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ABSTRACT. These are the lecture notes of a graduate course given at the Université Paris-Sud
(Orsay) in the Winter of 2016. In Section |1} we first review some preliminary background
on C*-algebras. In Section we introduce von Neumann algebras and prove some basic
properties. In Section [3] we present two important classes of von Neumann algebras, namely
group von Neumann algebras and Murray—von Neumann’s group measure space constructions.
In Section [4] we prove Connes’s characterization of amenable tracial von Neumann algebras.
Finally in Section [5} we prove Ozawa-Popa’s strong solidity result for free group factors.
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1. PRELIMINARY BACKGROUND ON C*-ALGEBRAS AND FUNCTIONAL ANALYSIS
All the algebras we consider are always over the field C of complex numbers.
1.1. Introduction to C*-algebras.

1.1.1. Definition and first properties.

Definition 1.1. A C*-algebra A is a Banach algebra endowed with an involution A — A : a +—
a* which satisfies the following relation:

la*all = |lal*,Va € A.

If A admits a unit, we say that A is a unital C*-algebra. Denote by B(H) the Banach algebra
of all bounded linear operators T': H — H endowed with the supremum norm:

[T loo = sup [IT€]-
lell<1

Let T € B(H). The adjoint operator T* is defined by
<T§7 77> = <§7 T*7’]>7V§7 n € H.



2 CYRIL HOUDAYER

Examples 1.2. Here are examples of C*-algebras.

(1) Norm closed *-subalgebras of B(H).

(2) The space of all complex-valued continuous functions C(X) over a compact topological
space X endowed with the supremum norm given by || f|loc = sup,cx |f(z)|. The
involution is given by f*(z) = f(z) for all z € X.

(3) Let T be a countable discrete group and let A : T' — U(¢%(T')) be the left regular
representation defined by M40, = 04, for all g,h € I'. The reduced group C*-algebra

C(T) is defined as the norm closure of the linear span of {\; : g € T'}.

From now on, to avoid any technical difficulties, we will always assume that all C*-algebras are
unital. For a € A, the spectrum of a is defined as follows:

o(a) :={X € C:a— Al is not invertible}.
Proposition 1.3. For all a € A, o(a) is a nonempty compact subset of C.

Proof. Tt is clear that o(a) is closed. Moreover for all |A| > [|a, 1 — A"!a is invertible with
inverse > A7"a". It follows that o(a) is bounded by ||a||, whence o(a) is compact.

By contradiction, assume that o(a) is the empty set. Then the function A\ — (a — A1)~! is
entire and vanishing at infinity. By Hahn—Banach and Liouville Theorems, we get that this
function is zero everywhere. Thus a~! = 0, which is a contradiction. Thus o(a) is nonempty
and compact. ]

Observe that the above proof works more generally for any unital Banach algebra. We have
the following useful corollary.

Corollary 1.4. Any unital Banach algebra A in which every nonzero element is invertible is
isomorphic to C.

Proof. Let © € A and choose A € o(a). Since zz — Al is not invertible, we have z — A1 = 0.
Thus A = C1. O

Exercise 1.5. Show that o(ab) U {0} = o(ba) U {0}, for all a,b € A.

Exercise 1.6. Let A be a unital abelian Banach algebra and m C A a proper ideal, that is,
1 ¢ m. Show that

inf{||]1 —z[ : x € m} > 1.
Deduce that the closure of any proper ideal is still proper and any maximal proper ideal is
closed.

The spectral radius is defined by
r(a) :=sup{|A|: A€ o(a)}.
We have r(a) < ||al|.

Proposition 1.7. For all a € A, the sequence (||a”||'/™), converges to r(a).

Proof. If A € o(a), then A" € ¢(a™). Thus |\ < ||a"||'/", for all n € N. It follows that
Al < liminf|ja™||'/™ and hence r(a) < liminf, ||a”||*/". Next, for |z| < r(a)~!, f : 2z —
(1 — za)~! is a holomorphic function which coincides with the power series Y, 2"a™ when
moreover |z| < ||a]|~'. Observe that this power series represents f on the open disk with center
0 and radius r(a)~!. However, this series cannot converge for |z| > (limsup ||a”||*/")~!. Thus,
we get that limsup ||a™||*/" < 7(a). O
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In particular, if a,b € A are commuting elements, we have that
r(ab) = lim || (ab)™[|*/" = lim ||a"b" || /"
< lim [|a™ [/ Tim [|6]| /"
= r(a)r(b).
We say that a is selfadjoint if a* = a; normal if a*a = aa™; unitary if a*a = aa™ = 1. The

group of unitaries is denoted by U(A). The subspace of selfadjoint elements in A is sometimes
denoted by R(A).

Proposition 1.8. Let a € A. The following are true.

(1) If a is invertible, a* is invertible and (a*)~! = (a=1)*

(2) a can be uniquely decomposed a = x + iy, with x,y selfadjoint elements.

(3) If a is a unitary then ||al| = 1.

(4) If a is normal then ||a|| = r(a).

(5) If B is another C*-algebra and ¢ : A — B is a *-homomorphism then ||¢(a)|| < |la.

Proof. We leave (1),(2),(3) as an exercise. To prove (4), first assume that a is selfadjoint.

One has [|a®"| = ||a||?>" for all n € N. Thus, r(a) = lim, [|a®"||>" = |la||. If a is normal,
la* = la*a|| = r(a*a) < r(a*)r(a) < [[a*[[[lall = ]|a®, whence r(a) = [|a]]. To prove (5), let
a € A. Then

le(@* = llp(a) ()| = llp(a*a)ll = r((a*a)) < r(a*a) = |la*a]| = ||a*.

Corollary 1.9. Any onto x-isomorphism ¢ : A — B is isometric.

1.1.2. Continuous functional calculus.

Lemma 1.10. Let x : A — C be a unital algebraic homomorphism. Then the following
assertions hold true.

(1) For alla € A, |x(a)| < |a]l.
(2) For allaE%( ), x(a) € R.
(3) For all a € A, x(a*) = x(a).
(4) For alla € A, x(a*a) > 0.
(5) For alla € U(A), |x(a)| =

Proof. (1) For all a € A, x(a — x(a)l) = 0, whence a — x(a)l is not invertible. We get
x(a) € o(a) and so |x(a)| < [|al|.
(2) Assume that a € A is selfadjoint. Let ¢ € R.

x(a+it)]* < [la+it|* = [[(a +it)*(a+it)]| = [[(a —it)(a+it)| < [laf* + 2.
Write x(a) = o + 1. We then get

lall* + % > Ja +i(8 + )" = o® + 5% + 26t + 1*.

It follows that ||lal|* > o2 + 5% 4 28t and thus 8 = 0.
Now (3) follows easily, while (4) and (5) are trivial. O

Corollary 1.11. Every unital algebraic homomorphism x : A — C is necessarily a x-homomorphism.
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For a unital abelian C*-algebra A, a unital algebraic homomorphism y : A — C is simply called
a character. We will denote by Q2 := Q(A) the set of characters of A. Sometimes (2 is called the
spectrum of A. Observe that if y : A — C is a character, we have that x € A* and || x|la+ = 1.
One checks that Q is closed for the o(A*, A)-topology and thus compact by Banach-Alaoglu
Theorem. The Gelfand Transform v : A — C(R2) is defined by v(a)(x) = x(a).

Theorem 1.12. The Gelfand Transform v : A — C(Q) is an onto x-isomorphism. Moreover
o(a) ={x(a) : x € Q}, for all a € A.

Proof. Let a € A. We have already shown that {x(a) : x € Q} C o(a). If A € o(a), then a — A1
is not invertible. It is thus contained in a maximal proper ideal m, which is closed by Exercise
Observe that the Banach algebra A/m is a division ring and so is isomorphic to C. Whence
there exists x € Q such that x(a— A1) = 0, that is, x(a) = A. Therefore o(a) = {x(a) : x € Q}.

It is then clear that v is a *-isomorphism and is isometric. Indeed, for all a € A, we have

V(@)% = Iv(@)*y(@) | = [I¥(a"a) o = r(a*a) = [la*a]| = ||a]*.
Thus, 7(A) is a closed *-subalgebra of C(€2). It remains to prove that - is onto. Observe
that y(A) separates points: for all x # X/, there exists a € A such that x(a) # x'(a), that
is, v(a)(x) # v(a)(x’'). By Stone-Weierstrass’s Theorem, v(A) is dense in C(2). Therefore
v(A4) = C(Q). O

Corollary 1.13. Ifa € A is a unitary, then o(a) C T. If a € A is selfadjoint, then o(a) C R.

Theorem 1.14 (Continuous functional calculus). Let A be a unital C*-algebra and b € A be
a normal element. Denote by B the abelian C*-algebra generated by b. There exists a unique

onto x-isomorphism ® : C(o(b)) — B such that o(®(f)) = f(o(b)).
We will simply denote ®(f) by f(b). Observe that, in particular, we have that || f(b)|| = || f||co-

Proof. Let 2 be the set of characters of B. Define the continuous function ¢ :  — o(b) by
¥(x) = x(b). We have seen before that 1 is onto. Assume now that ¥ (x) = ¥(x’), that is,
x(b) = x/'(b). It follows that x(p(b,b*)) = x'(p(b,b*)) for all polynomials p. Since b generates 13,
we get that x = ¥’ by StonefWEierstrass’s Theorem. Therefore 1 is a homeomorphism. Then
e C(R2) — C(o(b)) defined by ¥(f) = fo1) is an onto *-isomorphism. Now the #-isomorphism
®=rytoght: C(o(b)) — B does the job. O

1.1.3. The Gelfand-Naimark-Segal construction.

Definition 1.15. An element a € A is positive if a = a* and o(a) C R;y. We will denote
a > 0. The set of positive elements in A will be also denoted by A.

An element a € A is negative if —a is positive. The set of negative elements in A will be denoted
by A_. For selfadjoint elements a,b € A, we write a < b when b —a € A,.

Proposition 1.16. Let A be a unital C*-algebra and let a € A be a selfadjoint element. There
exists a unique pair (h, k) of positive elements in A such that a = h — k and hk = kh = 0.

Proof. Define the continuous functions f(¢) = max(¢,0) and g(t) = max(—t¢,0) so that f(t) —
g(t) =t, f(t) > 0, g(t) > 0 and f(t)g(t) = 0. By continuous functional calculus, we have
a= f(a)—g(a), f(a) >0, g(a) > 0and f(a)g(a) = g(a)f(a) = 0. We have proven the existence
of the decomposition. To prove the uniqueness, assume that a = u — v for some u,v € A such
that wv = vu = 0. It is not hard to see that u and v commute with a so that the C*-algebra
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C*(a,u,v) is abelian. There exists some compact space X such that C*(a,u,v) = C(X). It
only remains to prove the uniqueness of the decomposition for continuous functions on X which
is fairly easy. U

Exercise 1.17. Let A be a unital C*-algebra.

o Let a € AL and n > 1. Show that there exists a unique b € A4 such that a = b".
e Let a € A selfadjoint. Show that a > 0 if and only if ||t — al| < ¢ for some ¢ > ||a]|.
Deduce that if a,b > 0, then a + b > 0.

