
VON NEUMANN ALGEBRAS WITH UNIQUE CARTAN

DECOMPOSITION

CYRIL HOUDAYER

Abstract. These are the lectures notes from a minicourse given at
the Masterclass on “Ergodic theory and von Neumann algebras” at the
University of Copenhagen in October 2013.

In the Lectures 2, 3 and 4, we will follow S. Vaes’s exposition for his
mini-course at the “ Intensive Month on Operator Algebra and Harmonic
Analysis” at ICMAT in Madrid in May 2013. The exposition in itself is
very close to the one in the articles by S. Popa and S. Vaes [PV11, PV12].

In the Lectures 5 and 6, we will follow the exposition of our joint
article with S. Vaes [HV12].

Lecture 1

In the first lecture, we review some fundamental tools which arise in Popa’s
deformation/rigidity theory. These include for instance Popa’s intertwining
techniques and Connes’s characterization of amenability. We state Popa-
Vaes’s dichotomy result for tracial actions of the free groups.

Popa’s intertwining techniques in tracial von Neumann algebras.
Let (M, τ) be a tracial von Neumann algebra. Let A ⊂ 1AM1A and B ⊂
1BM1B be any von Neumann subalgebras. We denote by 1A (resp. 1B)
the unit of A (resp. B). Popa discovered a very useful method to unitarily
conjugate A into B inside M .

Theorem 1 (Popa). The following are equivalent:

(1) There exist projections p ∈ A, q ∈ B, a nonzero partial isometry
v ∈ pMq and a unital normal ∗-homomorphism θ : pAp→ qBq such
that xv = θ(x)v for every x ∈ pAp.

(2) There is no net wk ∈ U(A) such that limk ‖EB(x∗wky)‖2 = 0 for
every x, y ∈ 1AM1B.
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If one of the equivalent conditions of Theorem 1 is satisfied, we say that
A embeds into B inside M and denote A �M B. Otherwise, we denote
A �M B.

When dealing with tracial crossed product von Neumann algebras, we can
give another useful characterization of the intertwining criterion. Let Γ y
(B, τ) be a trace preserving action of a countable discrete group on a tracial
von Neumann algebra. Put M = B o Γ and let EB : M → B be the unique
trace preserving conditional expectation. Write x =

∑
g∈Γ(x)gug for the

Fourier expansion of x ∈M where (x)g = EB(xu∗g).

Corollary 1. The following are equivalent:

(1) A �M B
(2) There is no net wk ∈ U(A) such that limk ‖(wk)g‖2 = 0 for every

g ∈ Γ.

The following is a central concept in these lectures.

Definition 1. Let (M, τ) be a tracial von Neumann algebra. We say that
A ⊂M is a Cartan subalgebra if A satisfies the following:

• A is maximal abelian in M , that is, A′ ∩M = A.
• The group NM (A) = {u ∈ U(M) : uAu∗ = A} generates M .

When Γ y (X,µ) is a free pmp action, L∞(X) ⊂ L∞(X) o Γ is a Cartan
subalgebra. In the case when A,B ⊂ M are Cartan subalgebras of a II1

factor, one can upgrade the previous intertwining result in order to obtain
a genuine conjugation by a unitary.

Theorem 2 (Popa). Let A,B ⊂ M be Cartan subalgebras in a II1 factor.
The following conditions are equivalent:

(1) A �M B.
(2) There exists u ∈ U(M) such that uAu∗ = B.

Connes’s characterization of amenability.

Definition 2. Let (M, τ) be a tracial von Neumann algebra. We say that
M is amenable if there exists an M -central state ϕ ∈ B(L2(M)) such that
ϕ|M = τ . We say that M is hyperfinite if there exists an increasing sequence
of unital finite dimensional ∗-subalgebras Qn ⊂M such that M =

∨
nQn.

Theorem 3 (Connes). Let (M, τ) be a tracial von Neumann algebra with
separable predual. The following are equivalent:

(1) M is amenable.
(2) There exists a norm one projection Φ : B(L2(M))→M .
(3) There exists a net of unit vectors ξn ∈ L2(M)⊗ L2(M) such that

• limn ‖(x⊗ 1)ξn − ξn(1⊗ x)‖2 = 0 for every x ∈M and
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• limn〈(x⊗ 1)ξn, ξn〉 = τ(x) for every x ∈M .
(4) For all a1, . . . , ak, b1, . . . , bk ∈M , we have

|τ(

k∑
i=1

aibi)| ≤ ‖
k∑
i=1

ai ⊗ bop
i ‖min.

