yJxa∗ξτ = yJxJ aξτ

so that JxJy = yJxJ .

Claim 2.15. The faithful normal state x 7→ 〈xξτ , ξτ 〉 is a trace on M ′.

Let x ∈M ′. We first show that Jxξτ = x∗ξτ . Indeed, for every a ∈M , we have

〈Jxξτ , aξτ 〉 = 〈Jaξτ , xξτ 〉 = 〈x∗a∗ξτ , ξτ 〉
= 〈a∗x∗ξτ , ξτ 〉 = 〈x∗ξτ , aξτ 〉.

Let now x, y ∈M ′. We have

〈xyξτ , ξτ 〉 = 〈yξτ , x∗ξτ 〉 = 〈yξτ , Jxξτ 〉 = 〈xξτ , Jyξτ 〉
= 〈xξτ , y∗ξτ 〉 = 〈yxξτ , ξτ 〉.

Denote the faithful normal trace x 7→ 〈xξτ , ξτ 〉 on M ′ by τ ′. Define the canonical antiunitary
K on L2(M ′, τ ′) = M ′ξτ = L2(M) by Kxξτ = x∗ξτ , ∀x ∈M ′. The first part of the proof yields
KM ′K ⊂M ′′ = M . Since K and J coincide on M ′ξτ , which is dense in L2(M), it follows that
K = J . Therefore, we have JM ′J ⊂M and so JMJ = M ′. �

Definition 2.16. Let N ⊂ M be any inclusion of von Neumann algebras. A conditional
expectation E :M→N is a contractive unital N -N -bimodular linear map.

We next show that for inclusions of tracial von Neumann algebras N ⊂M , there always exists
a conditional expectation E : M → N .

Theorem 2.17. Let N ⊂ M be any inclusion of tracial von Neumann algebras and τ ∈ M∗
a distinguished faithful normal trace. Then there exists a unique trace preserving conditional
expectation EN : M → N .

Proof. We still denote by τ the faithful normal trace τ |N ∈ N∗. Regard L2(N) as a closed
subspace of L2(M) via the identity mapping L2(N) → L2(M) : xξτ 7→ xξτ . For all T ∈ M ,
define a sesquilinear form κT : L2(N)× L2(N)→ C by the formula

κT (xξτ , yξτ ) = τ(y∗Tx).

By Cauchy–Schwarz inequality, we have |κT (xξτ , yξτ )| ≤ ‖T‖∞‖x‖2‖y‖2 for all x, y ∈ N and
hence there exists EN (T ) ∈ B(L2(N)) such that κT (xξτ , yξτ ) = 〈EN (T )xξτ , yξτ 〉 for all x, y ∈
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N . Observe that ‖EN (T )‖∞ ≤ ‖T‖∞. For all x, y, a ∈ N , we have

〈EN (T )Ja∗J xξτ , yξτ 〉 = 〈EN (T )xaξτ , yξτ 〉
= τ(y∗Txa)

= τ((ya∗)∗Tx)

= 〈EN (T )xξτ , ya
∗ξτ 〉

= 〈EN (T )xξτ , JaJyξτ 〉
= 〈Ja∗JEN (T )xξτ , yξτ 〉.

This implies that E(T ) ∈ (JNJ)′ = N . It is routine to check that EN : M → N is a trace
preserving conditional expectation.

We next show that there is a unique trace preserving conditional expectation E : M → N .
Indeed, for all T ∈M and all x, y ∈ N , we have

〈E(T )xξτ , yξτ 〉 = τ(y∗E(T )x)

= τ(E(y∗Tx))

= τ(y∗Tx)

= 〈EN (T )xξτ , yξτ 〉.

This shows that E(T ) = EN (T ) for every T ∈M and hence E = EN . �

3. Group von Neumann algebras and group measure space constructions

3.1. Group von Neumann algebras. Let Γ be a countable discrete group. The left regular
representation λ : Γ→ U(`2(Γ)) is defined by λsδt = δst for all s, t ∈ Γ.

Definition 3.1 (Group von Neumann algebra). The von Neumann algebra L(Γ) is defined as
the weak closure of the linear span of {λs : s ∈ Γ}.

Likewise, we can define the right regular representation ρ : Γ → U(`2(Γ)) by ρsδt = δts−1 for
all s, t ∈ Γ. The right von Neumann algebra R(Γ) is defined as the weak closure of the linear
span of {ρs : s ∈ Γ}. We obviously have L(Γ) ⊂ R(Γ)′.

Proposition 3.2. The vector state τ : L(Γ) → C defined by τ(x) = 〈xδe, δe〉 is a faithful
normal trace. Moreover L(Γ) = R(Γ)′.

Proof. It is clear that τ is normal. We moreover have

τ(λsλt) = τ(λst) = δst,e = δts,e = τ(λts) = τ(λtλs).

It follows that τ is a trace on L(Γ). Assume now that τ(x∗x) = 0, that is, xδe = 0 for x ∈ L(Γ).
For all t ∈ Γ, we have xδt = xρt−1δe = ρt−1xδe = 0. Therefore x = 0. Hence τ is faithful.

We can identify `2(Γ) with L2(L(Γ)) via the unitary mapping δg 7→ ug. Under this identification,
we have Jδt = δt−1 . An easy calculation shows that for all s, t ∈ Γ, we have

JλsJ δt = Jλsδt−1 = Jδst−1 = δts−1 = ρs δt.

Therefore, JλsJ = ρs for all s ∈ Γ. It follows that L(Γ)′ = JL(Γ)J = R(Γ) and thus L(Γ) =
R(Γ)′. �
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Let x ∈ L(Γ) and write xδe =
∑

s∈Γ xsδs ∈ `2(Γ) with xs = 〈xδe, δs〉 = τ(xλ∗s) for all s ∈ Γ.
As we have seen, the family (xs)s∈Γ completely determines x ∈ Γ. We shall denote by x =∑

s∈Γ xsλs the Fourier expansion of x ∈ L(Γ).

The above sum
∑

s∈Γ xsλs does not converge in general for any of the topologies on B(`2(Γ)).
However, the net of finite sums (xF )F defined by xF =

∑
s∈F xsλs for F ⊂ Γ a finite subset

does converge for the ‖ · ‖2-norm. Indeed since (xs) ∈ `2(Γ), for any ε > 0, there exists F0 ⊂ Γ
finite subset such that

∑
s∈Γ\F0

|xs|2 ≤ ε2. Thus, for every finite subset F ⊂ Γ such that

F0 ⊂ F , we have ‖x− xF‖22 =
∑

s∈Γ\F |xs|2 ≤ ε2.

The notation x =
∑

s∈Γ xsλs behaves well with respect to taking the adjoint and multiplication.

Proposition 3.3. Let x =
∑

s∈Γ xsλs (resp. y =
∑

t∈Γ ytλt) be the Fourier expansion of
x ∈ L(Γ) (resp. y ∈ L(Γ)). Then we have

• x∗ =
∑

s∈Γ xs−1λs.

• xy =
∑

t∈Γ

(∑
t∈Γ xsys−1t

)
λt, with

∑
s∈Γ xsys−1t ∈ C for all t ∈ Γ, by Cauchy–Schwarz

inequality.

Proof. For the first item, observe that

(x∗)s = τ(x∗λ∗s) = τ(λsx) = τ(xλ∗
s−1) = xs−1 .

For the second item, observe that using Cauchy–Schwarz inequality, we have

(xy)t = τ(xyλ∗t ) =
∑
s∈Γ

xsτ(λsyλ
∗
t ) =

∑
s∈Γ

xsτ(yλ∗s−1t) =
∑
s∈Γ

xsys−1t. �

Thanks to the Fourier expansion, we can compute the center Z(L(Γ)) of the group von Neumann
algebra. We say that Γ is icc (infinite conjugacy classes) if for every s ∈ Γ \ {e}, the conjugacy
class {tst−1 : t ∈ Γ} is infinite.

Proposition 3.4. We have x =
∑

s∈Γ xsλs ∈ Z(L(Γ)) if and only if xtst−1 = xs for all s, t ∈ Γ.
In particular, L(Γ) is a factor if and only if Γ is icc. Thus, L(Γ) is a II1 factor whenever Γ is
infinite and icc.

Proof. We have

x =
∑
s∈Γ

xsλs ∈ Z(L(Γ))⇔ λ∗txλt = x,∀s ∈ Γ

⇔ xtst−1 = xs,∀s, t ∈ Γ.

If Γ is icc and x ∈ Z(L(Γ)), since (xtst−1)t ∈ `2(Γ), for all s ∈ Γ, it follows that xs = 0 for all
s ∈ Γ \ {e}. Hence Z(L(Γ)) = C.