Proposition 1.18. Let A be a unital C*-algebra and a € A. The following are equivalent:

e a>0.
o There exists b € A such that a = b*b.

Proof. Assume that a = b*b and write a = h — k as in Proposition We want to show that
k=0. Set bk'/2 = a +if3, with «, 8 selfadjoint elements in A. On the one hand, we have

(bkl/Q)*<bkl/2) _ kl/Qb*bkl/Q — ]Cl/Q(h . k)k,l/Q — _k,Q < 07
since hk = kh = 0. On the other hand,

(bk"2)* (bk'/?) = (e +18)*(a +iB) = o® + % +i(aB — Ba).
Thus i(af — fa) = —k* — a? — 82 < 0. Observe that o((bk'/2)*(bk'/?)) and o((bk'/?)(bk/?)*)
only differ by 0 (see Exercise . Thus (bk/?)(bk'/?)* = —c with ¢ € A,. We get —c =
a? + % +i(Ba — ap), so that i(af — Ba) = ¢+ a? + B2 > 0. Therefore i(aff — fa) € AL NA_

and so i(af — Ba) = 0. This implies that —k? = (bk/2)*(bk'/?) = a® 4 3% € Ay NA_ and thus
k= 0. ([l

Exercise 1.19. Show that for all a € A, a*a < ||a|?1.

Definition 1.20. A state ¢ : A — C is a positive linear functional (p(a) > 0 for all a > 0)
such that ¢(1) = 1. The state space of A is denoted by X(A). A state ¢ is faithful if p(a*a) >0
for all a # 0.

Example 1.21. Let (7w, H,£) be a unital *-representation of A together with a unit vector.
The linear functional a — (7(a), &) defines a state on A. We will prove that every state on a
unital C*-algebra arises this way.

Proposition 1.22. Let ¢ : A — C be a positive linear functional. The following hold true.

(1) For all a,b € A, |¢p(b*a)|® < ¢(a*a)p(b*b)
(2) ¢ is bounded and ||| = ¢(1). In particular, if ¢ is a state then ||| = 1.

Proof. Observe that (a,b) — ¢(b*a) defines a semi-inner product on A. Then (1) follows from
the Cauchy-Schwarz Inequality. For (2), observe that since a*a < ||a||?1, we have |¢(a)]* <
o(Dp(a*a) < o(1)?||al|?. Tt follows that ||¢|| = ¢(1). O

Example 1.23. Let X be a compact space. Any probability measure p on X gives rise to a
state ¢ on C(X) by ¢(f) = [ fdu. By Riesz Representation Theorem, any state on C(X)
arises this way.

Exercise 1.24. Let A be a unital C*-algebra and let ¢ : A — C be a bounded linear functional
with ||¢|| = ¢(1). Show that ¢ is positive. Deduce that if B C A is a unital C*-subalgebra,
then any state on B has an extension on A.
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Theorem 1.25 (GNS construction). Let A be a unital C*-algebra.

(1) For every state ¢ on A, there exists a cyclic x-representation (m,, H,) together with a
unit vector &, € Hy, such that p(a) = (m,(a)ép, &), for all a € A.
(2) If (7, H) is a cyclic x-representation with unit cyclic vector & € H and ¢ is the state

defined by p(a) = (m(a)¢, &), then ™ = m,.

Proof. (1) Let ¢ be a state on A. Define the following semi-inner product (a,b), = ¢(b*a)
on A. After separation and completion, promote (A, (:,-),) to a genuine Hilbert space H,.
Denote by a® the image of a € A in H,. One checks that m,(a)b® = (ab)® defines a cyclic
*-representation with unit cyclic vector &, = 1°. Indeed, for all a,b € A, we have

17 (a)b 1|5 = (e (a)b®, my(a)b®)
= (my(a”a)b®,b%),
= @(b*a*ab)
< lla*o(b*b)
= llall*16*]1%
and hence 7,(a) € B(H,) is well-defined. For all a € A, we moreover have
(mp(@)€s,Ep)p = (a®,1%) = ¢(a).
We leave (2) as an exercise. O
Corollary 1.26. Every unital C*-algebra admits a wunital faithful x-representation (w,H).

Moreover, H can be chosen to be separable if A is separable.

Proof. Let S C ¥(A) be a weak*-dense subset. Note that if A is separable, S can be taken
countable. Define 7 = P, M. Assume that w(a) = 0, that is, 7(a*a) = 0. We get p(a*a) = 0
for all ¢ € S. By density, we get p(a*a) = 0, for all ¢ € X(A).

Let now y be a probability measure on X := o(a*a) and define the state ¥(f(a*a)) = [y fdu
for all f € C(X). Extend ¥ to ¢ on A. We have

[ttt = vaa) = pla’a) =
It follows that X = {0} and so a = 0. O

1.2. Topologies on B(H).
Definition 1.27. Let H be a complex Hilbert space.

e The strong operator topology (SOT) on B(H) is defined by the following family of open
neighbourhoods: for S € B(H), ¢ > 0, &1,...,&, € H, define

US,e,&) = {T € B(H): |(T - S)&]|| < &,V1 <i <n}.

e The weak operator topology (WOT) on B(H) is defined by the following family of open
neighbourhoods: for S € B(H), e >0, &1,..., &, M1, .-, € H, define

V(S,e,&,m) :={T € B(H) : |((T — S)&,m:)| <e&,V1 <i<n}.

The strong operator topology is always stronger than the weak operator topology. It is strictly
stronger when H is infinite dimensional.
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Theorem 1.28. Let C C B(H) be a nonempty convex subset. Then the strong operator closure
and the weak operator closure of C coincide.

Proof. Assume T is in the weak operator closure of C. Let &1,...,6, € H. Let K =H®---®H
be the n-fold direct sum of H with itself. Define the x-isomorphism p : B(H) — B(K) by
p(TY(y--oymn) = (Try ..o, Tp). Let € = (&1,...,&,) € K. Tt is clear that p(C) is a convex
subset of B(K). Since p(T) is in the weak operator closure of p(C), p(T)¢ is in the weak closure
of p(C)&. Since p(C)¢ C K is convex, the Hahn—Banach Separation Theorem implies that p(T)&
is also in the norm closure of p(C){. For e > 0, there exists S € C such that || S& — T¢;|| < e,
for all 1 < ¢ < n. This shows that T is in the strong operator closure of C. U

Proposition 1.29. Let V. C B(H) be a weakly closed subspace and ¢ : V. — C a linear
functional. The following are equivalent.

(1) There exist &1y .. &nymy .-,y € H such that
n
o(T) = (T&,m:),NT € V.
=1
(2) ¢ is strongly continuous.
(3) ¢ is weakly continuous.

Proof. (1) = (2) is clear. For (2) = (1), let € > 0 and &1, ...,&, € H such that |¢(z)| < 1 for
all z € U(0,¢,&). Tt follows that |p(z)] < 2/3, [[#&]? for all z € V. Let & = (&,...,&,) €

2@ Hand K= (1® V)¢ C £2® H. Define the continuous linear functional ¢ : KX — C by
Y((1®x)€) = p(x) for all z € V. By Representation Theorem, there exists n € K such that

o) =((1®x),n) forall z € V.

Notice that ¢ is continuous if and only if ker ¢ is closed. Since ker p C B(H) is a nonempty
convex subset, the equivalence between (2) and (3) follows from Theorem [L.2§| O

Theorem 1.30. The unit ball (B(H))1 is weakly compact.

Proof. Denote by Dg, the closed unit disk in C of center 0 and radius ||£||||n||. The map
BH)1 2 T = (T n)enen € e en Dey is a homeomorphism from (B(H))1, endowed
with the weak operator topology onto its image X. Note that Hg,ne 1 D¢, is compact for the
product topology by Tychonoff’s Theorem. It remains to show that the image X is closed.

Let a = (ag,) € X. There exists a net (S;) of elements in (B(H)); such that (S;&,n) — ag .y,
for all {,n € H. We get that H x H 3 ({,1) — ag, € C is a conjugate-bilinear form such
that |ag | < ||€]||In]], for all £,7 € H. By Riesz Representation Theorem for conjugate-bilinear
forms, there exists T' € (B(H))1 such that ag, = (T€,n), for all {,n € H. O

Proposition 1.31. Let (T;) be an increasing net of selfadjoint operators such that T; < C1, for
all i € I. Then (T;) has a limit with respect to the strong operator topology. Moreover, for all
S € B(H) such that T; < S, for alli € I, we have that imT; < S. We denote lim T; = sup T;.

Proof. Without loss of generality, we may assume that (7;) is bounded from below as well, that
is, —C1 < T; < (C1, for all + € I. By weak compactness of the unit ball, we can find a subnet
(T;) which converges weakly to some selfadjoint operator T' € B(H).

Let i€ I Forall j > i, £ € H, (Tj€,&) > (Ti&,€) so that (T€,€) = lim(T}€,€) > (Ti€,€).
Thus, for all i > j, 0 <T —T; <T —Tj so that

(T = T) 2> < (T = Th)é,€) < (T = T)€,€) — 0.
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We have that (T'—T})'/2 — 0 strongly. Finally, strong continuity of multiplication on uniformly
bounded sets yields (T' — T;) — 0 strongly.

We have already seen that T; < T, for all i € I. Assume now that T; < S, for all ¢ € I. Since
T; — T strongly, we have that T; — T weakly, whence for all £ € H, (T¢,&) = lim(T;£,€) <

(S€,¢€). O
Definition 1.32. Let H be a complex Hilbert space.

e The ultrastrong operator topology on B(H) is defined by the following family of open
neighbourhoods: for S € B(H), ¢ > 0, (&,) € (*(N, H), define

U(S,e, (&) = {T € B(H): Z (T — S)&,|)? < s} .

e The ultraweak operator topology on B(H) is defined by the following family of open
neighbourhoods: for S € B(H), € > 0, (&,), (7,) € £?(N, H), define

V(S,2, (€0): () = {T € BUH) [>T = 8)én,ma)| < ¢}

Exercise 1.33. Show that on uniformly bounded sets, weak (resp. strong) and ultraweak (resp.
ultrastrong) topologies coincide.

Proposition 1.34. Let ¢ : B(H) — C be a linear form. The following are equivalent.
(1) There exists (£,), (nn) € ¢2(N, H) such that

P(T) = (T&,nn), VT € B(H).

n

(2) ¢ is ultrastrongly continuous.

(3) ¢ is ultraweakly continuous.

(4) ¢ is strongly continuous on (B(H));.
(5) ¢ is weakly continuous on (B(H));.

Proof. The proof is analogous to Proposition so we leave it as an exercise. O

2. INTRODUCTION TO VON NEUMANN ALGEBRAS
2.1. Definition and first examples of von Neumann algebras. For a nonempty subset
S C B(H), the commutant of S is defined by
S ={TeB(H):ST=TS,VS €S}.

It is easy to see that one always has S C S§”. Moreover, if S is stable under the adjoint
operation, then &’ is a unital *-algebra.

Theorem 2.1 (Bicommutant Theorem). Let M C B(H) be a unital x-subalgebra. The follow-
g are equivalent.

(1) M = M".
(2) M is strongly closed.
(8) M is weakly closed.
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Proof. (1) = (2). Let (x;)icr be a net in M such that x; — = strongly. Since z;T = T'z; for all
1€ I and T € M’', by passing to the limit we get 2T = Tz, for all T € M’. Thus x € M.