(5) M is hyperfinite.

Whenever M = L(Γ) is the von Neumann algebra of a countable discrete
group, the previous conditions are equivalent to:

(6) Γ is amenable.

We will also need the notion of relative amenability. Recall that if Q ⊂
(M, τ) is an inclusion of tracial von Neumann algebras, the basic construc-
tion 〈M, eQ〉 is the von Neumann algebra defined on L2(M) and generated by

M and the orthogonal projection eQ : L2(M)→ L2(Q). The basic construc-
tion 〈M, eQ〉 is endowed with a canonical semifinite faithful normal trace Tr
defined by

Tr(xeQy) = τ(xy), ∀x, y ∈M.

Definition 3 (Ozawa-Popa). Let (M, τ) be a tracial von Neumann algebra
and P,Q ⊂ M von Neumann subalgebras. We say that P is amenable
relative to Q inside M if there exists a P -central state ϕ on 〈M, eQ〉 such
that ϕ|M = τ .

We have a similar characterization of relative amenability for tracial von
Neumann algebras.

Theorem 4 (Ozawa-Popa). Let (M, τ) be a tracial von Neumann algebra
and P,Q ⊂M von Neumann subalgebras. The following are equivalent:

(1) P is amenable relative to Q inside M .
(2) There exists a norm one projection Φ : 〈M, eQ〉 → P such that

Φ|M = EP .
(3) There exists a net of vectors ξn ∈ L2(〈M, eQ〉,Tr) such that

• limn〈xξn, ξn〉Tr = τ(x) for every x ∈M and
• limn ‖yξn − ξny‖2,Tr = 0 for every y ∈ P .

We simply say that Q is co-amenable inside M if M is amenable relative to
Q inside M . Observe that when Γ y (Q, τ) is a trace preserving action, Q
is co-amenable inside Qo Γ if and only if Γ is amenable.

We will be using the fact that when Q is amenable, then P is amenable
relative to Q inside M if and only if P is amenable.
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Popa-Vaes’s dichotomy result. The first part of these lecture series will
be devoted to proving the following theorem due to Popa and Vaes (2011).
Denote by Fn the free group on n generators.

Theorem 5 (Popa-Vaes). Let n ≥ 2 and Fn y (X,µ) be any free ergodic
pmp action on a standard probability space. Then L∞(X) is the unique
Cartan subalgebra of the II1 factor L∞(X)o Fn, up to unitary conjugacy.

Combining this theorem with Gaboriau’s results on cost (2000), we obtain
the following.

Corollary 2. Let Fn y (X,µ) and Fp y (Y, η) be any free ergodic pmp
actions. If n 6= p, then

L∞(X)o Fn � L∞(Y )o Fp.

Proof. Let π : L∞(X)oFn → L∞(Y )oFp be a surjective ∗-isomorphism. By
Theorem 5, up to composing by an inner automorphism, we may assume that
π(L∞(X)) = L∞(Y ). By a classical result of Singer, this implies that the
pmp equivalence relationsR(Fn y X) andR(Fp y Y ) are orbit equivalent.
Hence, by Gaboriau’s result, we get

n = cost(R(Fn y X)) = cost(R(Fp y Y )) = p. �

In fact, Theorem 5 will be a consequence of the following more general result.

Theorem 6 (Popa-Vaes). Let (B, τ) be any tracial von Neumann algebra
and Fn y (B, τ) any trace preserving action. Put M = B o Fn. Let
A ⊂ M be any amenable von Neumann subalgebra. At least one of the
following holds:

• A �M B.
• NM (A)′′ is amenable relative to B.

The proof of Theorem 6 will entirely occupy Lectures 2, 3 and 4. Let us
explain why Theorem 6 implies Theorem 5.