If Γ is not icc, then F = {tst−1 : t ∈ Γ} is finite for some s ∈ Γ \ {e}. Then
∑

h∈F λh ∈
Z(L(Γ)) \C. �

Example 3.5. Here are a few examples of icc groups: the subgroup S∞ < S(N) of finitely
supported permutations; the free groups Fn for n ≥ 2; the lattices PSL(n,Z) for n ≥ 2.

Hence Proposition 3.4 provides many examples of II1 factors arising from countable discrete
groups.

Exercise 3.6. Let T = [Tst]s,t∈Γ ∈ B(`2(Γ)), with Tst = 〈Tδt, δs〉. Show that T ∈ L(Γ) if and
only if T is constant down the diagonals, that is, Tst = Tgh whenever st−1 = gh−1.
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Example 3.7. Assume that Γ is abelian. Then the Pontryagin dual Γ̂ is a compact second

countable abelian group. Write F : `2(Γ) → L2(Γ̂,Haar) for the Fourier transform which is
defined by F(δs)(χ) = 〈s, χ〉. Observe that F is a unitary operator. We then get

L∞(Γ̂) = FL(Γ)F∗.

3.2. Murray–von Neumann’s group measure space construction. Let Γ y (X,µ)
be a probability measure preserving (pmp) action. Define the action σ : Γ y L∞(X) by
(σs(F ))(x) = F (s−1x), ∀F ∈ L∞(X). This action extends to a unitary representation σ : Γ→
U(L2(X)). Put H = L2(X) ⊗ `2(Γ). Put us = σs ⊗ λs for all s ∈ Γ. Observe that by Fell’s
absorption principle, the representation Γ→ U(H) : s 7→ us is unitarily conjugate to a multiple
of the left regular representation. We will identify F ∈ L∞(X) with F ⊗ 1 ∈ L∞(X)⊗ 1.

We have the following covariance relation:

usFu
∗
s = σs(F ),∀F ∈ L∞(X),∀s ∈ Γ.

Definition 3.8 (Murray, von Neumann [MvN43]). The group measure space construction
L∞(X) o Γ is defined as the weak closure of the linear span of {Fus : F ∈ L∞(X), s ∈ Γ}.

Put M = L∞(X) o Γ. Define the unital faithful ∗-representation π : L∞(X) → B(H) by
π(F )(ξ ⊗ δt) = σt(F )ξ ⊗ δt. Denote by N the von Neumann algebra acting on H generated by
π(L∞(X)) and (1⊗ ρ)(Γ). It is straightforward to check that M ⊂ N ′.
Proposition 3.9. The vector state τ : M → C defined by τ(x) = 〈x(1X ⊗ δe),1X ⊗ δe〉 is a
faithful normal trace. Moreover we have M = N ′.

Proof. It is clear that τ is normal. We moreover have

τ(FusGut) = τ(Fσs(G)ust)

= δst,e

∫
X
F (x)G(s−1x) dµ(x)

= δst,e

∫
X
F (sx)G(x) dµ(x)

= δts,e

∫
X
G(x)F (t−1x) dµ(x)

= τ(Gσt(F )uts)

= τ(Gut Fus).

It follows that τ is a trace on M . Assume that τ(b∗b) = 0, that is, b(1X ⊗ δe) = 0. For all
s ∈ Γ and all F ∈ L∞(X), we have

b (F ⊗ δt) = b π(σt−1(F ))(1⊗ ρt−1)(1X ⊗ δe)
= π(σt−1(F ))(1⊗ ρt−1) b(1X ⊗ δe) = 0.

It follows that b = 0. Hence τ is faithful.

We will identify L2(M) with L2(X)⊗`2(Γ) via the unitary mapping Fusξτ 7→ F⊗δs. Under this
identification, the conjugation J : L2(M) → L2(M) is defined by J(ξ ⊗ δs) = σs−1(ξ∗) ⊗ δs−1 .
For all F ∈ L∞(X) and all s ∈ Γ, we have

J(σs ⊗ λs)J = 1⊗ ρs
J(F ⊗ 1)J = π(F )∗.

Therefore, we get M = N ′. �
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Observe that when the probability space X = {•} is a point, then the group von Neumann
algebra and the group measure space construction coincide, that is, L∞(X) o Γ = L(Γ).

Proposition 3.10 (Fourier expansion). Let Γ y (X,µ) be a pmp action. Let A = L∞(X) and
M = L∞(X) o Γ. Denote by EA : M → A the unique trace preserving conditional expectation.
Every a ∈ M has a unique Fourier expansion of the form a =

∑
s∈Γ asus with as = EA(au∗s).

The convergence holds for the ‖ · ‖2-norm. Moreover, we have the following:

• a∗ =
∑

s∈Γ σs−1(a∗s)us.

• ‖a‖22 =
∑

s∈Γ ‖as‖22.

• ab =
∑

t∈Γ

(∑
s∈Γ asσs(bs−1t)

)
ut.

Proof. Define the unitary mapping U : L2(M) → L2(X) ⊗ `2(Γ) by the formula U(ausξτ ) =
a ⊗ δs. Then Uξτ = 1X ⊗ δe is a cyclic separating vector for M represented on the Hilbert
space L2(X)⊗ `2(Γ). We identify L2(M) with L2(X)⊗ `2(Γ). Under this identification, eA is
the orthogonal projection L2(X)⊗ `2(Γ)→ L2(X)⊗Cδe. Moreover, useAu

∗
s is the orthogonal

projection L2(X)⊗ `2(Γ) → L2(X)⊗Cδs and thus
∑

s∈Γ useAu
∗
s = 1. Let a ∈ M . Regarding

a(1X ⊗ δe) ∈ L2(X)⊗ `2(Γ), we know that there exists as ∈ L2(X) such that

a(1X ⊗ δe) =
∑
s∈Γ

as ⊗ δs and ‖a‖22 =
∑
s∈Γ

‖as‖22.

Then we have

as ⊗ δs = useAu
∗
sa(1X ⊗ δe)

= useAu
∗
saeA(1X ⊗ δe)

= usEA(u∗sa)(1X ⊗ δe)
= EA(au∗s)⊗ δs.

It follows that as = EA(au∗s). Therefore, we have a =
∑

s∈Γ EA(au∗s)us and the convergence

holds for the ‖ · ‖2-norm. Moreover, ‖a‖22 =
∑

s∈Γ ‖EA(au∗s)‖22. The rest of the proof is left to
the reader. �

Like in the group case, the sum a =
∑

s∈Γ asus does not converge in general for any of the

operator topologies on B(L2(X)⊗ `2(Γ)).

Definition 3.11. Let Γ y (X,µ) be a pmp action.

• We say that the action is (essentially) free if µ({x ∈ X : sx = x}) = 0 for all s ∈ Γ\{e}.
• We say that the action is ergodic if every Γ-invariant measurable subset U ⊂ X has

measure 0 or 1.

Lemma 3.12. Let Γ y (X,µ) be a pmp action and denote by σ : Γ→ L2(X)0 the corresponding
Koopman representation where L2(X)0 = L2(X)	C1X . The following are equivalent:

(1) The action Γ y (X,µ) is ergodic.
(2) The Koopman representation σ → U(L2(X)0) has no nonzero invariant vectors.

Proof. (1)⇒ (2) Let ξ ∈ L2(X)0 such that σs(ξ) = ξ for all s ∈ Γ. By considering the real part
and the imaginary part of ξ ∈ L2(X)0, we may further assume that ξ ∈ L2(X)0 is real-valued.
For every t ∈ R, define Ut = {x ∈ X : ξ(x) ≥ t}. It follows that Ut is Γ-invariant for all
t ∈ R and thus µ(Ut) = 0, 1 by ergodicity. Since the fonction t 7→ µ(Ut) is decreasing and since
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ξ ∈ L2(X), there exists t0 ∈ R such that µ(Ut) = 1 for all t < t0 and µ(Ut) = 0 for all t > t0.
Therefore ξ(x) = t0 for µ-almost every x ∈ X. Since ξ ∈ L2(X)0, we get t0 = 0 and so ξ = 0.

(2) ⇒ (1) Let U ⊂ X be a Γ-invariant measurable subset. Put ξ = 1U − µ(U)1X ∈ L2(X)0.
Since σs(ξ) = ξ for all s ∈ Γ, we get ξ = 0 and so 1U = µ(U)1X . Hence µ(U) = 0, 1. �

Examples 3.13. Here are a few examples of pmp free ergodic actions Γ y (X,µ).