(2) = (1). Let x € M" and &,...,&, € H. Let

U(z,e,&) :={y e B(H) : ||z& — v&i|| <e,Vi=1,...,n}
be a strong neighborhood of x in B(H). Let K = /2 ® H and observe that B(K) = M,,(C) ®
B(H). Let n = (&1,...,&n) € K. Define V = (1® M)n C K. Denote by Py € B(K) the
corresponding orthogonal projection. Since (1 ® a)Py = Py (1 ® a), Ya € M, it follows that
1 ® x commutes with Py, since z € M”. Thus (1 ® z)n € V and we can find y € M such that

1®z)n— (1®@y)n| < e, so in particular y € U(z,,&;). Then M” is contained in the strong
closure of M and hence M = M".

Since M C B(H) is convex, (2) < (3) follows from Theorem [1.28| O

Definition 2.2. A von Neumann algebra M is a unital x-subalgebra of B(H) which satisfies
one of the equivalent conditions of Theorem

Definition 2.3. Let M C B(H) be a von Neumann algebra. We say that
e p € M is a projection if p = p* = p?.

e v € M is an isometry if v*'v = 1.
e u € M is a partial isometry if u*u is a projection.

Observe that if u*u is a projection, then uu* is a projection as well. The set of projections of
M will be denoted by P(M). If K C H is a closed subspace, we denote by [K] € B(H) the
orthogonal projection [K]: H — K.

We will always assume that M is o-finite, that is, any family (p;);er of pairwise orthogonal
projections in M is (at most) countable.

Exercise 2.4. Let M be a von Neumann algebra. The closed subspace K C H is u-invariant
for all w € U(M) if and only if [K] € M.

If (p;)icr is a family of projections, we denote by

V=[St

i€l i€l
/\pz- = [ﬂ ran(pi)] .
i€l i€l

If p € B(H) is a projection, write p- = 1 — p. It is easy to check that (Viejpi)J_ = /\ie[pf

Proposition 2.5. Let M C B(H) be a von Neumann algebra. Then P(M) is a complete
lattice.

Proof. Let (p;)ier be a family of projections in M. Since M = (M’)’, we have that ran(p;) is
u-invariant for all u € U(M') and all i € I. Thus ), ;ran(p;) is u-invariant for all u € U(M’),
whence \/;c; pi € M. Moreover \,.;pi = (\/ pi)* € M. O

Theorem 2.6 (Polar decomposition). Let T € B(H). Then T can be written T = U|T|
where U € B(H) is a partial isometry with initial support ran(T*) and final support ran(T).
Moreover, if T = V.S with S > 0 and V' a partial isometry such that V*V = ran(S), then
S=|T| andV =U.
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Proof. Observe that ker(T) = ker(T*T) = ker(|T|) so that ran(T*) = ker(T)* = ker(|T|)* =
ran(|T'|). Define Un = 0 for € ran(|T|)* and U|T|¢ = T¢, for all £ € H. One checks that
U € B(H) is a well-defined partial isometry such that U*U = [ran(T*)], UU* = [ran(T)] and
T =UT|.

Assume now that T = VS with § > 0 and V*V = ran(S). Then T*T = SV*V S = S?. Thus
S = (T*T)Y/? = |T|. The formula T = V|T| clearly shows that V = U. O

The first important example of von Neumann algebras we discuss comes from measure theory.
Let (X, u) be a standard probability space. Define the unital *-representation 7 : L (X, u) —
B(L?(X, i) given by multiplication: (m(f)¢)(z) = f(x)é(x) for all f € L®(X,u) and all
¢ € L3(X,p). Since 7 is a C*-algebraic isomorphism, we will identify f € L>(X, ) with its
image 7(f) € B(L*(X, u)). From now on, we will simply denote L™ (X, 1) by L>®(X).
Proposition 2.7. We have L°(X)' N B(L*(X, u)) = L®(X), that is, L>°(X) is mazimal
abelian in B(L?(X, p)). In particular, L=(X) is a von Neumann algebra.

Proof. Let T € L>®(X)' N B(L?(X, 1)) and denote f = T1x € L?(X,p). For all £ € L®°(X) C
L%(X, pt), we have

TE=TE1x =ET1x =&f = f¢.
For every n > 1, put Uy, := {z € X : |f(2)| > ||T||c + L }. We have

1
<HTHoo + n> pU)? <1 L, 2 = (1T, 2 < (1T oo p(@a) 2,

hence pu(Uy,) = 0 for every n > 1. This implies that || f|lecc < ||7||cc and so T = f. O

The von Neumann algebra M = L°°(X) comes equipped with the faithful trace 7, given by
integration against the probability measure p,

ru(f) = /deu,\ff € L=(X).

2.2. The predual. Let M be a von Neumann algebra. Denote by M, C M™* the subspace of
all ultraweakly continuous functionals on M. Recall the following fact.

Proposition 2.8. We have that M, is a closed subspace of M*. Therefore, (M,,| -||) is a
Banach space.

Proof. Let ¢ € M* and (¢;)ier be a net in M, such that lim ||¢ — ¢;|| = 0. We have to show
that ¢ is strongly continuous on (M);. Let (z;);cs be a net in (M), such that x; — x strongly.

o(@) = ozl < (@) = pi(@)] + lpi(x) = @iz + lpi(z;) — p(a;)]
< 2l — @il + lpi(z) — pile)].
Let € > 0. Choose i € I such that ||¢ — ¢;|| < /3. Since ¢; is ultraweakly continuous, choose

Jo € J such that for all j > jo, |@i(x) — wi(z;)] < e/3. We get |p(x) — p(z;)| < e, for all
J = Jo- O

Theorem 2.9. Let M be any von Neumann algebra. The map ® : M — (M,)* defined by
O(x)(p) = p(x) is an onto isometric linear map. Moreover, under the identification M =
(M.,)*, the ultraweak topology on M and the weak* topology on (M,)* coincide.
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Proof. Assume M C B(H). For all 2 € M, we have

[#]loc = sup {[(z€,m)| : &;m € H, (€ < 1, [Inl| <1}

Put we, = (-&,m). Since we p|ar € (My)1 for all §,m € H such that [[£|| <1, [[n]| < 1, it follows
that ||z]|cc = sup {|p(z)| : ¢ € (My)1}. Therefore ® is an isometric embedding. It remains to
show that ® is onto.

Let L € (M.,)*. Define the bounded conjugate-bilinear form b on H x H by b(&,n) = L(we n|ar)-
By Riesz Representation Theorem for conjugate-bilinear forms, let 7' € B(H) be the unique
bounded operator such that b(&,n) = (T¢,n) for all £,n € H. Let S € M’ be a selfadjoint
element. For all x € M, we have wge ,(x) = (xS€,n) = (Sx&,n) = (x, Sn) = we,5y(x) so that
wse,n = we,sy- We obtain

(T'S€,m) = b(SE,n) = L(wseylnm) = Llwg,sylar) = b(&, Sn) = (STE, n).

Therefore T € M"” = M by the Bicommutant Theorem. We have

wen(T) = (T&m) = b(&;n) = L(weylnr).
Since any ¢ € M, can be written ¢ = > we, . |ar for some (&), (n,) € £2(N, H) (see Proposi-
tion [1.34)) and since L is continuous, we get ¢(T') = L(yp), for all ¢ € M,. Thus L = ®(T). O

Definition 2.10. Let M and N be any von Neumann algebras. A positive linear map 7 :
M — N is normal if for every uniformly bounded increasing net of selfadjoint elements (x;);cs
in M, we have

T (sup xz> = sup m(z;).

i€l iel
We have the following characterization of normal states.

Theorem 2.11. Let M be a von Neumann algebra together with a state ¢ € M*. The following
are equivalent.

(1) ¢ is normal.
(2) Whenever (p;)icr is a family of pairwise orthogonal projections in M, we have

v (Zm) = o(pi).

el icl

(8) ¢ is ultraweakly continuous.

Proof. (1) = (2). Let (pi)ier be a family of pairwise orthogonal projections in M. Consider
the increasing net x; = ) .. ;p;, where J C I is a finite subset. We have sup;z; = >, pi

and so
” (Z pz') = (sgp :w) = supp(as) = sup Y @(pi) = Y @(pi)-

iel ieJ iel
(2) = (3). Fix ¢ € M a nonzero projection and & € ran(q) such that ¢(q) <1 < (¢&,&). There
exists a nonzero projection p < ¢ such that ¢(prp) < (paxp, &) for all x € M. Indeed, by

Zorn’s Lemma, let (p;);er be a maximal family of pairwise orthogonal projections in M such
that o(pi) > (p&, &) for all ¢ € I. By assumption, we have

v (Zm) = o) =Y (pi€,€) = <<Zpi> £,5> :

el iel iel el
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Put p = ¢ — > ,c; pi and observe that p # 0. By maximality of the family (p;)icr, we have
o(r) < (r§, &) for every nonzero projection r < p. Therefore, using the Spectral Theorem and
since @ is || - [|so-continuous, we get p(prp) < (prp€, &) for all € M. By Cauchy-Schwarz
Inequality, we have for all z € (M),

e(ap)® = |o(1*zp)[* < w(pa*ap)p(1) < (pr*apg, &) = |lapt|*.
It follows that (- p) is strongly continuous on (M);.

By Zorn’s Lemma, let (p;);er be a maximal family of pairwise orthogonal projections such
that ¢(-p;) is strongly continuous on (M); for all ¢« € I. By maximality of the family and
the previous reasoning, we have ) ..;p; = 1. Therefore >, ; p(p;) = ¢(1) = 1. Let ¢ > 0.
There exists a finite subset F' C I such for all finite subsets F C J C I, we have p(pt) =1 —
o(ps) < e, where pj = >, ;p;. Moreover the Cauchy-Schwarz Inequality yields |g0(:cp§)\2 <
o(p7)p(xa*) < e forall z € (M) and all F C J C I. We have ||¢ — ¢(-py)| < V& for all
F c J C I. Since the net (¢(-pys))s converges to ¢ in M* and since ¢(-py) € M, for all finite
subsets J C I, we have ¢ € M. (3) = (1) is trivial. O

Lemma 2.12. Let M C B(H) be a von Neumann algebra. Any ¢ € M, is a linear combination
of four elements in (M,)4.

Proof. By Proposition there exist (£,), (n,) € (2(N, H) such that p(z) =, (x&n, mn). A
simple calculation shows that we have

3
$€na77n = Zlk fn‘i‘l nn) §n+1 7ln>-
k=0

e

It follows that for all z € M, we have

3
%Zlkz §n+1 nn) £n+ik77n>‘

=0 n
]

Theorem 2.13. Any x-isomorphism between von Neumann algebras is normal and ultraweakly
continuous.

Proof. Let m: M — N be a *-isomorphism. Let (x;) be a uniformly bounded net of selfadjoint
operators in M and write © = supz;. We have 7(x;) < m(x) so that supm(z;) < w(z). Write
y = sup7(z;). We have ; = 7~ (m(z;)) < 7 1(y) so that z < 77 1(y). Thus y = m(z) and 7 is
normal.