Proof of Theorem 5 using Theorem 6. Put B = L∞(X) and M = B o Fn.
Let A ⊂ M be another Cartan subalgebra. Since NM (A)′′ = M is not
amenable and B is amenable, we have that NM (A)′′ is not amenable relative
to B inside M . Therefore A �M B by Theorem 6. Since A and B are both
Cartan subalgebras in the II1 factor M , there exists u ∈ U(M) such that
uAu∗ = B by Corollary 2. �

We mention that Theorem 5 holds for a more general class of countable
discrete groups Γ. Such groups are called Cartan-rigid.

Example 1. Here are examples of Cartan-rigid groups.

(1) Weakly amenable groups with a positive first `2-Betti number (Popa-
Vaes 2011).
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(2) Non-elementary hyperbolic groups and non-amenable discrete sub-
groups of connected simple Lie groups with finite center and real
rank one (Popa-Vaes 2012).

(3) Free product groups Γ1 ∗Γ2 with |Γ1| ≥ 2 and |Γ2| ≥ 3 (Ioana 2012).
(4) Central quotients of braid groups Bn/Z(Bn) with n ≥ 3 (Chifan-

Ioana-Kida 2013).

Lecture 2

In the second lecture, we show that the complete metric approximation
property (CMAP) implies the existence of almost invariant states.

Definition 4 (Haagerup). Let Γ be a countable discrete group. We say that
Γ has the complete metric approximation property (CMAP) if there exists
a sequence fn : Γ → C of finitely supported functions such that fn → 1
pointwise and such that the corresponding multipliers mfn : L(Γ) → L(Γ)
defined by mfn(ug) = fn(g)ug satisfy limn ‖mfn‖cb = 1.

For every f : Γ → C, we will write ‖f‖cb = ‖mf‖cb whenever it is well-
defined. We will need the following well-known result due to Haagerup.

Theorem 7 (Haagerup). The free groups Fn have the CMAP.

We will be using the following notation throughout this lecture. Let Γ be
a countable discrete group with the CMAP. Let σ : Γ y (B, τ) be a trace
preserving action of Γ on a tracial von Neumann algebra. We still denote
by σ : Γ → U(L2(B)) the corresponding Koopman unitary representation.
Put M = B o Γ ⊂ B(L2(B) ⊗ `2(Γ)) and regard M as generated by b ⊗ 1
for b ∈ B and ug = σg ⊗λg for g ∈ Γ. We will identify b with b⊗ 1 for every
b ∈ B. Recall that we have the following covariance relation:

ugbu
∗
g = σg(b),∀g ∈ Γ,∀b ∈ B.

Let A ⊂M be an amenable von Neumann subalgebra. Write J : L2(M)→
L2(M) for the canonical conjugation.

Definition 5 (Popa-Vaes). Define the link algebra L = B∨JAJ ⊂ B(L2(M)).

Define the action α : Γ y L by αg = Ad(ug) for every g ∈ Γ. In particular,
we have

αg(b) = σg(b) and αg(JaJ) = JaJ, ∀a ∈ A, ∀b ∈ B.
Observe that Γ y L need not be trace preserving. Put M = L o Γ ⊂
B(L2(M)⊗ `2(Γ)) and regardM as generated by Ja∗J ⊗ 1 for every a ∈ A,
b⊗ 1 for every b ∈ B and ug ⊗ λg for every g ∈ Γ. Define the ∗-embedding
π : M →M by π(b) = b⊗ 1 for every b ∈ B and π(ug) = ug ⊗ λg for every
g ∈ Γ. Define the ∗-embedding ρ : Aop →M by ρ(aop) = Ja∗J⊗1. Observe
that π(M) and ρ(Aop) commute and together they generate M.
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Put G = NM (A). We will regard G as a discrete group. Define the action
β : G yM by βu = Ad(JuJ ⊗ 1) for every u ∈ G. In particular, we have

βu(π(x)) = π(x) and βu(ρ(aop)) = ρ((uau∗)op), ∀a ∈ A,∀x ∈M.

We will moreover use the notation a = (aop)∗ for every a ∈ A. The main
technical result of this lecture is the following.

Theorem 8 (Popa-Vaes). There exists a sequence ωn ∈ M∗ of normal
states with the following properties:

• limn ωn(π(x)) = τ(x) for every x ∈M .
• limn ωn(π(a)ρ(a)) = 1 for every a ∈ U(A).
• limn ‖ωn ◦ (Ad(π(u)) ◦ βu)− ωn‖ = 0 for every u ∈ G.