(1) Bernoulli actions. Let Γ be an infinite group and (Y, η) a nontrivial probability space,
that is, η is not a Dirac point mass. Put (X,µ) = (Y Γ, ν⊗Γ). Consider the Bernoulli
action Γ y Y Γ defined by

s · (yt)t∈Γ = (ys−1t)t∈Γ.

Then the Bernoulli action is pmp free and mixing, so in particular ergodic.
(2) Profinite actions. Let Γ be an infinite residually finite group together with a decreas-

ing chain of finite index normal subgroups ΓnCΓ such that Γ0 = Γ and ∩n∈NΓn = {e}.
Then for all n ≥ 1, the action Γ y (Γ/Γn, µn) is transitive and preserves the normalized
counting measure µn. Consider the profinite action defined as the projective limit

Γ y (G, µ) = lim←−Γ y (Γ/Γn, µn).

Then Γ sits as a dense subgroup of the compact group G which is the profinite comple-
tion of Γ with respect to the decreasing chain (Γn)n∈N. Observe that µ is the unique
Haar probability measure on G. The profinite action is pmp free and ergodic.

(3) Actions on tori. Let n ≥ 2. Consider the action SL(n,Z) y (Tn, λn) where Tn =
Rn/Zn is the n-torus and λn is the unique Haar probability measure. This action is
pmp free and ergodic.

We always assume that (X,µ) is a standard probability space. In particular, X is countably
separated in the sense that there exists a sequence of Borel subsets Vn ⊂ X such that

⋃
n Vn = X,

µ(Vn) > 0 for all n ∈ N and with the property that whenever x, y ∈ X and x 6= y, there exists
n ∈ N for which x ∈ Vn and y /∈ Vn.

Proposition 3.14. Let Γ y (X,µ) be a pmp action. Put A = L∞(X) and M = L∞(X) o Γ.

(1) The action is free if and only if A ⊂M is maximal abelian, that is, A′ ∩M = A.
(2) Under the assumption that the action is free, the action is ergodic if and only if M is

a factor.

Proof. (1) Assume that the action is free. Let b ∈ A′ ∩M and write b =
∑

s∈Γ bsus for its
Fourier expansion. Then for all a ∈ A and all s ∈ Γ, we have abs = σs(a)bs. Fix s ∈ Γ \ {e}
and put Us = {x ∈ X : bs(x) 6= 0, sx 6= x}. We have 1Usa = 1Usσs(a) for all a ∈ A.

By assumption, we have Us = Us ∩ (
⋃
n Vn ∩ s(Vn)c). So, if µ(Us) > 0, there exists n ∈ N

such that µ(Us ∩ Vn ∩ s(Vn)c) > 0. With a = 1Vn , we get 1Us∩Vn = 1Us∩s(Vn) and thus
1Us∩Vn∩s(Vn)c = 0, which is a contradiction. Therefore, µ(Us) = 0. Since the action is moreover
free, we get bs = 0. This implies that b ∈ A.

Conversely, assume that A′∩M = A. For all s ∈ Γ\{e}, put as = 1{x∈X:sx=x}. We have asus ∈
A′ ∩M = A. Hence asus = EA(asus) = 0 and so as = 0. Therefore µ({x ∈ X : sx = x}) = 0.

(2) Under the assumption that the action is free, we have Z(M) = M ′ ∩M = M ′ ∩ A = AΓ.
Therefore, the action is ergodic if and only if Z(M) = C. �
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Let A ⊂ M be any inclusion of von Neumann algebras. Denote by NM (A) := {u ∈ U(M) :
uAu∗ = A} the group of unitaries normalizing A inside M and by NM (A)′′ the normalizer of
A inside M . We say that A ⊂ M is a Cartan subalgebra when the following three conditions
are satisfied:

(1) A is maximal abelian, that is, A = A′ ∩M ;
(2) There exists a faithful normal conditional expectation EA : M → A;
(3) NM (A)′′ = A.

For every free pmp action Γ y (X,µ), L∞(X) ⊂ L∞(X) o Γ is a Cartan subalgebra by
Proposition 3.14.

4. Amenable von Neumann algebras

4.1. Connes’s theory of bimodules. The discovery of the appropriate notion of representa-
tions for von Neumann algebras, as so-called correspondences or bimodules, is due to Connes.
Whenever M is a von Neumann algebra, we denote by Mop its opposite von Neumann algebra.

Definition 4.1. Let M,N be tracial von Neumann algebras. A Hilbert space H is said to be
an M -N -bimodule if it comes equipped with two commuting normal unital ∗-representations
λ : M → B(H) and ρ : Nop → B(H). We shall intuitively write

xξy = λ(x)ρ(yop)ξ, ∀ξ ∈ H,∀x ∈M,∀y ∈ N.

We will sometimes denote by πH : M ⊗alg N
op → B(H) the unital ∗-representation associated

with the M -N -bimodule structure on H.

Examples 4.2. The following are important examples of bimodules:

(1) The identity M -M -bimodule L2(M) with xξy = xJy∗Jξ.
(2) The coarse M -N -bimodule L2(M)⊗ L2(N) with x(ξ ⊗ η)y = (xξ)⊗ (ηy).
(3) For any τ -preserving automorphism θ ∈ Aut(M), we regard L2

θ(M) with the following
M -M -bimodule structure: xξy = xξθ(y).

We will say that two M -N -bimodules MHN and MKN are isomorphic and write MHN ∼= MKN
if there exists a unitary mapping U : H → K such that

U(xξy) = xU(ξ)y,∀ξ ∈ H, ∀x ∈M, ∀y ∈ N.

We now describe Connes’s fusion tensor product for Hilbert bimodules. Let M,N,P be any
tracial von Neumann algebras, H any M -N -bimodule and K any N -P -bimodule. Denote by
H0 ⊂ H the subspace of right N -bounded vectors, that is,

H0 := {a ∈ H : ∃c > 0,∀y ∈ N, ‖ay‖ ≤ c‖y‖2} .
Whenever a ∈ H0, we denote by La : L2(N) → H : yξτ 7→ ay the corresponding bounded
operator. Observe that for all a, b ∈ H0, we have

L∗bLa ∈ (JNJ)′ ∩B(L2(N)) = N.

Observe that H0 is dense in H. Indeed, for every ξ ∈ H, denote by Tξ ∈ L1(N, τ) the unique
element such that 〈ξy, ξ〉 = τ(Tξy) for all y ∈ N . Regarding Tξ as a closed summable operator
affiliated with N , we may take the spectral decomposition of Tξ and find an increasing sequence
of projection en ∈ N such that ξen ∈ H0 and ξen → ξ.
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The separation/completion of H0 ⊗alg K with respect to the sesquilinear form

〈a⊗ ξ, b⊗ η〉 = 〈L∗bLaξ, η〉K

is denoted by H⊗N K. The image of a⊗η ∈ H0⊗algK in H⊗N K is simply denoted by a⊗N ξ.
The M -P -bimodule structure on H⊗N K is given by

x(a⊗N ξ)y = xa⊗N ξy,∀x ∈M, ∀y ∈ P.

Exercise 4.3 (Associativity). Let M,N,P,Q be any tracial von Neumann algebras and MKN ,

NKP , PLQ bimodules. Show that as M -Q-bimodules, we have

M ((H⊗N K)⊗P L)Q ∼= M (H⊗N (K ⊗P L))Q.

Like for unitary group representations, we can define a notion of weak containment of Hilbert
bimodules. Let M,N be any tracial von Neumann algebras and MHN ,MKN any bimodules.
Consider the unital ∗-representations πH : M ⊗alg N

op → B(H) and πK : M ⊗alg N
op → B(K).

Definition 4.4 (Weak containment). We say thatH is weakly contained inK and writeH ⊂weak

K if ‖πH(T )‖ ≤ ‖πK(T )‖ for all T ∈M ⊗alg N
op.

Let π : Γ→ U(Kπ) be a unitary representation of a countable discrete group Γ. Put M = L(Γ)
and denote by (λs)s∈Γ the canonical unitaries in M . Define on H(π) = Kπ⊗`2(Γ) the following
M -M -bimodule structure. For all ξ ∈ Kπ and all s, t ∈ Γ, define

λs (ξ ⊗ δt) = πs(ξ)⊗ δst
(ξ ⊗ δt)λs = ξ ⊗ δts.

It is clear that the right multiplication extends to the whole von Neumann algebra M . Observe
now that the unitary representations π⊗λ and 1Kπ ⊗λ are unitarily conjugate. Indeed, define
U : Kπ ⊗ `2(Γ)→ Kπ ⊗ `2(Γ) by

U(ξ ⊗ δt) = πt(ξ)⊗ δt.