For all ¢ € (N,)4, ¢ o is normal and thus ultraweakly continuous by Theorem [2.11] By
Lemma [2.12] we have p o m € M,, for all ¢ € N,. Therefore 7 is ultraweakly continuous. [

2.3. Tracial von Neumann algebras. A von Neumann algebra M is said to be tracial if it
is endowed with a faithful normal state 7 which satisfies the trace relation:

T(zy) = 7(yzx),Vo,y € M.

Such a tracial state will be refered to as a trace. We will say that M is a II; factor if M is an
infinite dimensional tracial von Neumann algebra and a factor.

Let (M, 7) be a tracial von Neumann algebra. We endow M with the following inner product

(z,y)r = T(y*x),V2,y € M.
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Denote by (7, L2(M),&,) the GNS representation of M with respect to 7. To simplify the
notation, we identify 7, (z) with € M and regard M C B(L?*(M)). Define J : M¢&, 5 x€,
r*¢ € LE(M). For all z,y € M, we have

(Jx&r, Jyér) = (27&,y76r) = T(ya™) = 7(2%y) = (Y&, &7).
Thus J : L*(M) — L?(M) is a conjugate linear unitary such that J2 = 1.

Theorem 2.14. We have JMJ = M.

Proof. We first prove JMJ C M'. Let x,y,a € M. We have
JrJya&, = Jra*y = yar™ s, = yar™s, = yJxa s, = yJad aé,
so that JzJy = yJxJ.

Claim 2.15. The faithful normal state z — (z&;,&;) is a trace on M.

Let © € M'. We first show that Jaz&, = 2*¢,. Indeed, for every a € M, we have

(Jwé&r,alr) = <Ja£7'7x§7'> = <x*a*§7'v‘£7'>
= <a*$*§7'7§7'> = <$*§T7a€’r>-

Let now x,y € M'. We have

(xy&r, &) = (Y&, 27&r) = (Y&r, J2Er) = (267, JYEr)
= <$f7—,y*§~r> = <y$£ﬁ§7—>'

Denote the faithful normal trace x — (x&;,&;) on M’ by 7’. Define the canonical antiunitary
Kon12(M' 7"y = M'é;, = L*(M) by Kx&, = 2*¢,, Yo € M'. The first part of the proof yields
KM'K C M" = M. Since K and J coincide on M’ which is dense in L2(M), it follows that
K = J. Therefore, we have JM'J C M and so JMJ = M’. O

Definition 2.16. Let N/ C M be any inclusion of von Neumann algebras. A conditional
expectation E : M — N is a contractive unital N-A/-bimodular linear map.

We next show that for inclusions of tracial von Neumann algebras N C M, there always exists
a conditional expectation E : M — N.

Theorem 2.17. Let N C M be any inclusion of tracial von Neumann algebras and T € M,
a distinguished faithful normal trace. Then there exists a unique trace preserving conditional
expectation Ex : M — N.

Proof. We still denote by 7 the faithful normal trace 7|y € N,. Regard L*(N) as a closed
subspace of L2(M) via the identity mapping L?(N) — L*(M) : &, — z&,. For all T € M,
define a sesquilinear form 7 : L2(N) x L2(N) — C by the formula

/{T(xf‘ra yg‘r) = T(y*T$)

By Cauchy—Schwarz inequality, we have |k (2&r, y&r)| < [|T]|oollz||2]]y]|2 for all z,y € N and
hence there exists Ex(7T') € B(L?%(N)) such that s7(z&;, &) = (En(T)xé,, yér) for all o,y €



14 CYRIL HOUDAYER

N. Observe that [|[Ex(T)||co < ||T||co- For all z,y,a € N, we have

(En(T)Ja™J 2&r, y6r) = (En(T)zaér, yér)
= 7(y*Tza)
= 7((ya")"Tx)
= (En(T)x&-, ya"ér)
= (En(T)2&-, JaJyés)
= (Ja"JEN(T) 2&7, y&-).

This implies that E(T) € (JNJ)" = N. It is routine to check that Ex : M — N is a trace
preserving conditional expectation.

We next show that there is a unique trace preserving conditional expectation E : M — N.
Indeed, for all T € M and all z,y € N, we have

(E(T)a&-, y&r) = 7(y"E(T)x)
=7(E(y"T))
=71(y*"Tx)
= (En(T)&-, yér)-
This shows that E(T') = En(T) for every T' € M and hence E = Ey. O

3. GROUP VON NEUMANN ALGEBRAS AND GROUP MEASURE SPACE CONSTRUCTIONS

3.1. Group von Neumann algebras. Let I' be a countable discrete group. The left regular
representation A : I' — U (¢2(T)) is defined by \s6; = dg for all s,t € T.

Definition 3.1 (Group von Neumann algebra). The von Neumann algebra L(I") is defined as
the weak closure of the linear span of {\s : s € T'}.

Likewise, we can define the right regular representation p : I' — U(¢3(T")) by psd; = 6,1 for
all s,t € I'. The right von Neumann algebra R(I") is defined as the weak closure of the linear
span of {ps : s € I'}. We obviously have L(I') C R(T")".

Proposition 3.2. The vector state 7 : L(I') — C defined by 7(x) = (xd¢,de) is a faithful
normal trace. Moreover L(T") = R(T")’.

Proof. 1t is clear that 7 is normal. We moreover have
T()\s)\t) = T()\st) = 5st,e = 5ts,e = T()\ts) = T()\t)\s)-

It follows that 7 is a trace on L(I"). Assume now that 7(z*x) = 0, that is, . = 0 for z € L(T").
For all t € T, we have 0, = zp;-16. = py—12. = 0. Therefore x = 0. Hence 7 is faithful.

We can identify ¢3(T") with L?(L(I")) via the unitary mapping d, + u4. Under this identification,
we have Jd§; = d;—1. An easy calculation shows that for all s,¢ € ', we have

TN 8¢ = JNg6—1 = J8 g1 = p9-1 = ps 0.

Therefore, JA\;J = ps for all s € T'. It follows that L(I") = JL(T')J = R(T") and thus L(T") =
R(L). 0
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Let € L(I') and write xd. = > . #s0s € 2(T) with x5 = (20, 05) = 7(x\¥) for all s € T.
As we have seen, the family (z;)ser completely determines z € T'. We shall denote by x =
Y ser ZsAs the Fourier expansion of & € L(I).

The above sum ) ;A does not converge in general for any of the topologies on B(/2(I)).
However, the net of finite sums (z7)r defined by z7 = > . r2sAs for F C T a finite subset
does converge for the || - ||2-norm. Indeed since (z5) € £3(T'), for any & > 0, there exists Fo C T

finite subset such that > .\ |zs|> < €2. Thus, for every finite subset & C I' such that

Fo C F, we have ||z — zx|3 = D osel\F 25| < €2

The notation x = ) 5As behaves well with respect to taking the adjoint and multiplication.

Proposition 3.3. Let x = ) _pxs)s (resp. y = > ,cpyYiMt) be the Fourier expansion of
x € L(T") (resp. y € L(I")). Then we have

o ¥ = ESEF@)‘S'
o 2y = cr (Xier Tsys—14) M, with Y cp zsys—1; € C for allt € T, by Cauchy-Schwarz
nequality.
Proof. For the first item, observe that
(2%)s = 7(z"A5) = T(A\s) = T(2AI_) = T3
For the second item, observe that using Cauchy—Schwarz inequality, we have

(zy)e = T(xyA)) = Y 2T (AyA) = Y 2e7(yAiy) = D Tays1p. O

sel sel’ sel’

Thanks to the Fourier expansion, we can compute the center Z(L(I")) of the group von Neumann
algebra. We say that I' is icc (infinite conjugacy classes) if for every s € I'\ {e}, the conjugacy
class {tst~! :t € I'} is infinite.

Proposition 3.4. We havex = x,\s € Z(L(I)) if and only if 2,41 = x5 for all s,t € T.
In particular, L(T') is a factor if and only if T is icc. Thus, L(I") is a 11 factor whenever I is
infinite and icc.

Proof. We have

x = Z:cs)\s € Z(IL(T)) & Nz =z,Vs el
sel’
& Tyg-1 = Ts, Vs, t €T,
If T is icc and @ € Z(L(T)), since (z44-1)¢ € £2(T), for all s € T, it follows that x5 = 0 for all
s eI\ {e}. Hence Z(L(T')) = C.
If T is not icc, then F = {tst™! : t € I'} is finite for some s € T'\ {e}. Then >, pAp €
Z(L(M) \ C. O

Example 3.5. Here are a few examples of icc groups: the subgroup S, < S(N) of finitely
supported permutations; the free groups F,, for n > 2; the lattices PSL(n, Z) for n > 2.

Hence Proposition [3.4] provides many examples of I factors arising from countable discrete
groups.

Exercise 3.6. Let T = [Ti]ser € B(£2(T)), with Ts = (T8¢, d5). Show that T € L(T) if and
only if T"is constant down the diagonals, that is, Ty = Ty, whenever st =gh™!.
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Example 3.7. Assume that I" is abelian. Then tAhe Pontryagin dual Tisa compact second
countable abelian group. Write F : ¢2(T') — L*(T, Haar) for the Fourier transform which is
defined by F(ds)(x) = (s, x). Observe that F is a unitary operator. We then get

~

L>(T) = FL(I)F*.

3.2. Murray—von Neumann’s group measure space construction. Let I' ~ (X, )
be a probability measure preserving (pmp) action. Define the action o : I' ~ L*(X) by
(0s(F))(x) = F(s~'x), VF € L>®(X). This action extends to a unitary representation o : I' —
ULA(X)). Put H = L*(X) ® 2(T'). Put us = 05 ® A, for all s € I'. Observe that by Fell’s
absorption principle, the representation I' — U(H) : s — us is unitarily conjugate to a multiple
of the left regular representation. We will identify F' € L°°(X) with F ® 1 € L*(X) ® 1.

We have the following covariance relation:
usFuy = o4(F),VF € L™(X),Vs € T.
Definition 3.8 (Murray, von Neumann [MvN43|). The group measure space construction

L°(X) x T is defined as the weak closure of the linear span of {Fus: F € L™(X),s € T'}.

Put M = L*>(X) x I". Define the unital faithful s-representation = : L°°(X) — B(H) by
T(F)(§ ®6;) = 0i(F)E ® 0. Denote by N the von Neumann algebra acting on H generated by
m(L>®(X)) and (1 ® p)(T). It is straightforward to check that M C N'.

Proposition 3.9. The vector state 7 : M — C defined by 7(z) = (2(1x ® dc),1x ® de) s a
faithful normal trace. Moreover we have M = N'.

Proof. Tt is clear that 7 is normal. We moreover have
T(Fus Gu) = 7(Fos(G)ust)

— Sure /X F(2)G(s~ ') du(z)
:531576/ F(sz)G(x)du(x)

X
=0ise | G(2)F(t tx)du(z)
X

= T(GO’t(F)U,tS)
= 7(Guy Fuy).

It follows that 7 is a trace on M. Assume that 7(b*b) = 0, that is, b(1x ® é.) = 0. For all
se I and all F € L*°(X), we have

b(F @ 8) = br(oy-1 (F))(1® pros) (Lx ©5,)
= 7(01 (F)(1® ppor) b(1x © ) = 0.