We will need the following two lemmas. For every C∗-algebra A, every a ∈ A
and every ω ∈ A∗, define aω and ωa ∈ A∗ by

(aω)(x) = ω(xa) and (ωa)(x) = ω(ax),∀x ∈ A.

Lemma 1. Let A be a unital C∗-algebra, u ∈ A with ‖u‖ ≤ 1 and ω ∈ A∗
a state. Then we have

max{‖ω − uω‖, ‖ω − ωu‖} ≤
√

2|1− ω(u)|.

Proof of Lemma 1. Let (πω,Hω, ξω) be the GNS representation associated
with the state ω on A. Then ω(a) = 〈πω(a)ξω, ξω〉 for all a ∈ A. We have

‖ω − uω‖ ≤ ‖ξω − πω(u)ξω‖ ≤
√

2(1−<ω(u)) ≤
√

2|1− ω(u)|.

Likewise, we get ‖ω − ωu‖ ≤
√

2|1− ω(u)|. �

Lemma 1 implies in particular that when ω(u) = 1, then

ω = uω = ωu.

Lemma 2. Let Q ⊂ (M, τ) be an amenable von Neumann subalgebra and
u ∈ NM (Q). Then 〈Q, u〉 is amenable.

Proof of Lemma 2. We may choose a Q-central state Ω on B(L2(M)) such
that Ω|M = τ . Choose a nonprincipal ultrafilter U ∈ β(N) \N and define
the state Φ ∈ B(L2(M)) by the formula

Φ(T ) = lim
U

1

n

n−1∑
k=0

Ω(ukTu−k), ∀T ∈ B(L2(M)).

It is clear that Φ is (Q∪{uZ})-central and Φ|M = τ . By the Cauchy-Schwarz
Inequality, we have

|Φ(Tx)| ≤ ‖T‖ ‖x‖2 and |Φ(xT )| ≤ ‖T‖ ‖x‖2, ∀T ∈ B(L2(M)), ∀x ∈M.

This implies that Φ is a 〈Q, u〉-central state and so 〈Q, u〉 is amenable. �
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Proof of Theorem 8. Since Γ has CMAP, let fn : Γ → C be a sequence
of finitely supported functions such that fn → 1 pointwise and such that
limn ‖fn‖cb = 1. For every n ∈ N, define the normal completely bounded
map ϕn : M → M by ϕn(bug) = fn(g)bug. We have limn ‖ϕn(x)− x‖2 = 0
for every x ∈M and limn ‖ϕn‖cb = 1.

Claim. For every n ∈ N, there exists a unique normal linear functional
µn ∈M∗ such that

µn(π(x)ρ(aop)) = τ(ϕn(x)a), ∀a ∈ A, ∀x ∈M.

Proof of the Claim. The uniqueness of µn follows from the facts that π(M)
and ρ(Aop) commute and together generate M.

Define µn ∈M∗ by

µn(S) =
∑

h∈supp(fn)

fn(h)〈S(1⊗ δe), 1⊗ δh〉, ∀S ∈M.

Hence for every a ∈ A, every b ∈ B and every g ∈ Γ, we have

µn(π(bug)ρ(aop)) =
∑

h∈supp(fn)

fn(h)〈bug Ja∗J1⊗ δg, 1⊗ δh〉

= δg∈supp(fn) fn(g)τ(bug a)

= τ(δg∈supp(fn)fn(g)bug a)

= τ(ϕn(bug) a).

Since ϕn and µn are normal, we get µn(π(x)ρ(aop)) = τ(ϕn(x)a) for every
a ∈ A and every x ∈M . This finishes the proof of the Claim. �

For the moment, we have little control on the norm ‖µn‖. Using the
amenability of A, we will show now that limn ‖µn‖ = 1 and that ωn =

1
‖µn‖ |µn| ∈ M∗ is a sequence of normal states which satisfies the conclusion

of Theorem 8.