It is routine to check that U is a unitary and U(1Kπ⊗λs)U∗ = πs⊗λs for every s ∈ Γ. Therefore,
the left multiplication extends to M . Denote by 1Γ : Γ→ U(C) the trivial representation.

Proposition 4.5 (Representations and Bimodules). The formulae above endow the Hilbert
space H(π) = Kπ⊗`2(Γ) with a structure of M -M -bimodule. Moreover, the following assertions
hold true:

(1) MH(1Γ)M ∼= ML2(M)M and MH(λΓ)M ∼= M (L2(M)⊗ L2(M))M .
(2) For all unitary Γ-representations π1 and π2 such that π1 ⊂weak π2, we have

MH(π1)M ⊂weak MH(π2)M .

(3) Whenever π1 and π2 are unitary Γ-representations, we have

MH(π1 ⊗ π2)M ∼= M (H(π1)⊗M H(π2))M .

Proof. The proof is left as an exercise. �
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4.2. Powers–Størmer’s inequality. For an inclusion of von Neumann algebra M ⊂ N , we
say that a state ϕ ∈ N ∗ is M -central if ϕ(xT ) = ϕ(Tx) for all x ∈M and all T ∈ N . We will
be using the following notation: for all x ∈M , put x = (xop)∗ ∈Mop.

Regarding M ⊗alg M
op ⊂ B(L2(M)⊗ L2(M)), we will denote by ‖ · ‖min the operator norm on

M ⊗alg M
op induced by B(L2(M) ⊗ L2(M)). It is called the minimal tensor norm. We will

also denote by M ⊗Mop := (M ⊗alg M
op)′′ ⊂ B(L2(M)⊗ L2(M)).

Let H be a separable Hilbert space. For every p ≥ 1, define the pth-Schatten class Sp(H) by

Sp(H) = {T ∈ B(H) : Tr(|T |p) <∞} .

It is a Banach space with norm given by ‖T‖p = Tr(|T |p)1/p. Observe that S1(H) is the space
of trace-class operators and S2(H) is the (Hilbert) space of Hilbert-Schmidt operators. It is
also denoted by HS(H).

Let M be a finite von Neumann algebra with a distinguished faithful normal trace τ . Observe
that the unitary U : HS(L2(M)) → L2(M) ⊗ L2(M) defined by U(〈 · , η〉ξ) = ξ ⊗ Jη is an
M -M -bimodule isomorphism.

We will be using the following technical results.

Lemma 4.6. Let A be a unital C∗-algebra, u ∈ (A)1 and ω ∈ A∗ a state. Then we have

max {‖ω − ω(u · )‖, ‖ω − ω( ·u∗)‖, ‖ω − ω ◦Ad(u)‖} ≤ 2
√

2|1− ω(u)|.

Proof. Let (πω,Hω, ξω) the GNS representation associated with the state ω on A. Then ω(a) =
〈πω(a)ξω, ξω〉 for all a ∈ A. We have

‖ω − ω( ·u∗)‖ ≤ ‖ξω − πω(u)∗ξω‖ ≤
√

2(1−<ω(u)) ≤
√

2|1− ω(u)|.

Likewise, we get ‖ω − ω(u · )‖ ≤
√

2|1− ω(u)|. Moreover, we have

‖ω − ω ◦Ad(u)‖ ≤ 2‖ξω − πω(u)∗ξω‖ ≤ 2
√

2|1− ω(u)|. �

The previous lemma implies in particular that when ω(u) = 1, then

ω = ω( ·u∗) = ω(u · ) = ω ◦Ad(u).

Lemma 4.7 (Powers–Størmer’s Inequality). Let H be a Hilbert space and S, T ∈ S2(H)+.
Then we have

‖S − T‖22 ≤ ‖S2 − T 2‖1 ≤ ‖S − T‖2‖S + T‖2.

Before starting the proof, we make the following observations:

• Whenever A,B ∈ B(H) have finite rank and if we write AB = U |AB| for the polar
decomposition, by the Cauchy–Schwarz Inequality, we have

‖AB‖1 = Tr(|AB|) = Tr(U∗AB) ≤ ‖U∗A‖2‖B‖2 ≤ ‖A‖2‖B‖2.

• Whenever A,B ∈ B(H)+ and A or B has finite rank, we have Tr(AB) ≥ 0. Indeed,
without loss of generality, we may assume that B has finite rank and we write B =∑n

i=1 λi〈 · , ξi〉 ξi. Then AB =
∑n

i=1 λi〈 · , ξi〉Aξi and so Tr(AB) =
∑n

i=1 λi〈Aξi, ξi〉 ≥ 0.
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Proof. We reproduce the elegant proof given in [BO08, Proposition 6.2.4]. First observe that
using the Spectral Theorem, we may assume that S, T have both finite rank and still satisfy
S, T ≥ 0.

The identity

(4.1) S2 − T 2 =
1

2
((S + T )(S − T ) + (S − T )(S + T ))

together with the first observation give the right inequality.

Put p = 1[0,+∞)(S−T ). We have (S−T )p ≥ 0 and (T −S)p⊥ ≥ 0. Observe that we also have

Tr((S + T )(S − T )p) = Tr((S + T )p(S − T ))(4.2)

= Tr((S − T )(S + T )p)

Tr((T + S)(T − S)p⊥) = Tr((T + S)p⊥(T − S))(4.3)

= Tr((T − S)(T + S)p⊥).

Then we have

‖S − T‖22 = Tr((S − T )2)

= Tr((S − T )2p+ (S − T )2p⊥)

= Tr((S − T )(S − T )p+ (T − S)(T − S)p⊥)

≤ Tr((S + T )(S − T )p+ (T + S)(T − S)p⊥) (using the second obsevation)

= Tr((S2 − T 2)p+ (T 2 − S2)p⊥) (using (4.1), (4.2) and (4.3))

≤ Tr(|S2 − T 2|p+ |T 2 − S2|p⊥) (using the second observation)

= Tr(|S2 − T 2|) = ‖S2 − T 2‖1. �

4.3. Connes’s fundamental theorem. This section is devoted to proving Connes’s charac-
terization of amenability for tracial von Neumann algebras.

Definition 4.8. Let M ⊂ B(H) be any von Neumann algebra with separable predual. We say
that

• M is amenable if there exists a conditional expectation Φ : B(H)→M .
• M is hyperfinite if there exists an increasing sequence of unital finite dimensional ∗-

subalgebras Qn ⊂M such that M =
∨
nQn.

Theorem 4.9 (Connes [Co75]). Let (M, τ) be a tracial von Neumann algebra with separable
predual. The following are equivalent:

(1) There exists a conditional expectation Φ : B(L2(M))→M .
(2) There exists an M -central state ϕ on B(L2(M)) such that ϕ|M = τ .
(3) There exists a net of unit vectors ξn ∈ L2(M)⊗L2(M) such that limn ‖xξn− ξnx‖2 = 0

and limn〈xξn, ξn〉 = τ(x) for all x ∈M .
(4) ML2(M)M ⊂weak M (L2(M)⊗ L2(M))M .
(5) For all a1, . . . , ak, b1, . . . , bk ∈M , we have∣∣∣∣∣τ

(
k∑
i=1

aibi

)∣∣∣∣∣ ≤
∥∥∥∥∥

k∑
i=1

ai ⊗ bop
i

∥∥∥∥∥
min

.

(6) M is hyperfinite.
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Whenever M = L(Γ) is the von Neumann algebra of a countable discrete group, the previous
conditions are equivalent to:

(7) Γ is amenable.

Proof. We show that (1) ⇔ (2) ⇔ (3) ⇔ (4) ⇔ (5) ⇔ (7) and (6) ⇒ (1). The proof of
(1)⇒ (6) is beyond the scope of these notes.

(1)⇒ (2) Put ϕ = τ ◦ Φ.