It follows that b = 0. Hence 7 is faithful.
We will identify L2(M) with L?(X)®¢%(T') via the unitary mapping Fus&, — F®ds. Under this
identification, the conjugation J : L?(M) — L%(M) is defined by J(£ ® 65) = 04-1(£*) @ §5-1.
For all F' € L°°(X) and all s € I, we have

J(os @ As)J =1® ps

J(F®1)J=mr(F)".

Therefore, we get M = N'. O
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Observe that when the probability space X = {e} is a point, then the group von Neumann
algebra and the group measure space construction coincide, that is, L°°(X) x I" = L(I").

Proposition 3.10 (Fourier expansion). Let I' ~ (X, ) be a pmp action. Let A = L>*(X) and
M =1L>°(X) xT'. Denote by E4 : M — A the unique trace preserving conditional expectation.
Every a € M has a unique Fourier expansion of the form a = )  rasus with as = Ea(auj).
The convergence holds for the || - ||2-norm. Moreover, we have the following:

. 0" =Y, oe (@)
o llall3 = > cr llasll3-
e ab= zter (Zsel“ asgs(bS*lt)) Ug.

Proof. Define the unitary mapping U : L2(M) — L*(X) ® ¢2(T") by the formula U(aus&,) =
a® ds. Then UL, = 1x ® 6 is a cyclic separating vector for M represented on the Hilbert
space L?(X) @ (2(T"). We identify L2(M) with L*(X) ® ¢2(I"). Under this identification, e4 is
the orthogonal projection L?(X) ® £2(T') — L?(X) ® Cd,. Moreover, use u’ is the orthogonal
projection L*(X) ® ¢*(I') — L*(X) ® Cd, and thus >, useau’ = 1. Let a € M. Regarding
a(ly ®6.) € L2(X) ® £2(T"), we know that there exists a; € L%(X) such that

a(lx ®de) = Zas ®d; and [al3 = Z las|3-
sel’ sel’

Then we have

as ®9s = useauia(lx ® ;)
= wugequiaes(lx ® )
= usEa(uia)(lx ® )
= Ej(au}) ® ;.
It follows that a; = Ea(au}). Therefore, we have a = ) . Ea(au})us and the convergence

holds for the || - [|-norm. Moreover, ||al|3 = " cr [Ea(au})||3. The rest of the proof is left to
the reader. 0

Like in the group case, the sum a = ) a,us does not converge in general for any of the
operator topologies on B(L*(X) ® ¢2(T)).

Definition 3.11. Let I' ~ (X, 1) be a pmp action.

e We say that the action is (essentially) freeif u({x € X : sz = z}) =0 for all s € T'\ {e}.
e We say that the action is ergodic if every I'-invariant measurable subset U C X has
measure 0 or 1.

Lemma 3.12. LetT' ~ (X, 1) be a pmyp action and denote by o : T' — L2(X)° the corresponding
Koopman representation where L2(X)? = L%(X) © Clx. The following are equivalent:

(1) The action T ~ (X, ) is ergodic.
(2) The Koopman representation o — U(L?(X)°) has no nonzero invariant vectors.

Proof. (1) = (2) Let ¢ € L2(X)" such that o4(¢) = £ for all s € I'. By considering the real part
and the imaginary part of ¢ € L2(X)?, we may further assume that ¢ € L2(X)? is real-valued.
For every t € R, define Uy = {x € X : {(x) > t}. It follows that U; is I'-invariant for all
t € R and thus p(U;) = 0,1 by ergodicity. Since the fonction ¢ — p(Uy) is decreasing and since
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¢ € L2(X), there exists tg € R such that p(Uy) = 1 for all t < tg and u(Uy) = 0 for all ¢ > t.
Therefore &(z) = to for p-almost every 2 € X. Since ¢ € L2(X)°, we get tg = 0 and so & = 0.

(2) = (1) Let U C X be a I'invariant measurable subset. Put ¢ = 1y — u(U)1x € L*(X)O.
Since 05(§) =& for all s € I', we get £ =0 and so 1y = u(U)1x. Hence p(U) =0, 1. O

Examples 3.13. Here are a few examples of pmp free ergodic actions I' ~ (X, ).

(1) Bernoulli actions. Let I' be an infinite group and (Y, n) a nontrivial probability space,
that is, 7 is not a Dirac point mass. Put (X, u) = (YT, v®"). Consider the Bernoulli
action I' ~ YT defined by

S (yt)ter = (ys—lt)tel"~

Then the Bernoulli action is pmp free and mixing, so in particular ergodic.

(2) Profinite actions. Let I" be an infinite residually finite group together with a decreas-
ing chain of finite index normal subgroups I';, 9T such that I'g = I" and NpenI'y = {e}.
Then for all n > 1, the action I' ~ (I'/T',,, iy, ) is transitive and preserves the normalized
counting measure u,. Consider the profinite action defined as the projective limit

I~ (Gpr) = BT A (/T ).

Then I sits as a dense subgroup of the compact group G which is the profinite comple-
tion of I' with respect to the decreasing chain (I'y,)n,en. Observe that p is the unique
Haar probability measure on G. The profinite action is pmp free and ergodic.

(3) Actions on tori. Let n > 2. Consider the action SL(n,Z) ~ (T", \,) where T" =
R"™/Z" is the n-torus and A, is the unique Haar probability measure. This action is
pmp free and ergodic.

We always assume that (X, u) is a standard probability space. In particular, X is countably
separated in the sense that there exists a sequence of Borel subsets V;, C X such that | J,, V,, = X,
w(Vy) > 0 for all n € N and with the property that whenever z,y € X and x # y, there exists
n € N for which z € V,, and y ¢ V,.

Proposition 3.14. Let I' ~ (X, u) be a pmp action. Put A =L°(X) and M =L>*(X) xT.

(1) The action is free if and only if A C M is mazimal abelian, that is, A’ M = A.
(2) Under the assumption that the action is free, the action is ergodic if and only if M is
a factor.

Proof. (1) Assume that the action is free. Let b € A'N M and write b = > bsus for its
Fourier expansion. Then for all a € A and all s € I, we have abs = o5(a)bs. Fix s € I'\ {e}
and put Us = {z € X : bs(z) # 0,sx # x}. We have 1y,a = 1y7,05(a) for all a € A.

By assumption, we have Uy = Us N (U,, Vo N s(Vi)¢). So, if u(Us) > 0, there exists n € N
such that p(Us NV, Ns(V,)¢) > 0. With a = 1y,, we get 1y,nv, = ly,nsv,) and thus
1y,Av,ns(vy)e = 0, which is a contradiction. Therefore, 1(Us) = 0. Since the action is moreover
free, we get by = 0. This implies that b € A.

Conversely, assume that A'NM = A. For all s € '\ {e}, put as = 1z x.sp—s}- We have asu, €
A'N M = A. Hence asus = E4(asus) = 0 and so ag = 0. Therefore u({x € X : sz = 2}) = 0.

(2) Under the assumption that the action is free, we have Z(M) = M'NM = M'N A = A",
Therefore, the action is ergodic if and only if Z(M) = C. O



GROUPS, ACTIONS AND VON NEUMANN ALGEBRAS 19

Let A C M be any inclusion of von Neumann algebras. Denote by Ny(A4) := {u € U(M) :
uAu* = A} the group of unitaries normalizing A inside M and by Nas(A)” the normalizer of
A inside M. We say that A C M is a Cartan subalgebra when the following three conditions
are satisfied:

(1) A is maximal abelian, that is, A = A’ N M;
(2) There exists a faithful normal conditional expectation E4 : M — A;

(3) Nar(A)" = A.

For every free pmp action I' ~ (X, pu), L=(X) € L*(X) x ' is a Cartan subalgebra by
Proposition

4. AMENABLE VON NEUMANN ALGEBRAS

4.1. Connes’s theory of bimodules. The discovery of the appropriate notion of representa-
tions for von Neumann algebras, as so-called correspondences or bimodules, is due to Connes.
Whenever M is a von Neumann algebra, we denote by M°P its opposite von Neumann algebra.

Definition 4.1. Let M, N be tracial von Neumann algebras. A Hilbert space H is said to be
an M-N-bimodule if it comes equipped with two commuting normal unital *-representations
A: M — B(H) and p: N°° — B(H). We shall intuitively write

z€y = Nz)p(y*P)E, V€ € H,Vo € M,Vy € N.

We will sometimes denote by my : M ®,1; NP — B(H) the unital *-representation associated
with the M-N-bimodule structure on H.

Examples 4.2. The following are important examples of bimodules:
(1) The identity M-M-bimodule L?(M) with z€y = x Jy*JE.
(2) The coarse M-N-bimodule L?(M) ® L?(N) with (¢ ® n)y = (€) ® (ny).

(3) For any 7-preserving automorphism 6 € Aut(M), we regard L3(M) with the following
M-M-bimodule structure: x€y = x£60(y).

We will say that two M-N-bimodules yHy and 3K are isomorphic and write pyHy = Ky
if there exists a unitary mapping U : H — K such that

U(z&y) = z2U(§)y,VE € H,Vx € M,Vy € N.

We now describe Connes’s fusion tensor product for Hilbert bimodules. Let M, N, P be any
tracial von Neumann algebras, H any M-N-bimodule and X any N-P-bimodule. Denote by
Ho C H the subspace of right N-bounded vectors, that is,

Ho:={a€H:3c>0,Vy € N,|ay| <clyl2}.

Whenever a € Hg, we denote by L, : L2(N) — H : y& — ay the corresponding bounded
operator. Observe that for all a,b € Hg, we have

LiL, € (JNJ) nB(L*N)) = N.

Observe that Hg is dense in H. Indeed, for every £ € H, denote by T¢ € LY(N, 1) the unique
element such that ({y, &) = 7(T¢y) for all y € N. Regarding T¢ as a closed summable operator
affiliated with N, we may take the spectral decomposition of T; and find an increasing sequence
of projection e, € N such that £e,, € Hy and &e,, — £.
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The separation/completion of Ho ®,1¢ K with respect to the sesquilinear form

(a®&b@n) = (LyLa&,n)k

is denoted by H @y K. The image of a ®n € Ho ®alg K in H @y K is simply denoted by a @y .
The M-P-bimodule structure on H @y K is given by

z(a®@n &)y = ra@n Ly, Vo € M,Vy € P.

Exercise 4.3 (Associativity). Let M, N, P, @ be any tracial von Neumann algebras and /Ky,
~NKp, pLg bimodules. Show that as M-Q-bimodules, we have

mM(HenK)opL)g = uH ey (KopL))o.

Like for unitary group representations, we can define a notion of weak containment of Hilbert
bimodules. Let M, N be any tracial von Neumann algebras and pyHy, ;K n any bimodules.
Consider the unital *-representations w3 : M ®a1; NP — B(H) and g : M ®q14 NP — B(K).

Definition 4.4 (Weak containment). We say that H is weakly contained in K and write H Cyyeak
K if |7y (T)|| < ||mic(T)]| for all T € M @415 NP.