Put P = G′′. Let Q ⊂ P be any amenable von Neumann algebra. Using
Theorem 3(4), the functional ΩQ : M ⊗min Q

op → C : x⊗ yop 7→ τ(EQ(x)y)
is a well-defined state on the C∗-algebra M ⊗min Q

op. Moreover, the linear
map ϕn ⊗ EQop : M ⊗min P

op → M ⊗min Q
op is completely bounded. Put

µQn = ΩQ ◦ (ϕn ⊗EQop) : M ⊗min P
op → C and observe that limn ‖µQn ‖ = 1

since limn ‖ϕn‖cb = 1.

Define the ∗-homomorphisms

π ⊗ ρ : M ⊗max A
op →M : x⊗ aop 7→ π(x)ρ(aop)

and

λ : M ⊗max A
op →M ⊗min A

op : x⊗ aop 7→ x⊗ aop.

Since µAn ◦ λ = µn ◦ (π ⊗ ρ), we have ‖µAn ‖ = ‖µn‖ and so limn ‖µn‖ =
1. Indeed, on the one hand, since λ is surjective, we have ‖µAn ‖ ≤ ‖µn‖.
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On the other hand, we have ‖µn‖(π⊗ρ)(M⊗maxAop) ≤ ‖µAn ‖. Since µn is
normal and since (π ⊗ ρ)(M ⊗max A

op) is ultraweakly dense in M, we have
‖µn‖ = ‖µn‖(π⊗ρ)(M⊗maxAop) by Kaplansky’s Density Theorem. Altogether,

we obtain ‖µAn ‖ = ‖µn‖.
By construction, we also have µn(1) = τ(ϕn(1))→ 1 since ϕn(1)→ 1. Write
µn = un|µn| for the polar decomposition of µn. We have ‖|µn|‖ = ‖µn‖ and
so ωn = 1

‖µn‖ |µn| ∈ M∗ is a normal state. Moreover, thanks to Lemma 1,

we have
‖ωn − µn‖ = ‖ωn − ‖µn‖unωn‖ → 0

since ‖µn‖ → 1 and ωn(un) = 1
‖µn‖ |µn|(un) = 1

‖µn‖µn(1)→ 1.

By construction, we have µn(π(x)) = τ(ϕn(x)) → τ(x) for every x ∈ M
and µn(π(a)ρ(a)) = τ(ϕn(a)a∗) → τ(aa∗) = 1 for every a ∈ U(A). Since
‖ωn − µn‖ → 0, the same applies to ωn and so the sequence ωn satisfies the
first two items of Theorem 8.

Fix u ∈ G. By Lemma 2, we know that Q = 〈A, u〉 is amenable and so

we can define µQn ∈ (M ⊗min P
op)∗. We then have lim supn ‖µ

Q
n ‖ = 1 and

limn µ
Q
n (1) = 1 since limn ϕn(1) = 1. Moreover,

µQn (u⊗ u) = τ(ϕn(u)u∗)→ 1.

Another application of Lemma 1 yields∥∥µQn ◦Ad(u⊗ u)− µQn
∥∥→ 0.

But then we also have∥∥µQn ◦Ad(u⊗ u) ◦ (id⊗ EAop)− µQn ◦ (id⊗ EAop)
∥∥→ 0.

Since u ∈ NM (A), we have Ad(u∗) ◦ EA = EA ◦ Ad(u∗). Since moreover

µAn = µQn ◦ (id⊗ EAop), it follows that∥∥µAn ◦Ad(u⊗ u)− µAn
∥∥→ 0.

Observing that

µAn ◦Ad(u⊗ u) ◦ λ = µn ◦ (Ad(π(u)) ◦ βu) ◦ (π ⊗ ρ)

we obtain that(
µAn ◦Ad(u⊗ u)− µAn

)
◦ λ = (µn ◦ (Ad(π(u)) ◦ βu)− µn) ◦ (π ⊗ ρ)

and so limn ‖µn ◦ (Ad(π(u))◦βu)−µn‖ = 0 by the same reasoning as before.
Since limn ‖ωn − µn‖ = 0, the same applies to ωn and we get limn ‖ωn ◦
(Ad(π(u)) ◦ βu)− ωn‖ = 0. This finishes the proof of Theorem 8. �

In order to prepare for the third lecture, we prove the following useful prop-
erty of the free groups. Put Γ = Fn. Denote by λ : Γ → U(`2(Γ)) (resp.
ρ : Γ → U(`2(Γ))) the left (resp. right) regular representation. Denote
by Sfin the directed set of finite subsets of Γ. For every F ⊂ Γ, write
PF : `2(Γ)→ `2(F) for the canonical orthogonal projection.