(2) ⇒ (3) Let ϕ be an M -central state on B(L2(M)). Since the set of normal states is
σ(B(L2(M))∗,B(L2(M)))-dense in the set of states, we may choose a net of normal states
(ϕj)j∈J on B(L2(M)) such that limJ ϕj(T ) = ϕ(T ) for all T ∈ B(L2(M)). We get that

ϕj ◦Ad(u)−ϕj → 0 with respect to the σ(B(L2(M))∗,B(L2(M)))-topology, for all u ∈ U(M).
Using Hahn–Banach Theorem and up to replacing the net (ϕj)j∈J by a net (ϕ′k)k∈K where
each ϕ′k is equal to a finite convex combination of some of the ϕj ’s, we may assume that

‖ϕj ◦Ad(u)− ϕj‖ → 0 for all u ∈ U(M). For every j ∈ J , let Tj ∈ S1(L2(M))+ be the unique
trace-class operator such that ϕj(S) = Tr(TjS) for all S ∈ B(L2(M)). We get ‖Tj‖1 = 1

and limJ ‖uTju∗ − Tj‖1 = 0 for all u ∈ U(M). Put ξj = T
1/2
j ∈ S2(L2(M)) and observe that

‖ξj‖2 = 1. Since ξj is a Hilbert-Schmidt operator, we may regard ξj ∈ L2(M) ⊗ L2(M). By
the Powers-Størmer Inequality, we get limJ ‖uξju∗ − ξj‖2 = 0 for all u ∈ U(M). Moreover, we
have

lim
J
〈xξj , ξj〉 = lim

J
Tr(Tjx) = lim

J
ϕj(x) = ϕ(x) = τ(x),∀x ∈M.

(3)⇒ (4) Let a1, . . . , ak, b1, . . . , bk ∈M and put T =
∑k

i=1 ai ⊗ biop. Let c, d ∈M . Then∣∣∣〈πL2(M)(T )cξτ , dξτ 〉
∣∣∣ =

∣∣∣∣∣τ
(

k∑
i=1

d∗aicbi

)∣∣∣∣∣
= lim

n

∣∣∣∣∣
〈

k∑
i=1

d∗aicbi ξn, ξn

〉∣∣∣∣∣
= lim

n

∣∣∣∣∣
〈

k∑
i=1

ai ξnc bi, dξn

〉∣∣∣∣∣
≤ ‖πL2(M)⊗L2(M)(T )‖ lim

n
‖ξnc‖ lim

n
‖dξn‖

= ‖πL2(M)⊗L2(M)(T )‖ ‖c‖2‖d‖2.

This implies that ‖πL2(M)(T )‖ ≤ ‖πL2(M)⊗L2(M)(T )‖.

(4) ⇒ (5) Let a1, . . . , ak, b1, . . . , bk ∈ M and put T =
∑k

i=1 ai ⊗ b
op
i . Since L2(M) ⊗ L2(M) is

a left M ⊗Mop-module, we have

‖πL2(M)⊗L2(M)(T )‖ =

∥∥∥∥∥
k∑
i=1

ai ⊗ bop
i

∥∥∥∥∥
min

.

Since by assumption, we have ‖πL2(M)(T )‖ ≤ ‖πL2(M)⊗L2(M)(T )‖, we get∣∣∣∣∣τ
(

k∑
i=1

aibi

)∣∣∣∣∣ =
∣∣∣〈πL2(M)(T )ξτ , ξτ

〉∣∣∣ ≤ ‖πL2(M)(T )‖ ≤

∥∥∥∥∥
k∑
i=1

ai ⊗ bop
i

∥∥∥∥∥
min

.
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(5)⇒ (2) Denote by Ω : M⊗algM
op → C the ‖ · ‖min-bounded functional such that Ω(a⊗bop) =

τ(ab). By the Hahn–Banach Theorem and since M ⊗alg M
op ⊂ B(L2(M) ⊗ L2(M)), we may

extend the functional Ω to B(L2(M) ⊗ L2(M)) without increasing the norm of Ω. We still
denote this extension by Ω. Since ‖Ω‖ = 1 = Ω(1), Ω is a state on B(L2(M)⊗ L2(M)). Since
Ω(u⊗ u) = τ(uu∗) = 1 for all u ∈ U(M), we have

Ω(S(u⊗ u)) = Ω(S) = Ω((u⊗ u)S)

for all S ∈ B(L2(M)⊗ L2(M)) and all u ∈ U(M) (see Lemma 4.6).

Put ϕ(T ) = Ω(T ⊗ 1op) for all T ∈ B(L2(M)). Observe that ϕ(x) = Ω(x⊗ 1op) = τ(x) for all
x ∈M . Moreover, for all T ∈ B(L2(M)) and all u ∈ U(M), we have

ϕ(uT ) = Ω(uT ⊗ 1op) = Ω((u⊗ u)(T ⊗ uop))

= Ω((T ⊗ uop)(u⊗ u)) = Ω(Tu⊗ 1op)

= ϕ(Tu).

(2) ⇒ (1) For all T ∈ B(L2(M)), define a sesquilinear form κT : L2(M)× L2(M) → C by the
formula

κT (xξτ , yξτ ) = ϕ(y∗Tx).

By Cauchy–Schwarz inequality, we have |κT (xξτ , yξτ )| ≤ ‖T‖∞‖x‖2‖y‖2 for all x, y ∈ M and
hence there exists Φ(T ) ∈ B(L2(M)) such that κT (xξτ , yξτ ) = 〈Φ(T )xξτ , yξτ 〉 for all x, y ∈M .
Observe that ‖Φ(T )‖ ≤ ‖T‖. For all x, y, a ∈M , we have

〈Φ(T )Ja∗J xξτ , yξτ 〉 = 〈Φ(T )xaξτ , yξτ 〉
= ϕ(y∗Txa)

= ϕ((ya∗)∗Tx)

= 〈Φ(T )xξτ , ya
∗ξτ 〉

= 〈Φ(T )xξτ , JaJyξτ 〉
= 〈Ja∗JΦ(T )xξτ , yξτ 〉.

This implies that Φ(T ) ∈ (JMJ)′ = M . It is routine to check that Φ : B(L2(M)) → M is a
conditional expectation.

(6) ⇒ (1) Assume that M =
∨
nQn with Qn ⊂ M an increasing sequence of unital finite

dimensional ∗-subalgebras. Denote by µn the unique Haar probability measure on the compact
group U(Qn). Choose a nonprincipal ultrafilter ω on N. For all T ∈ B(L2(M)), put

E(T ) = lim
n→ω

∫
U(Qn)

uTu∗ dµn(u).

Then Φ : B(L2(M))→M defined by Φ(T ) = JE(T )J is a conditional expectation.

Put M = L(Γ) and denote by λs ∈M the canonical unitaries.

(1) ⇒ (7) Let ϕ ∈ B(`2(Γ))∗ be an L(Γ)-central state such that ϕ|L(Γ) = τ . Define a state
m ∈ `∞(Γ)∗ by m = ϕ|`∞(Γ). Then m is an invariant mean and Γ is amenable.

(7)⇒ (1) Assume that there exists a sequence of unit vectors ζn ∈ `2(Γ) such that ‖λsζn−ζn‖ =
0 for all s ∈ Γ. Put M = L(Γ). Consider the M -M -bimodule Hλ as defined before. Recall
that MHλM ∼= M (L2(M)⊗ L2(M))M . Put ξn = ζn ⊗ ξτ and regard ξn ∈ HS(L2(M)). Observe
that limn ‖λsξn − ξnλs‖ = 0 all s ∈ Γ and 〈λsξn, ξn〉 = τ(λs) for all n ∈ N and all s ∈ Γ. This
further implies that 〈xξn, ξn〉 = τ(x) for all n ∈ N and all x ∈M .
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Choose a nonprincipal ultrafilter ω on N and put ϕ(T ) = limn→ω〈Tξn, ξn〉 for all T ∈ B(L2(M)).
We have ϕ(λsT ) = ϕ(Tλs) for all T ∈ B(L2(M)) and all s ∈ Γ and ϕ|M = τ . Let x ∈ M and
write x =

∑
s∈Γ xsλs for its Fourier expansion. Put xF =

∑
s∈F xsλs ∈ C[Γ] for F ⊂ Γ finite

subset. By Cauchy–Schwarz Inequality, we have

|ϕ((x− xF )T )| ≤ ϕ((x− xF )(x− xF )∗)1/2 ϕ(T ∗T )1/2 = ‖x− xF‖2 ϕ(T ∗T )1/2

and so limF ϕ(xFT ) = ϕ(xT ). Likewise, we have limF ϕ(TxF ) = ϕ(Tx). This implies that
ϕ(xT ) = ϕ(Tx) for all x ∈M and all T ∈ B(L2(M)). �

We say that a tracial von Neumann algebra (M, τ) is diffuse if there exists a sequence of
unitaries un ∈ U(M) such that un → 0 σ-weakly. One can show that M is diffuse if and only
if M has no nonzero minimal projection.

We record the following well-known fact.

Proposition 4.10. Let M ⊂ B(H) be any diffuse tracial von Neumann algebra. Then for any
M -central state ϕ ∈ B(H)∗ we have ϕ|K(H) = 0.