Let 7 : T' — U(K5) be a unitary representation of a countable discrete group I'. Put M = L(T")
and denote by (\s)ser the canonical unitaries in M. Define on H(7) = K, ®¢?(T') the following
M-M-bimodule structure. For all ¢ € K and all s,t € ', define

As (§ & (St) = Ws(é.) & 5st
(§®5t) As = 5 02y 5ts-

It is clear that the right multiplication extends to the whole von Neumann algebra M. Observe
now that the unitary representations 7 ® A and 1x, ® A are unitarily conjugate. Indeed, define
U:K,®20?T)— K, ®/*T) by

U(§ ® 6t) = m(§) @ 0t

It is routine to check that U is a unitary and U(1x, ®As)U* = ms® A4 for every s € I'. Therefore,
the left multiplication extends to M. Denote by 1p : I' — U(C) the trivial representation.

Proposition 4.5 (Representations and Bimodules). The formulae above endow the Hilbert
space H(m) = K,®0?(T') with a structure of M -M -bimodule. Moreover, the following assertions
hold true:

(1) yH(r)m = L2 (M) and yHOr) v = (LA(M) @ L2(M)) .-
(2) For all unitary I'-representations w1 and mo such that w1 Cyeak T2, we have

MH(T1) M Cweak MH(T2) 01

(3) Whenever my and my are unitary I'-representations, we have

MH(?U X 7T2)M = M(H(ﬂ'l) Rm /H(WQ))M‘

Proof. The proof is left as an exercise. O
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4.2. Powers—Stgrmer’s inequality. For an inclusion of von Neumann algebra M C N, we
say that a state ¢ € N* is M-central if p(2T) = p(Tx) for all z € M and all T € N. We will
be using the following notation: for all z € M, put 7 = (x°P)* € M°P.

Regarding M @, M°P C B(L*(M) @ L?(M)), we will denote by || - ||min the operator norm on
M ®ag M°P induced by B(L?*(M) ® L?(M)). It is called the minimal tensor norm. We will
also denote by M @ M°P := (M ®, M°P)" C B(L*(M) @ L*(M)).

Let H be a separable Hilbert space. For every p > 1, define the pth-Schatten class S,(H) by
Sp(H)={T € B(H) : Tx(|T?) < oo} .

It is a Banach space with norm given by ||T||, = Tr(|T|?)/P. Observe that Sy(H) is the space
of trace-class operators and So(H) is the (Hilbert) space of Hilbert-Schmidt operators. It is
also denoted by HS(H).

Let M be a finite von Neumann algebra with a distinguished faithful normal trace 7. Observe
that the unitary U : HS(L*(M)) — L*(M) ® L*(M) defined by U((-,n)¢) = £ ® Jn is an
M-M-bimodule isomorphism.

We will be using the following technical results.

Lemma 4.6. Let A be a unital C*-algebra, u € (A)1 and w € A* a state. Then we have
max {[jw — w(u- )|, [l —w(- )|, [lw —wo Ad(u)[} < 2v/2[1 - w(u)|.

Proof. Let (my, Hw, &) the GNS representation associated with the state w on A. Then w(a) =
(mw(a)éy, &) for all a € A. We have

lw = w(- )| < Jléw = mo(u) "€oll < V201 = Rw(u)) < V21 - w(u)].
Likewise, we get ||jw —w(u-)|| < /2|1 —w(u)|. Moreover, we have
lw = w o Ad(u)]| < 2[|€w — mo(u) &l < 2v/2[1 = w(u)|. m

The previous lemma implies in particular that when w(u) = 1, then
w=w(u")=wu-)=woAd(u).

Lemma 4.7 (Powers—Stgrmer’s Inequality). Let H be a Hilbert space and S,T € Sa(H ).
Then we have

IS =715 < 15% = T%| < IS = Tl2]|S + Tl2-

Before starting the proof, we make the following observations:

e Whenever A, B € B(H) have finite rank and if we write AB = U|AB| for the polar
decomposition, by the Cauchy—Schwarz Inequality, we have

IAB1 = Tr(|AB) = Tr(U"AB) < U™ All2[|Bll2 < [[All2[| B2

e Whenever A, B € B(H)4 and A or B has finite rank, we have Tr(AB) > 0. Indeed,
without loss of generality, we may assume that B has finite rank and we write B =

Z?:l >\Z< . ,§l> 52 Then AB = Z?:l )\z< . ,fl> Agl and so TT(AB) = Z:‘Lzl )\1<A§Z, €1> Z 0.
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Proof. We reproduce the elegant proof given in [BOO8, Proposition 6.2.4]. First observe that
using the Spectral Theorem, we may assume that S,T have both finite rank and still satisfy
S, T > 0.

The identity
1
(4.1) SQ—T2:5((S+T)(S—T)+(S—T)(S+T))
together with the first observation give the right inequality.
Put p = 1jg 400y (S —T). We have (S —T)p > 0 and (T - S)p + > 0. Observe that we also have

(4.2) Te((S +T)(S — T)p) = Te((S + T)p(S — T))
= (S~ T)(S + T)p)
(4.3) Te((T + S)(T - S)pt) = Te((T + S)p* (T - 5))
— Tx((T - S)(T + S)p*).

Then we have

IS =TI = Tx((S — T)?)
=Te((S = T)*p+ (S~ T)*p)
= Tr((S = T)(S = T)p+ (T = S)(T = S)p™)
<Tr((S+T)(S—T)p+ (T + S)(T — S)pt) (using the second obsevation)
=Tr((S* = T?*)p + (T% — S?)p*) (using (&I)), and (4.3))
< Tr(]S? = T?|p + |T? — S%|pt) (using the second observation)
— Te(|S? — T2) = ||8* — T2 0

4.3. Connes’s fundamental theorem. This section is devoted to proving Connes’s charac-
terization of amenability for tracial von Neumann algebras.

Definition 4.8. Let M C B(H) be any von Neumann algebra with separable predual. We say
that

e M is amenable if there exists a conditional expectation ¢ : B(H) — M.
e M is hyperfinite if there exists an increasing sequence of unital finite dimensional -
subalgebras @, C M such that M =/, Q.

Theorem 4.9 (Connes [CoT5]). Let (M, T) be a tracial von Neumann algebra with separable
predual. The following are equivalent:

(1) There exists a conditional expectation ® : B(L?(M)) — M.

(2) There exists an M -central state ¢ on B(L?(M)) such that @|y = 7.

(8) There exists a net of unit vectors &, € L2(M) @ L*(M) such that lim,, ||2&, — &xlla =0
and limy, (x&,, &) = 7(x) for allx € M.

(4) ML2 (M) Ceake mr(L2(M) © L (M) ar-

(5) For all ay,...,ak,b1,..., b € M, we have

k k
T (Z aibi> Z a; ® b;-)p
i=1 i=1

min

(6) M is hyperfinite.
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Whenever M = L(T") is the von Neumann algebra of a countable discrete group, the previous
conditions are equivalent to:

(7) T is amenable.

Proof. We show that (1) & (2) & (3) & (4) & (5) & (7) and (6) = (1). The proof of
(1) = (6) is beyond the scope of these notes.
(1) = (2) Put p=70®.
(2) = (3) Let ¢ be an M-central state on B(L?*(M)). Since the set of normal states is
o(B(L3(M))*,B(L?(M)))-dense in the set of states, we may choose a net of normal states
(¢j)jes on B(L*(M)) such that limyp;(T) = ¢(T) for all T € B(L*(M)). We get that
¢ o Ad(u) — ¢; — 0 with respect to the o(B(L*(M))., B(L?(M)))-topology, for all u € U(M).
Using Hahn-Banach Theorem and up to replacing the net (¢;)jcs by a net (¢ )rex where
each ¢} is equal to a finite convex combination of some of the ¢;’s, we may assume that
lp; 0 Ad(u) — ;|| — 0 for all uw € U(M). For every j € J, let T; € S1(L?(M))+ be the unique
trace-class operator such that ¢;(S) = Tr(7;S) for all S € B(L*(M)). We get ||T;]|; = 1
and limy [|[uTju* — Tj||; = 0 for all w € U(M). Put §; = le/z € S(L3(M)) and observe that
|&]l2 = 1. Since &; is a Hilbert-Schmidt operator, we may regard ¢; € L*(M) ® L*(M). By
the Powers-Stgrmer Inequality, we get lim; ||u;ju* — &;||2 = 0 for all u € U(M). Moreover, we
have

liﬁn(mfj,ﬁﬁ = li? Tr(T)x) = li}n pj(x) = p(x) =71(x),Vr € M.

(3) = (4) Let ay,...,ap,bi,...,0p € M and put T = 3% a; ® b;°P. Let ¢,d € M. Then

T (Zd a;ch; >
m <Zd*az‘Cbi§m§n>

i=1

k
<Zai fani,d§n>‘

i=1
< 72 anyer ) (D) im [[€qef| lim [|dE, |

(2 M)( )&z, dér)

= lim
n

= Iz anerzon (D) IICH2IIdH2

This implies that |72 (T)|| < 72 (aryer2 ) (T)-

(4) = (5) Let ai,...,ap,bi,...,bp € M and put T = 3% a; @ bP. Since L2(M) @ L?(M) is
a left M ® M°P-module, we have

k
Z a; ® b?p
i=1

Since by assumption, we have [mp2 ) (D) < |72 anerzan (D), we get

T (i aibi> ‘ = ‘<7rL2(M) (T)gT,§T> iai ® bP
=1 i=1

H7TL2(M)®L2(M) (D)l =

< w2 (M) <

min
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(5) = (2) Denote by €2 : M ®,1g M — C the || - ||min-bounded functional such that Q(a®b°P) =
7(ab). By the Hahn-Banach Theorem and since M ®,; M°P C B(L*(M) ® L*(M)), we may
extend the functional Q to B(L?(M) ® L*(M)) without increasing the norm of Q. We still
denote this extension by Q. Since [|Q] =1 = Q(1), Q is a state on B(L*(M) ® L?(M)). Since
Queu) =7(uwu*) =1 for all u € U(M), we have
Q(S(um) = Q) = A(u®u)S)
for all S € B(L?(M) ® L*(M)) and all u € U(M) (see Lemma .
Put o(T) = Q(T @ 1°P) for all T € B(L?(M)). Observe that ¢(z) = Q(z ® 1°P) = 7(x) for all
x € M. Moreover, for all T € B(L?(M)) and all u € U(M), we have
T = 0T 1) = (T 4
(T © uP)(u &) = ATu & 1)
p(Tw).

(2) = (1) For all T € B(L?(M)), define a sesquilinear form sy : L*(M) x L2(M) — C by the
formula

k(287 yS7) = o(y* Tx).
By Cauchy—Schwarz inequality, we have |kr (&, ¥&7)| < ||T]|oollz]l2|lyl|2 for all z,y € M and
hence there exists ®(T') € B(L2(M)) such that ky(zé,, y&;) = (B(T)xé,, y&,) for all z,y € M.
Observe that ||®(T)| < ||T||. For all z,y,a € M, we have

((T)Ja™J x&r,y&r) =

(T)at,, ya'é,)
(T)x&r, JaJyés)
— (Ja* TB(T) €.yt ).

This implies that ®(T) € (JMJ) = M. Tt is routine to check that ® : B(L?(M)) — M is a
conditional expectation.