VON NEUMANN ALGEBRAS WITH UNIQUE CARTAN DECOMPOSITION 9

Proposition 1 (Akemann-Ostrand). There exists an isometry W : `2(Γ)→
`2(Γ)⊗ `2(Γ) such that

lim
F∈Sfin

∥∥((λg ⊗ ρh)W −Wλgρh)PΓ\F
∥∥ = 0, ∀g, h ∈ Γ.

Proof. For every g ∈ Γ, denote by (g0, . . . , gn) the unique geodesic path from
g0 = e to gn = g in the free group Γ. Put c(g) = 1√

n

∑n
i=1 δgi ∈ `2(Γ) and

observe that ‖c(g)‖2 = 1. By construction, we have

lim
x→∞

‖c(gxh)− λgc(x)‖2 = 0, ∀g, h ∈ Γ.

Define the isometry V : `2(Γ) → `2(Γ) ⊗ `2(Γ) by V δx = c(x) ⊗ δx. By
construction, we have

lim
F∈Sfin

∥∥((λg ⊗ λgρh)V − V λgρh)PΓ\F
∥∥ = 0, ∀g, h ∈ Γ.

Define U ∈ U(`2(Γ) ⊗ `2(Γ)) by U(δx ⊗ δy) = δx ⊗ δx−1y. We have that
U(λg ⊗ λgρh)U∗ = λg ⊗ ρh for every g, h ∈ Γ. Letting W = UV , we are
done. �

Lecture 3

In Lectures 3 and 4, we prove Theorem 6 in the special case when B = C.
This is only a technical simplification and conceptually the proof remains
the same. In that particular case, the result is due to Ozawa-Popa.

Theorem 9 (Ozawa-Popa). Let A ⊂ L(Fn) be a diffuse amenable von Neu-
mann subalgebra. Then NL(Fn)(A)′′ is amenable.

A tracial von Neumann algebra satisfying the conclusion of Theorem 9 is
called strongly solid. Put Γ = Fn and M = L(Fn). Since we assumed that
B = C, the link algebra is simply L = JAJ ∼= Aop ⊂ B(`2(Γ)). Recall that
we have a sequence ωn ∈ L1(Aop ⊗M)+ which satisfies the conclusion of

Theorem 8. If we take ξn = ω
1/2
n ∈ L2(Aop ⊗M)+, we have ‖ξn‖2 = 1 for

every n ∈ N and

• limn〈(1⊗ x)ξn, ξn〉 = τ(x) for every x ∈M .
• limn ‖(a⊗ a)ξn − ξn‖2 = 0 for every a ∈ U(A).
• limn ‖Ad(u⊗ u)ξn − ξn‖2 = 0 for every u ∈ G.

The third item is obtained by applying the Powers-Størmer Inequality.

Step 1. For every finite subset F ⊂ Γ, we have limn ‖(1⊗ PF )ξn‖2 = 0.

We prove Step 1 by contradiction and assume that there exists a finite
subset F0 ⊂ Γ such that lim supn ‖(1⊗PF0)ξn‖2 > 0. Up to replacing ξn by
a subsequence, we may assume that there exists δ > 0 such that

lim inf
n
‖(1⊗ PF0)ξn‖2 > δ.
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Using the fact that A is diffuse, we will construct by induction an increasing
sequence of finite subsets Fk ⊂ Γ such that

lim inf
n
‖(1⊗ PFk

)ξn‖2 > 2k/2δ.

This will lead to a contradiction. We only need to construct a finite subset
F1 ⊂ Γ such that F0 ⊂ F1 and lim infn ‖(1⊗ PF1)ξn‖2 > 21/2δ.

Claim. For every x ∈M , we have

lim sup
n
‖(1⊗ x)(1⊗ PF0)ξn‖2 ≤ |F0| ‖x‖2.

Proof of the Claim. Observe that in order to prove the claim, it suffices to
show that for every g ∈ Γ and every x ∈M we have

lim sup
n
‖(1⊗ x)(1⊗ Pg)ξn‖2 ≤ ‖x‖2.