Proof. Fix a sequence of unitaries un ∈ U(M) such that un → 0 σ-weakly. For any ξ ∈ H,
denote by eξ : H → Cξ the corresponding orthogonal projection. Since ϕ ∈ B(H)∗ is M -
central, we have ϕ(eukξ) = ϕ(ukeξu

∗
k) = ϕ(eξ) for every k ∈ N and every ξ ∈ H. Write

‖T‖ϕ = ϕ(T ∗T )1/2 for every T ∈ B(H).

Fix ξ ∈ H and N ≥ 1. By Cauchy–Schwarz inequality, we have

ϕ(eξ) =
1

N

N∑
i=1

ϕ(eukiξ) =
1

N
ϕ

(
N∑
i=1

eukiξ

)
≤ 1

N

∥∥∥∥∥
N∑
i=1

eukiξ

∥∥∥∥∥
ϕ

.

We may choose k1, . . . , kN ∈ N such that ‖eukj ξ eukiξ‖∞ = |〈ukjξ, ukiξ〉| ≤ 1
N for all 1 ≤ i <

j ≤ N . Then we also have∥∥∥∥∥
N∑
i=1

eukiξ

∥∥∥∥∥
2

ϕ

=
N∑
i=1

ϕ(eukiξ) +
∑

1≤i 6=j≤N
ϕ(eukj ξ eukiξ)

≤ N + 2
∑

1≤i<j≤N
‖eukj ξ eukiξ‖∞

≤ N +N(N − 1)
1

N
= 2N − 1.

Thus, we obtain

ϕ(eξ) ≤
√

2N − 1

N
.

Since this holds for every N ≥ 1, it follows that ϕ(eξ) = 0. By Cauchy–Schwarz inequality, we
also have ϕ(Seξ) = 0 for every S ∈ B(H). It follows that ϕ(T ) = 0 for every rank one operator
T ∈ B(H) and hence ϕ|K(H) = 0. �

Exercise 4.11. Let Γ y (X,µ) be a pmp action of a countable discrete group on a standard
probability space. Show that L∞(X) o Γ is amenable if and only if Γ is amenable.

Exercise 4.12. Let A ⊂ M be any inclusion of tracial von Neumann algebras. Assume that
A is amenable. Show that for every u ∈ NM (A), the von Neumann subalgebra 〈A, u〉 ⊂ M is
amenable.
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5. Strong solidity of free group factors

5.1. Free groups are bi-exact. Recall that a countable discrete group Γ is amenable if and
only if any action Γ y X on any metrizable compact space admits an invariant probability
measure. We introduce a generalization of this notion to actions on compact spaces as follows.
Put Prob(Γ) :=

{
µ ∈ `1(Γ) : µ ≥ 0 and ‖µ‖1 = 1

}
⊂ `1(Γ).

Definition 5.1. Let Γ be any countable discrete group, X any metrizable compact space
and Γ y X any action by homeomorphisms. We say that the action Γ y X is topologically
amenable if there exists a sequence of continuous maps µk : X → Prob(Γ) such that

lim
k→∞

(
sup
x∈X
‖sµk(x)− µk(sx)‖1

)
= 0

for all s ∈ Γ.

Note that conitinuity of µk in Definition 5.1 means that for any convergent net xi → x in X
we have µk(xi)(s)→ µk(x)(s) for every s ∈ Γ.

The next definition will be central in this section.

Definition 5.2 (Brown–Ozawa [BO08]). A countable discrete group Γ is said to be bi-exact
if Γ admits a compactification Γ ⊂ X such that the left-right action Γ× Γ y Γ extends to an
action by homeomorphisms Γ× Γ y X which satisfies the following properties:

(1) The left action Γ y X is topologically amenable.
(2) The right action Γ y X \ Γ is trivial.

Proposition 5.3. Free groups are bi-exact.

Proof. Let n ≥ 2 and regard Fn = 〈g1, . . . , gn〉. Define the boundary of Fn by

∂Fn :=

{
(ak)k ∈

∏
N

{
g1, g

−1
1 , . . . , gn, g

−1
n

}
: a−1

k 6= ak+1,∀k ∈ N

}
.

Denote by ` : Fn → N the canonical length. Endowed with the relative product topology, ∂Fn

is a compact space and with an appropriate topology, X := Fn ∪ ∂Fn is a compactification of
Fn. For every x = (ak)k ∈ X and every j ∈ N, define x(j) = a0 · · · aj ∈ Fn. For every k ∈ N,
the map

µk : X → Prob(Fn) : x 7→ 1

k + 1

k∑
j=0

δx(j)

is continuous and satisfies

sup
x∈X
‖sµk(x)− µk(sx)‖ ≤ 2`(s)

k + 1

for all s ∈ Fn and all k ∈ N. This shows that the left action Fn y X is amenable. It is clear
that the right action Fn y ∂Fn is trivial. �
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5.2. Free groups have the complete metric approximation property.

Definition 5.4. Let A,B be any unital C∗-algebras and ϕ : A → B any linear map. We say
that ϕ is completely bounded if

‖ϕ‖cb := sup
n≥1
‖ϕn : Mn(A)→Mn(B) : [ai,j ]i,j 7→ [ϕ(ai,j)]i,j‖ <∞.

We say that ϕ is completely contractive if ‖ϕ‖cb ≤ 1.

Proposition 5.5. Let A be any unital C∗-algebra, π : A→ B(K) any unital ∗-representation
and V,W : H → K any isometries. Then the linear map ϕ : A → B(H) : a 7→ V ∗π(a)W is
completely contractive.

Proof. Let n ≥ 1. Observe that Mn(B(H)) = B(H⊕n) and Mn(B(K)) = B(K⊕n). Denote

by V (n),W (n) = H⊕n → K⊕n the canonical amplifications. Observe moreover that πn =
idMn(C) ⊗ π : Mn(A) → Mn(B(K)) is a unital ∗-homomorphism. For every a ∈ Mn(A), we
have

ϕn(a) = (V (n))∗ πn(a)W (n)

and hence ϕn : Mn(A) → Mn(B(H)) is a contraction. This shows that ϕ is completely
contractive. �

One can prove that any completely contractive map ϕ : A→ B(H) admits a decomposition as
in Proposition 5.5.

Let Γ be any countable discrete group. A function ϕ : Γ → C is said to be a Herz-Schur
multiplier if the linear map

mϕ : B(`2(Γ))→ B(`2(Γ)) : [Ts,t]s,t 7→ [ϕ(s−1t)Ts,t]s,t

is well defined, ultraweakly continuous and completely bounded. Observe that in this case, we
have mϕ(λs) = ϕ(s)λs for every s ∈ Γ. Therefore, the restriction map mϕ : L(Γ)→ L(Γ) : λs 7→
ϕ(s)λs is well defined, ultraweakly continuous and completely bounded. Denote by B2(Γ) the
Banach space of all Herz-Schur multipliers ϕ : Γ→ C endowed with the norm ‖ϕ‖B2 := ‖mϕ‖cb.

Proposition 5.6. Let Γ be any countable discrete group and ϕ : Γ → C any function for
which there exist a Hilbert space H and families (ξs)s and (ηt)t in H with sups∈Γ ‖ξs‖ ≤ 1 and
supt∈Γ ‖ηt‖ ≤ 1 such that ϕ(s−1t) = 〈ηt, ξs〉 for all s, t ∈ Γ. Then ϕ is a Herz-Schur multiplier
with ‖ϕ‖B2 ≤ 1.

Proof. Define contractions V,W : `2(Γ) → `2(Γ) ⊗H by V (δs) = δs ⊗ ξs and W (δt) = δt ⊗ ηt
for all s, t ∈ Γ. A simple calculation shows that mϕ(es,t) = V ∗(es,t ⊗ 1)W for all s, t ∈ Γ.
Therefore, we have mϕ(T ) = V ∗(T ⊗ 1)W for all T ∈ B(`2(Γ)). By Proposition 5.5, ϕ is a
Herz-Schur multiplier. �

Corollary 5.7. For any ϕ ∈ `2(Γ), we have ϕ ∈ B2(Γ) and ‖ϕ‖B2 ≤ ‖ϕ‖2. Thus, the Banach
subspace F ⊂ B2(Γ) generated by finitely supported functions contains `2(Γ).