(®
@
= ¢((ya®)" Tx)
(@
(@

(6) = (1) Assume that M = \/, Q, with @, C M an increasing sequence of unital finite
dimensional x-subalgebras. Denote by pu,, the unique Haar probability measure on the compact
group U(Q,). Choose a nonprincipal ultrafilter w on N. For all T € B(L?(M)), put

E(T) = lim uTu™ dpy, (u).
e Ju@n)
Then @ : B(L2(M)) — M defined by ®(T") = JE(T).J is a conditional expectation.
Put M = L(T") and denote by As € M the canonical unitaries.

(1) = (7) Let ¢ € B(£3(I' )) be an L(I')-central state such that ¢|j, ) = 7. Define a state
m € £>°(T)* by m = p|geo(r). Then m is an invariant mean and I" is amenable.

(7) = (1) Assume that there exists a sequence of unit vectors ¢,, € £2(T) such that || As¢p—Cnll =
0 for all s € I'. Put M = L(I'). Consider the M-M-bimodule ) as defined before. Recall
that yHan = ar(LA2(M) @ L2(M)) . Put &, = ¢, ® & and regard &, € HS(L?(M)). Observe
that limy, || As&n — EnAs]| = 0 all s € T and (\s&n, &n) = 7(As) for all n € N and all s € T'. This
further implies that (z&,,&,) = 7(x) for all n € N and all x € M.
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Choose a nonprincipal ultrafilter w on N and put ¢(7T") = limy,,, (T, &) forall T € B(LQ(M ).
We have o(A\T) = p(T\,) for all T € B(L?(M)) and all s € T and |y = 7. Let © € M and
write = ) . TsAs for its Fourier expansion. Put o = Y _rx,\s € C[I'] for F C T finite
subset. By Cauchy—Schwarz Inequality, we have

(@ —27)T)| < p((@ — 27)(x — 27))? (T T)? = ||z — a2 (T*T)"/?

and so limr p(zxT) = @(aT). Likewise, we have limr o(Txr) = @(Tx). This implies that
o(xT) = p(Tx) for all z € M and all T € B(L*(M)). O

We say that a tracial von Neumann algebra (M, 7) is diffuse if there exists a sequence of
unitaries u, € U(M) such that u,, — 0 o-weakly. One can show that M is diffuse if and only
if M has no nonzero minimal projection.

We record the following well-known fact.

Proposition 4.10. Let M C B(H) be any diffuse tracial von Neumann algebra. Then for any
M -central state p € B(H)* we have plk ) = 0.

Proof. Fix a sequence of unitaries u,, € U(M) such that u,, — 0 o-weakly. For any £ € H,
denote by e; : H — C¢ the corresponding orthogonal projection. Since ¢ € B(H)* is M-
central, we have ¢(e,,¢) = @(urecuy) = @(e¢) for every k € N and every { € H. Write
IT|l, = @(T*T)"/2 for every T € B(H).

Fix € € H and N > 1. By Cauchy-Schwarz inequality, we have

1 & 1 (& 1|
e = Lot = (o) = 5D
i=1 i=1 =1 )

We may choose ki,...,kx € N such that Heukjg Cup,€lloo = [(un; & ug;§)| < + foralll<i<
7 < N. Then we also have

N 2 N

D cue| =D elewdt D elewecu

i=1 o i=1 1<i#j<N

SN+2 Y lew, ¢ cu el
1<i<j<N

1
SN+NN-1)5=2N-1

Thus, we obtain
V2N -1
pleg) < N
Since this holds for every N > 1, it follows that ¢(e¢) = 0. By Cauchy-Schwarz inequality, we
also have p(Se¢) = 0 for every S € B(H). It follows that ¢(7") = 0 for every rank one operator
T € B(H) and hence ¢|kq) = 0. O

Exercise 4.11. Let I' ~ (X, ;) be a pmp action of a countable discrete group on a standard
probability space. Show that L°°(X) x I' is amenable if and only if I is amenable.

Exercise 4.12. Let A C M be any inclusion of tracial von Neumann algebras. Assume that
A is amenable. Show that for every u € Ny (A), the von Neumann subalgebra (A, u) C M is
amenable.
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5. STRONG SOLIDITY OF FREE GROUP FACTORS

5.1. Free groups are bi-exact. Recall that a countable discrete group I' is amenable if and
only if any action I' ~ X on any metrizable compact space admits an invariant probability
measure. We introduce a generalization of this notion to actions on compact spaces as follows.
Put Prob(T") := {p € ¢1(I') : p > 0 and [|pf, =1} C £4(T).

Definition 5.1. Let I' be any countable discrete group, X any metrizable compact space
and I' ~» X any action by homeomorphisms. We say that the action I' ~ X is topologically
amenable if there exists a sequence of continuous maps p : X — Prob(I") such that

i (sup (o) = p(s2)] ) =0

for all s € T.

Note that conitinuity of ui in Definition means that for any convergent net x; — = in X
we have ug(x;)(s) = pg(x)(s) for every s € I

The next definition will be central in this section.

Definition 5.2 (Brown-Ozawa [BOO§|). A countable discrete group I' is said to be bi-ezxact
if I' admits a compactification I' C X such that the left-right action I' x I' ~ I' extends to an
action by homeomorphisms I' x I' ~ X which satisfies the following properties:

(1) The left action I' ~ X is topologically amenable.
(2) The right action I' ~ X \ T is trivial.

Proposition 5.3. Free groups are bi-exact.
Proof. Let n > 2 and regard F,, = (g1, ..., gn). Define the boundary of F,, by

aFn = {(ak)k S H {91791_17 v 7gnvgrjl} : alzl 7é ak+1,Vk S N} .
N

Denote by ¢ : F,, — N the canonical length. Endowed with the relative product topology, 0F,,
is a compact space and with an appropriate topology, X := F,, U dF,, is a compactification of
F,,. For every z = (a;)r € X and every j € N, define z(j) = ag---aj € Fy,. For every k € N,
the map

k
1
pg : X — Prob(F,,) : x — Pl ;)51@
is continuous and satisfies
20(s)
— <
sup [lspue(@) = paso)ll < 4=

for all s € F,, and all £k € N. This shows that the left action F,, ~ X is amenable. It is clear
that the right action F,, ~ OF,, is trivial. ]
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5.2. Free groups have the complete metric approximation property.

Definition 5.4. Let A, B be any unital C*-algebras and ¢ : A — B any linear map. We say
that ¢ is completely bounded if

lelleb == sup [pn : My (A) = My(B) : [aijlij = [w(aij)]ig

| < 0.

We say that ¢ is completely contractive if ||| < 1.

Proposition 5.5. Let A be any unital C*-algebra, m : A — B(K) any unital x-representation
and V,W : H — K any isometries. Then the linear map ¢ : A — B(H) : a — V*r(a)W is
completely contractive.

Proof. Let n > 1. Observe that M,,(B(H)) = B(H%") and M,,(B(K)) = B(K®"). Denote
by V) W™ = H®" 5 K9 the canonical amplifications. Observe moreover that m, =
idn, ) @ ™1 My (A) — M, (B(K)) is a unital *-homomorphism. For every a € M, (4), we
have

pn(a) = (V) 1o (a) W
and hence ¢, : M, (A) — M, (B(H)) is a contraction. This shows that ¢ is completely
contractive. O

One can prove that any completely contractive map ¢ : A — B(H) admits a decomposition as
in Proposition [5.5

Let I' be any countable discrete group. A function ¢ : I' — C is said to be a Herz-Schur
multiplier if the linear map

my, : B(C(T)) = B(E(T)) : [Toalse v [0(57 1) Tl
is well defined, ultraweakly continuous and completely bounded. Observe that in this case, we
have m,(As) = @(s)As for every s € I'. Therefore, the restriction map my, : L(I') — L(I') : Ay —

©(s)As is well defined, ultraweakly continuous and completely bounded. Denote by Bo(I") the
Banach space of all Herz-Schur multipliers ¢ : I' = C endowed with the norm |||/, = |[my]|cb.

Proposition 5.6. Let I' be any countable discrete group and ¢ : I' — C any function for
which there exist a Hilbert space H and families (§5)s and (n;): in H with supger ||€5|| < 1 and
supser ||nell < 1 such that o(s™1t) = (n,&s) for all s,t € T. Then ¢ is a Herz-Schur multiplier
with [|¢|B, < 1.

Proof. Define contractions V, W : £2(T') — ¢*(T) ® H by V(8s) = 6s ® & and W (§;) = & @ my
for all s,t € I'. A simple calculation shows that m,(es;) = V*(esr ® 1)W for all s,¢t € T
Therefore, we have m,(T) = V*(T'® 1)W for all T € B(¢*(I')). By Proposition pis a
Herz-Schur multiplier. O

Corollary 5.7. For any ¢ € (*(T), we have ¢ € Bao(T') and ||¢||B, < ||¢ll2- Thus, the Banach
subspace I C Bo(T') generated by finitely supported functions contains ¢2(T).

Proof. Let ¢ € (*(T'). For any s,t € T, put & = 5,1 and 1 = p(p) € 2(I'). Observe
that sup,er ||€]]2 = 1 and sup,cr [|7e]|2 = [|¢ll2. Moreover, for any s,t € I', we have (n,&s) =
(pe(p),05-1) = p(s71t). Therefore, ¢ € Bo(T') and [|¢||B, < |l¢]l2 by Proposition O

Definition 5.8 (Haagerup). Let I' be any countable discrete group. We say that I' has the
complete metric approzimation property (CMAP) if there exists a sequence of finitely supported
Herz-Schur multipliers ¢,, : I' — C such that lim,, ¢, = 1 pointwise and lim,, ||¢y|B, = 1.
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Theorem 5.9 (Haagerup). Free groups have the complete metric approximation property.

Proof. It suffices to prove the result for Fo = (a,b). We reproduce the elegant proof given in
[BOOS, Chapter 12]. We identify Fy with its canonical Cayley graph which is a 4-regular tree
and denote by ¢ : Fo — N the canonical length. Denote by w = w, the unique infinite geodesic
ray in Fy which starts at the neutral element and which contains a* for all k € N. For any
s € Fo, denote by w, the unique infinite geodesic ray in Fo which starts at s and eventually
flows into w.

Put D := {z € C: |z| < 1}. For every z € D and every s € Fa, define (s(z) € £*(F2) by the

formula
=\ 1 - 22 széwb(k)
=0

The above series converges absolutely in z € D and uniformly in s € Fy and we have
— 2?

613 =11 - 2|Zrz\k I

In particular, we have that the fonction ¢ : D — EOO(FQ,EQ(FQ)) : 2+ ((5(2))s is holomophic.
For every z € D, put ¢, : Fo - C:s5+— 24G) A simple calculation shows that

<<t(z)a<:s(z)> = (1 - 22) Z Zk+l(sws(k),wt(l)
1, 1=0
— (1 o 22) Z Zi(s_lt)+2n
n=0

_ ZZ(S_lt)

= p.(s7).
In particular, the map ¢ : D — Ba(F2) : z — ¢, is holomorphic.