We simply write Pg = P{g}. Observe that ugPeu
∗
g = Pg. With y = u∗gx

∗xug,
we have

‖(1⊗ x)(1⊗ Pg)ξn‖22 = 〈(1⊗ Pe)(1⊗ y)(1⊗ Pe)(1⊗ u∗g)ξn, (1⊗ u∗g)ξn〉
= τ(y)〈(1⊗ Pe)(1⊗ u∗g)ξn, (1⊗ u∗g)ξn〉
= τ(y)‖(1⊗ Pe)(1⊗ u∗g)ξn‖22.

It follows that

lim sup
n
‖(1⊗ x)(1⊗ Pg)ξn‖2 ≤ τ(y) lim sup

n
‖(1⊗ u∗g)ξn‖22 = ‖x‖22.

This finishes the proof of the Claim. �

By assumption, we can take ε > 0 such that

lim sup
n
‖ξn − (1⊗ PF0)ξn‖2 <

√
1− δ2 − ε.

Write x =
∑

g∈Γ(x)gug for the Fourier expansion of x ∈ M where (x)g =

τ(xu∗g).

Claim. There exists a ∈ U(A) and v ∈ C[Γ] such that

‖a− v‖2 ≤
ε

|F0|
and (v)g = 0, ∀g ∈ F0F−1

0 .

Proof of the Claim. Since A is diffuse, we can find a ∈ U(A) such that

|(a)gh−1 | ≤
ε

3|F0|3
, ∀g, h ∈ F0.

This implies that ‖PF0F−1
0

(a)‖2 ≤ ε/(3|F0|). Take a′ ∈ C[Γ] such that

‖a− a′‖2 ≤ ε/(3|F0|) and put v = a′ − PF0F−1
0

(a′). Then we have (v)g = 0

for every g ∈ F0F−1
0 , ‖PF0F−1

0
(a′)‖2 ≤ 2ε/(3|F0|) and

‖a− v‖2 = ‖a− a′‖2 + ‖a′ − v‖2 ≤
ε

|F0|
. �
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Since limn ‖ξn − (a⊗ a)ξn‖2 = 0, it follows that

lim sup
n
‖ξn − (a⊗ a)(1⊗ PF0)ξn‖2 = lim sup

n
‖(aop ⊗ a∗)ξn − (1⊗ PF0)ξn‖2

= lim sup
n
‖ξn − (1⊗ PF0)ξn‖2

<
√

1− δ2 − ε.
Combining the two Claims, we get

lim sup
n
‖ξn − (a⊗ v)(1⊗ PF0)ξn‖2 <

√
1− δ2.

Define the finite subset S = {g ∈ Γ : (v)g 6= 0}. By assumption, we have

S ∩ F0F−1
0 = ∅, that is, SF0 ∩ F0 = ∅. We have that

(a⊗ v)(1⊗ PF0)ξn = (1⊗ vPF0)(a⊗ 1)ξn

lies in the range of 1⊗ PSF0 . This implies that

lim sup
n
‖ξn − (1⊗ PSF0)ξn‖2 <

√
1− δ2

and hence

lim inf
n
‖(1⊗ PSF0)ξn‖2 > δ.

If we put F1 = SF0 ∪ F0, since the vectors (1 ⊗ PF0)ξn and (1 ⊗ PSF0)ξn
are orthogonal, we get

lim inf
n
‖(1⊗ PF1)ξn‖2 >

√
2δ.

This proves the induction and leads to a contradiction. This finishes the
proof of Step 1.

Lecture 4

We continue the proof of Theorem 9.

Step 2. We have that NM (A)′′ is amenable.

Recall that ξn ∈ L2(Aop ⊗M)+ for every n ∈ N. Put P = NM (A)′′ and
M = P op ⊗M . Put H = L2(M) = L2(P op) ⊗ L2(M) endowed with the
identity M-M-bimodule structure:

xξy = xJ y∗J ξ, ∀x, y ∈M,∀ξ ∈ H,
where J : L2(M) → L2(M) is the canonical conjugation. Denote by πH :
M⊗alg Mop → B(H) the corresponding unital ∗-representation. We will
regard ξn ∈ H for every n ∈ N.