Proof. Let ϕ ∈ `2(Γ). For any s, t ∈ Γ, put ξs := δs−1 and ηt := ρt(ϕ) ∈ `2(Γ). Observe
that sups∈Γ ‖ξs‖2 = 1 and supt∈Γ ‖ηt‖2 = ‖ϕ‖2. Moreover, for any s, t ∈ Γ, we have 〈ηt, ξs〉 =
〈ρt(ϕ), δs−1〉 = ϕ(s−1t). Therefore, ϕ ∈ B2(Γ) and ‖ϕ‖B2 ≤ ‖ϕ‖2 by Proposition 5.6. �

Definition 5.8 (Haagerup). Let Γ be any countable discrete group. We say that Γ has the
complete metric approximation property (CMAP) if there exists a sequence of finitely supported
Herz-Schur multipliers ϕn : Γ→ C such that limn ϕn = 1 pointwise and limn ‖ϕn‖B2 = 1.
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Theorem 5.9 (Haagerup). Free groups have the complete metric approximation property.

Proof. It suffices to prove the result for F2 = 〈a, b〉. We reproduce the elegant proof given in
[BO08, Chapter 12]. We identify F2 with its canonical Cayley graph which is a 4-regular tree
and denote by ` : F2 → N the canonical length. Denote by ω = ωe the unique infinite geodesic
ray in F2 which starts at the neutral element and which contains ak for all k ∈ N. For any
s ∈ F2, denote by ωs the unique infinite geodesic ray in F2 which starts at s and eventually
flows into ω.

Put D := {z ∈ C : |z| < 1}. For every z ∈ D and every s ∈ F2, define ζs(z) ∈ `2(F2) by the
formula

ζs(z) =
√

1− z2

∞∑
k=0

zkδωs(k).

The above series converges absolutely in z ∈ D and uniformly in s ∈ F2 and we have

‖ζs(z)‖22 = |1− z2|
∞∑
k=0

|z|k =
|1− z2|
1− |z|2

.

In particular, we have that the fonction ζ : D → `∞(F2, `
2(F2)) : z 7→ (ζs(z))s is holomophic.

For every z ∈ D, put ϕz : F2 → C : s 7→ z`(s). A simple calculation shows that

〈ζt(z), ζs(z)〉 = (1− z2)
∞∑

k,l=0

zk+lδωs(k),ωt(l)

= (1− z2)

∞∑
n=0

z`(s
−1t)+2n

= z`(s
−1t)

= ϕz(s
−1t).

In particular, the map ϕ : D→ B2(F2) : z 7→ ϕz is holomorphic.

Observe that for every 0 ≤ r < 1 and every s ∈ F2, ζs(r) = ζs(r) and hence ϕr is positive
definite. Thus, we have ‖ϕr‖B2 = ϕr(e) = 1. Moreover, we have limr→1 ϕr = 1 pointwise. It
then suffices to show that ϕz ∈ F for every z ∈ D, where F ⊂ B2(F2) is the Banach subspace
generated by finitely supported functions. Observe that ] {s ∈ F2 : `(s) ≤ n} = 4n + 1. This
implies that ϕz ∈ `1(F2) ⊂ F ⊂ B2(F2) for any z ∈ D such that |z| < 1/4 (see Corollary
5.7). Therefore, the map ϕF : D → B2(F2)/F : z 7→ ϕz + F is holomorphic and zero for any
z ∈ D such that |z| < 1/4. This shows that ϕF = 0 and finally implies that ϕz ∈ F for every
z ∈ D. �

5.3. Ozawa–Popa’s weak compactness criterion. Let Γ be any countable discrete group
and (X,µ) any standard probability space. We say that a pmp action Γ y (X,µ) is compact
when the range of the homomorphism σ : Γ → Aut(X,µ) is precompact in the Polish group
Aut(X,µ). For instance, whenever Γ < K is a dense subgroup of a compact second countable
group, the pmp action by left translation Γ y K is compact.

Ozawa–Popa discovered in [OP07] that inside group von Neumann algebras L(Γ) where Γ has
the CMAP, the action NM (A) y A of the normalizer NM (A) of any amenable subalgebra
A ⊂ L(Γ) satisfies a weak form of compactness. More precisely, they obtained the following
result.
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Theorem 5.10 (Ozawa–Popa [OP07]). Let Γ be any countable discrete group with the CMAP
and put M := L(Γ). Let A ⊂ M be any amenable von Neumann subalgebra. Then the trace
preserving action NM (A) y A is weakly compact in the following sense. There exists a state
ϕ ∈ B(L2(M))∗ such that

• ϕ(aT ) = ϕ(Ta) for all a ∈ A and all T ∈ B(L2(M)).
• ϕ(uJuJ T ) = ϕ(T uJuJ) for all u ∈ NM (A) and all T ∈ B(L2(M)).
• ϕ(x) = τ(x) = ϕ(Jx∗J) for all x ∈M .

Proof. Denote by ϕn : M → M a sequence of finite rank normal completely bounded maps
that witness CMAP. Define the normal linear functionals µn : M ⊗Mop → C by the formula

µn(a⊗ bop) = τ(ϕn(a)b),∀a, b ∈M.

Let A ⊂ Q ⊂M be any intermediate amenable von Neumann subalgebra. Put µQn = µn|Q⊗Qop .
Using Theorem 4.9(5), we know that for all k ≥ 1 and all a1, . . . , ak, b1, · · · , bk ∈ Q, we have∣∣∣∣∣τ

(
k∑
i=1

ϕn(ai)bi

)∣∣∣∣∣ =

∣∣∣∣∣τ
(

k∑
i=1

EQ(ϕn(ai))bi

)∣∣∣∣∣
≤

∥∥∥∥∥
k∑
i=1

EQ(ϕn(ai))⊗ bop
i

∥∥∥∥∥
min

≤

∥∥∥∥∥
k∑
i=1

ϕn(ai)⊗ bop
i

∥∥∥∥∥
min

=

∥∥∥∥∥(ϕn ⊗ idQop)
k∑
i=1

ai ⊗ bop
i

∥∥∥∥∥
min

≤ ‖ϕn‖cb ·

∥∥∥∥∥
k∑
i=1

ai ⊗ bop
i

∥∥∥∥∥
min

.

This implies that ‖µQn ‖ ≤ ‖ϕn‖cb. Write µQn = un|µQn | for the polar decomposition of µQn ∈
(Q ⊗ Qop)∗. We have un ∈ (Q ⊗ Qop)1. Put ωQn = ‖µQn ‖−1|µQn | so that that ωQn is a normal

state on Q ⊗Qop. We have µQn = ‖µQn ‖un ωQn . Since limn ‖µQn ‖ = 1 and limn µn(1 ⊗ 1op) = 1,
Lemma 4.6 implies that

(5.1) lim
n
‖ωQn − µQn ‖ = 0.

Now consider the case when Q = A. For all a ∈ U(A), since µAn (a ⊗ ā) = τ(ϕn(a)a∗) → 1,
Equation (5.1) and Lemma 4.6 imply that

(5.2) lim
n
‖(a⊗ ā)ωAn − ωAn ‖ = 0 and lim

n
‖ωAn (a⊗ ā)− ωAn ‖ = 0.

Let u ∈ NM (A). Next consider the case when Q = 〈A, u〉 which is amenable by Exercise 4.12.

Since µQn (u⊗ ū) = τ(ϕn(u)u∗)→ 1, Equation (5.1) and Lemma 4.6 imply that

lim
n
‖µQn − µQn ◦Ad(u⊗ ū)‖ = 0.

Since µQn |A⊗Aop = µAn and µQn ◦ Ad(u ⊗ ū)|A⊗Aop = µAn ◦ Ad(u ⊗ ū), the above equation and
Lemma 4.6 imply that

(5.3) lim
n
‖ωAn − ωAn ◦Ad(u⊗ ū)‖ = 0.
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Regard ωAn ∈ L1(A ⊗ Aop)+ ⊂ L1(M ⊗Mop)+ and put ξn := (ωAn )1/2 ∈ L2(M ⊗Mop)+. The
following assertions hold true:

• limn ‖ξn − (a⊗ ā)ξn‖2 = 0 for all a ∈ U(A), by (5.2).
• limn ‖ξn − (u ⊗ ū)ξn(u ⊗ ū)∗‖2 = 0 for all u ∈ NM (A), by (5.3) and Powers-Størmer

inequality as in Lemma 4.7.
• limn〈(x⊗ 1)ξn, ξn〉 = τ(x) and limn〈(1⊗ xop)ξn, ξn〉 = τ(x) for all x ∈M , by construc-

tion.

Then choose a nonprincipal ultrafilter ω ∈ β(N)\N and define ϕ ∈ B(L2(M))∗ by the formula

ϕ(T ) := lim
n→ω
〈(T ⊗ 1op)ξn, ξn〉, ∀T ∈ B(L2(M)).