Observe that for every 0 < 7 < 1 and every s € Fy, (s(r) = (;(r) and hence ¢, is positive
definite. Thus, we have ||¢r||B, = ¢r(e) = 1. Moreover, we have lim,_,; ¢, = 1 pointwise. It
then suffices to show that ¢, € F for every z € D, where F' C By(F32) is the Banach subspace
generated by finitely supported functions. Observe that §{s € Fa: {(s) <n} = 4" + 1. This
implies that ¢, € ¢}(Fy) C F C Bo(Fy) for any 2 € D such that |z| < 1/4 (see Corollary
5.7)). Therefore, the map ¢p : D — Bo(F3)/F : z — ¢, + F is holomorphic and zero for any
z € D such that |z| < 1/4. This shows that ¢ = 0 and finally implies that ¢, € F for every
z € D. O

5.3. Ozawa—Popa’s weak compactness criterion. Let I' be any countable discrete group
and (X, ) any standard probability space. We say that a pmp action I' ~ (X, ) is compact
when the range of the homomorphism o : I' — Aut(X, u) is precompact in the Polish group
Aut(X, p). For instance, whenever I' < K is a dense subgroup of a compact second countable
group, the pmp action by left translation I' ~ K is compact.

Ozawa—Popa discovered in [OP07] that inside group von Neumann algebras L(I") where I" has
the CMAP, the action Nj/(A) ~ A of the normalizer Njs(A) of any amenable subalgebra
A C L(T) satisfies a weak form of compactness. More precisely, they obtained the following
result.
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Theorem 5.10 (Ozawa—Popa [OP07]). Let T' be any countable discrete group with the CMAP
and put M = L(T"). Let A C M be any amenable von Neumann subalgebra. Then the trace

preserving action Nas(A) ~ A is weakly compact in the following sense. There exists a state
0 € B(L2(M))* such that

¢(aT) = ¢(Ta) for alla € A and all T € B(L*(M)).
o(uJud T) = (T uJul) for all u € Nays(A) and all T € B(L*(M)).
o(x) =7(x) = p(Jx*J) for all x € M.

Proof. Denote by ¢, : M — M a sequence of finite rank normal completely bounded maps
that witness CMAP. Define the normal linear functionals u, : M ® M°P — C by the formula
pn(a ® b°P) = 7(pn(a)b),Va,b € M.

Let A C Q C M be any intermediate amenable von Neumann subalgebra. Put ,ug = ,un|Q@Qop.
Using Theorem [4.9(5), we know that for all £ > 1 and all aq,...,ax,b1,--- ,bx € @, we have

k k
T (Z@M%)@) =T (ZEQ(@n(ai))bz)
i=1 i=1
k
<> Eqlpn(a) @b
i=1 min
k
<D enla) @b®
i=1 min
k
= |[(pn ® idgor) Z a; ® b?p
=1 min
< llenllen - ® ;"
This implies that [|u%| < |l¢nlles. Write p$ = un\ s \ for the polar decomposMon of u¥

(Q ® Q°P),. We have u,, € (Q ® QOp)l. Put wd = || 1|ng so that that w¢ is a normal
state on Q ® Q°P. We have u = H,u || un, w&. Since lim, ||pn || =1 and lim, p,(1 ® 1°P) =1,
Lemma [4.6] implies that

(5.1) lim [ — 2] = 0.

Now consider the case when Q = A. For all a € U(A), since p(a ® a) = 7(pn(a)a*) — 1,
Equation (j5.1) and Lemma imply that
(5.2) lim||(a® @)w; —w, || =0 and limlw; (a® a)—w,| =0.
n n
Let u € Nys(A). Next consider the case when @ = (A, u) which is amenable by Exercise [4.12]
Since ,un( ®@u) = T(pn(u)u*) — 1, Equation (5.1]) and Lemma imply that
lim || 4% — 1@ o Ad(u ® @)|| = 0.

n
Since ug\A@Aop = p2 and p¥ o Ad(u ® )| gz400 = Ha o Ad(u ® @), the above equation and
Lemma imply that
(5.3) lim [|w? — w? o Ad(u ® @)|| = 0.

n
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Regard w? € LY(A® A%), ¢ L}(M ® M), and put &, := (w)'/? € L2(M ® M°P),. The
following assertions hold true:

e lim, [|& — (a ® @)&y|l2 = 0 for all a € U(A), by (5.2).

e lim, ||&, — (u® 1), (u® @)*|l2 = 0 for all u € Ny(A), by and Powers-Stgrmer
inequality as in Lemma

o lim,((z ®1)&,,&,) = 7(z) and lim, ((1 ® 2°P)&,, &,) = 7(x) for all x € M, by construc-
tion.

Then choose a nonprincipal ultrafilter w € 3(IN)\ N and define ¢ € B(L?(M))* by the formula
P(T) = lim (T © 1°°)&n, €a), VT € B(L*(M)).

Then ¢ satisfies the conclusion of Theorem [5.10] Indeed for every a € A and every T €
B(L?(M)), using the facts that lim,_,, [|(a* ® 1P)&, — (1 ® @)l = 0 and lim,_,,, ||(a
19)¢, — (1.8 a%P)é,lz = 0, we have

p(aT) = lim ((aT @ 1°P)&n, En)
= Hi((T ® 1P)&n, (4™ @ 1°)&n)
im (7' © 1°P)&n, (1 @ a)én)
= hm 1 ('@ a®)&n, &n)
hm <(Ta ® 1P)E, &n)
= (Ta).

Next, for every u € Nyr(A) and every T € B(L*(M)) using the facts that lim,_, ||(uv* ®
19P)&, (u®1°P) — (10u)&, (10uP)||2 = 0 and limy, ., ||[(u®1°P)E, (v*@1°P)—(10uP)E, (1u) |2 =
0, we have

o(uJuJ T) = lim ((uJuJ T @ 1°P)&,,, &)

((
= %EU((T ® 1°P)&p, (u*Ju*J @ 1°P)E,)
= lim (T @ 1°)¢,,, (u" @ 1)&n(u @ 1°7))
= lim (T @ 1)&,, (1 © @)¢n(1 © u°P))
= lim (T ® 1P)(1 ® u)&a(1 @ @), &)
= lim (T © 1) (u @ 1%P)&, (u" ®@ 1°7), &)
= lim (T wJuJ © 1), &)
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Finally for every € M, using the fact that (J ® J°P)¢, = &,, we have
90(55) = lim <(x ® 10p>§na€n>
n—w

= 7(2)
o(Jx*J) = lim ((Jx*J @ 1°P)&,,, &)

n—w

= lim ((z ® 1°P)(J @ JP)&,,, (J @ JP)E,,)

n—w

= lim (2 © 1°7)&n, &)

= ¢(z)
= 7(x).

This finishes the proof of Theorem [5.10 U

5.4. Free group factors are strongly solid. The main result of this section is the following
theorem due to Ozawa-Popa [OP07] in the case of free groups and to Chifan—Sinclair [CS1]]
in the case of arbitrary bi-exact discrete groups with the CMAP.

Theorem 5.11 ([OPO7,[CSII]). LetT" be any bi-exact group with the CMAP. Then M := L(T")
is strongly solid in the following sense. For any amenable diffuse von Neumann subalgebra
A C M, we have that Ny (A)" remains amenable.

The proof of Theorem [5.11] consists in two steps. In the first step, we use Ozawa—Popa’s weak
compactness criterion from Theorem to obtain the existence of a state o € B(L?(M))*
with good invariance properties. In the second step, we use Popa’s deformation/rigidity theory
to show that Myr(A)” is amenable.

We present an elegant proof of the second step due to Boutonnet—Carderi [BC14]. Let I" be
any bi-exact group with the CMAP and put M := L(I"). Consider the compactification I' ~ X
that witnesses bi-exactness. Observe that we have co(I') € C(X) C £°°(T"). Denote by

B=C*C(X)uUATI)) c B(L?(M)).
Since I' is bi-exact, we moreover have
(54)  [B,CyI)] € CF (D) - [C(X), p(D)]) € C* (A(T) - co(T) - p(T")) = K(£(D))
where [X, )] :={zy —yz:z € X,y € V}.

Since the action I' ~ X is topologically amenable, the unital C*-algebra B is nuclear and for
every state ¢ € B*, the von Neumann algebra 7,(B)"” associated with the GNS representation
(me, Hy, &p) is amenable. We refer to [BOOS] for proofs of these facts. The next proposition
will be crucial.

Proposition 5.12 ([BCI14]). Let p € B(L*(M))* be any state such that ¢lcy @y = 7. Define
Ay, ={x e M :paT)=p(Tx),VT € B}.

Then A, is an amenable von Neumann subalgebra.

Proof. Denote by (m,, Hy,&,) the GNS representation of B with respect to ¢. Put M :=

7,(B)" and define the normal state ® € M, by the formula ®(S) = (S, &,). Observe that

®(my,(T)) = o(T) for every T € B. Put P := m,(Cy(I"))” C M. Observe that ®|p is a normal
trace and denote by p its support in P (we have p € Z(P)). Then the map ¢ : C}(I') — Pp is
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a trace preserving x-homomorphism which extends to a surjective *-isomorphism ¢ : M — Pp.
We have

UAp) = {u(x) € Pp: ®(u(z)my(T)) = (mp(T)e(x)), VT € B}
=Ppn{S epMp:®(ST)=P(TS),VT € pMp}.

This shows that «(A,) is a von Neumann subalgebra and so is A,. Note the support of ®
in M is less than or equal to p. Since the unital C*-algebra B is nuclear, the von Neumann
algebra M = 7,(B)" is amenable and so is pMp. By the proof of (2) = (1) in Theorem {4.9
there exists a conditional expectation E : pMp — 1(A,). Therefore, 1(A,) is amenable and so
is Ag. O

Proof of Theorem |[5.11. Let A C M be any amenable diffuse von Neumann algebra. Choose
a state ¢ € B(L%(M))* as in Theorem and consider the amenable subalgebra A, as in
Proposition We show that Nps(A) C A, and hence Ny(A)” C Ay, is amenable.

Let u € Ny(A) and T' € B. Observe that ¢[gq2()) = 0 by Proposition Choose a
sequence (zn)n, in C3(I') such that x, — Ju*J strongly. Since ¢|g(r) is normal, Cauchy—
Schwarz inequality implies that

lign o(uJud Txy) = o(uJud TJu*J)

lién o(uJud z,T) = li7rln o(JuJzy, uT)
= (JuJJu*JuT)
= p(uT).

Since T is bi-exact, we know that uJuJ(z,T — Tx,) € K(L?(M)) for every n € N by (5.4).
This implies that p(uJuJT Ju*J) = p(uT'). By Theorem we have that p(uJuJ TJu*J) =
o(TJu*JuJuJ) = ¢(Tw). This implies that ¢(uT") = ¢(T'u) and hence u € A,. O

Combining Proposition [5.3 and Theorem [5.11 we obtain the following corollary.
Corollary 5.13 (Ozawa—Popa [OP07]). Free group factors are strongly solid.

The above corollary strenghtens both Voiculescu’s result [Vo95] showing that free group factors
have no Cartan subalgebra and Ozawa’s result [Oz03] showing that free group factors are solid,
meaning that the relative commutant of any diffuse von Neumann subalgebra is amenable.
Recently, Popa—Vaes [PV11] showed that for every free ergodic pmp action F,, ~ (X, u),
L>®(X) C L*®(X) x F,, is the unique Cartan subalgebra up to unitary conjugacy.
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