Then ϕ satisfies the conclusion of Theorem 5.10. Indeed for every a ∈ A and every T ∈
B(L2(M)), using the facts that limn→ω ‖(a∗ ⊗ 1op)ξn − (1 ⊗ ā)ξn‖2 = 0 and limn→ω ‖(a ⊗
1op)ξn − (1⊗ aop)ξn‖2 = 0, we have

ϕ(aT ) = lim
n→ω
〈(aT ⊗ 1op)ξn, ξn〉

= lim
n→ω
〈(T ⊗ 1op)ξn, (a

∗ ⊗ 1op)ξn〉

= lim
n→ω
〈(T ⊗ 1op)ξn, (1⊗ ā)ξn〉

= lim
n→ω
〈(T ⊗ aop)ξn, ξn〉

= lim
n→ω
〈(Ta⊗ 1op)ξn, ξn〉

= ϕ(Ta).

Next, for every u ∈ NM (A) and every T ∈ B(L2(M)) using the facts that limn→ω ‖(u∗ ⊗
1op)ξn(u⊗1op)−(1⊗ū)ξn(1⊗uop)‖2 = 0 and limn→ω ‖(u⊗1op)ξn(u∗⊗1op)−(1⊗uop)ξn(1⊗ū)‖2 =
0, we have

ϕ(uJuJ T ) = lim
n→ω
〈(uJuJ T ⊗ 1op)ξn, ξn〉

= lim
n→ω
〈(T ⊗ 1op)ξn, (u

∗Ju∗J ⊗ 1op)ξn〉

= lim
n→ω
〈(T ⊗ 1op)ξn, (u

∗ ⊗ 1op)ξn(u⊗ 1op)〉

= lim
n→ω
〈(T ⊗ 1op)ξn, (1⊗ ū)ξn(1⊗ uop)〉

= lim
n→ω
〈(T ⊗ 1op)(1⊗ uop)ξn(1⊗ ū), ξn〉

= lim
n→ω
〈(T ⊗ 1op)(u⊗ 1op)ξn(u∗ ⊗ 1op), ξn〉

= lim
n→ω
〈(T uJuJ ⊗ 1op)ξn, ξn〉

= ϕ(T uJuJ).
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Finally for every x ∈M , using the fact that (J ⊗ Jop)ξn = ξn, we have

ϕ(x) = lim
n→ω
〈(x⊗ 1op)ξn, ξn〉

= τ(x)

ϕ(Jx∗J) = lim
n→ω
〈(Jx∗J ⊗ 1op)ξn, ξn〉

= lim
n→ω
〈(x⊗ 1op)(J ⊗ Jop)ξn, (J ⊗ Jop)ξn〉

= lim
n→ω
〈(x⊗ 1op)ξn, ξn〉

= ϕ(x)

= τ(x).

This finishes the proof of Theorem 5.10. �

5.4. Free group factors are strongly solid. The main result of this section is the following
theorem due to Ozawa–Popa [OP07] in the case of free groups and to Chifan–Sinclair [CS11]
in the case of arbitrary bi-exact discrete groups with the CMAP.

Theorem 5.11 ([OP07, CS11]). Let Γ be any bi-exact group with the CMAP. Then M := L(Γ)
is strongly solid in the following sense. For any amenable diffuse von Neumann subalgebra
A ⊂M , we have that NM (A)′′ remains amenable.

The proof of Theorem 5.11 consists in two steps. In the first step, we use Ozawa–Popa’s weak
compactness criterion from Theorem 5.10 to obtain the existence of a state ϕ ∈ B(L2(M))∗

with good invariance properties. In the second step, we use Popa’s deformation/rigidity theory
to show that NM (A)′′ is amenable.

We present an elegant proof of the second step due to Boutonnet–Carderi [BC14]. Let Γ be
any bi-exact group with the CMAP and put M := L(Γ). Consider the compactification Γ y X
that witnesses bi-exactness. Observe that we have c0(Γ) ⊂ C(X) ⊂ `∞(Γ). Denote by

B = C∗(C(X) ∪ λ(Γ)) ⊂ B(L2(M)).

Since Γ is bi-exact, we moreover have

(5.4) [B,C∗ρ(Γ)] ⊂ C∗ (λ(Γ) · [C(X), ρ(Γ)]) ⊂ C∗ (λ(Γ) · c0(Γ) · ρ(Γ)) = K(`2(Γ))

where [X ,Y] := {xy − yx : x ∈ X , y ∈ Y}.
Since the action Γ y X is topologically amenable, the unital C∗-algebra B is nuclear and for
every state ϕ ∈ B∗, the von Neumann algebra πϕ(B)′′ associated with the GNS representation
(πϕ, Hϕ, ξϕ) is amenable. We refer to [BO08] for proofs of these facts. The next proposition
will be crucial.

Proposition 5.12 ([BC14]). Let ϕ ∈ B(L2(M))∗ be any state such that ϕ|C∗λ(Γ) = τ . Define

Aϕ := {x ∈M : ϕ(xT ) = ϕ(Tx), ∀T ∈ B}.

Then Aϕ is an amenable von Neumann subalgebra.

Proof. Denote by (πϕ, Hϕ, ξϕ) the GNS representation of B with respect to ϕ. Put M :=
πϕ(B)′′ and define the normal state Φ ∈ M∗ by the formula Φ(S) = 〈Sξϕ, ξϕ〉. Observe that
Φ(πϕ(T )) = ϕ(T ) for every T ∈ B. Put P := πϕ(C∗λ(Γ))′′ ⊂M. Observe that Φ|P is a normal
trace and denote by p its support in P (we have p ∈ Z(P )). Then the map ι : C∗λ(Γ)→ Pp is
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a trace preserving ∗-homomorphism which extends to a surjective ∗-isomorphism ι : M → Pp.
We have

ι(Aϕ) = {ι(x) ∈ Pp : Φ(ι(x)πϕ(T )) = Φ(πϕ(T )ι(x)),∀T ∈ B}
= Pp ∩ {S ∈ pMp : Φ(ST ) = Φ(TS), ∀T ∈ pMp} .

This shows that ι(Aϕ) is a von Neumann subalgebra and so is Aϕ. Note the support of Φ
in M is less than or equal to p. Since the unital C∗-algebra B is nuclear, the von Neumann
algebra M = πϕ(B)′′ is amenable and so is pMp. By the proof of (2) ⇒ (1) in Theorem 4.9,
there exists a conditional expectation E : pMp→ ι(Aϕ). Therefore, ι(Aϕ) is amenable and so
is Aϕ. �

Proof of Theorem 5.11. Let A ⊂ M be any amenable diffuse von Neumann algebra. Choose
a state ϕ ∈ B(L2(M))∗ as in Theorem 5.10 and consider the amenable subalgebra Aϕ as in
Proposition 5.12. We show that NM (A) ⊂ Aϕ and hence NM (A)′′ ⊂ Aϕ is amenable.

Let u ∈ NM (A) and T ∈ B. Observe that ϕ|K(L2(M)) = 0 by Proposition 4.10. Choose a

sequence (xn)n in C∗ρ(Γ) such that xn → Ju∗J strongly. Since ϕ|R(Γ) is normal, Cauchy–
Schwarz inequality implies that

lim
n
ϕ(uJuJ Txn) = ϕ(uJuJ TJu∗J)

lim
n
ϕ(uJuJ xnT ) = lim

n
ϕ(JuJxn uT )

= ϕ(JuJJu∗J uT )

= ϕ(uT ).

Since Γ is bi-exact, we know that uJuJ(xnT − Txn) ∈ K(L2(M)) for every n ∈ N by (5.4).
This implies that ϕ(uJuJTJu∗J) = ϕ(uT ). By Theorem 5.10, we have that ϕ(uJuJ TJu∗J) =
ϕ(TJu∗J uJuJ) = ϕ(Tu). This implies that ϕ(uT ) = ϕ(Tu) and hence u ∈ Aϕ. �

Combining Proposition 5.3 and Theorem 5.11, we obtain the following corollary.

Corollary 5.13 (Ozawa–Popa [OP07]). Free group factors are strongly solid.

The above corollary strenghtens both Voiculescu’s result [Vo95] showing that free group factors
have no Cartan subalgebra and Ozawa’s result [Oz03] showing that free group factors are solid,
meaning that the relative commutant of any diffuse von Neumann subalgebra is amenable.
Recently, Popa–Vaes [PV11] showed that for every free ergodic pmp action Fn y (X,µ),
L∞(X) ⊂ L∞(X) o Fn is the unique Cartan subalgebra up to unitary conjugacy.
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