Likewise, put K = H ⊗ `2(Γ) endowed with the following M-M-bimodule
structure. Put

(yop ⊗ ug) · (ξ ⊗ δh ⊗ δk) = yopξ ⊗ δgh ⊗ δk
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and

(ξ ⊗ δh ⊗ δk) · (yop ⊗ ug) = ξyop ⊗ δh ⊗ δkg
for every y ∈ P , every ξ ∈ L2(P op) and every g, h, k ∈ Γ. Denote by
πK :M⊗algMop → B(K) the corresponding unital ∗-representation.

We moreover define the following unital ∗-subalgebras of M⊗algMop by

D = P op ⊗alg M ⊗alg P ⊗alg M
op

and

D0 = P op ⊗alg M0 ⊗alg P ⊗alg M
op
0

with M0 = C[Γ].

Choose a nonprincipal ultrafilter U ∈ β(N) \ N and define the state Φ ∈
B(H)∗ by

Φ(T ) = lim
U
〈Tξn, ξn〉, ∀T ∈ B(H).

Proposition 2. The state Φ ∈ B(H)∗ satisfies the following properties:

(1) Φ(1op ⊗ x) = Φ(J (1op ⊗ x∗)J ) = τ(x) for every x ∈M .
(2) |Φ(T (1op ⊗ x))| ≤ ‖T‖ ‖x‖2 for every T ∈ B(H) and every x ∈M .
(3) Φ(πH(u⊗ u⊗ u⊗ u)) = 1 for every u ∈ NM (A).
(4) Φ(T ) = Φ(T (1⊗ PΓ\F )) for every T ∈ B(H) and every finite subset
F ⊂ Γ.

(5) |Φ(πH(S))| ≤ ‖πK(S)‖ for every S ∈ D0.

Proof. For (1), observe that for every x ∈M , we have

Φ(1⊗ x) = lim
U
〈(1⊗ x)ξn, ξn〉 = τ(x).

Since ξn ∈ L2(Aop ⊗M)+ is positive, we have J ξn = ξn and so

Φ(J (1⊗ x∗)J ) = lim
U
〈J (1⊗ x∗)J ξn, ξn〉 = lim

U
〈ξn, (1⊗ x∗)ξn〉 = τ(x).

For (2), apply the Cauchy-Schwarz Inequality. For (3), observe that for
every u ∈ NM (A), we have

Φ(πH(u⊗ u⊗ u⊗ u)) = lim
U
〈(u⊗ u)ξn(u⊗ u)∗, ξn〉 = 1.

For (4), observe that thanks to Step 1, for every T ∈ B(H) and every finite
subset F ⊂ Γ, we have

Φ(T (1⊗ PΓ\F )) = lim
U
〈T (1⊗ PΓ\F )ξn, ξn〉

= lim
U
〈Tξn, ξn〉

= Φ(T ).

For (5), observe that thanks to Proposition 1, for every S ∈ D0, we have

lim
F∈Sfin

‖πH(S)(1⊗ PΓ\F )− (1⊗W ∗)πK(S)(1⊗W )(1⊗ PΓ\F )‖ = 0.
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In particular, using moreover item (3) above, we obtain

|Φ(πH(S))| = lim sup
F∈Sfin

|Φ(πH(S)(1⊗ PΓ\F ))|

≤ lim sup
F∈Sfin

‖πH(S)(1⊗ PΓ\F )‖

≤ ‖πK(S)‖. �

Observe that a priori the last item in Proposition 2 only holds for every
S ∈ D0. The subtle part of the proof consists in showing that in fact it
holds for every S ∈ D.

Lemma 3. We have |Φ(πH(S))| ≤ ‖πK(S)‖ for every S ∈ D.

Proof. Since Γ has the CMAP, we may choose a sequence of finitely sup-
ported functions fn : Γ→ C such that fn → 1 pointwise and lim supn ‖fn‖cb =
1. Denote by mn : M →M the corresponding Herz-Schur multiplier defined
by mn(ug) = fn(g)ug for every g ∈ Γ. Likewise, define mn : Mop →Mop by
mn(ug) = fn(g)ug for every g ∈ Γ.

Observe that for every x ∈M , we have limn ‖x−mn(x)‖2 = 0 and limn ‖xop−
mn(xop)‖2 = 0. Moreover, for every S ∈ D, we have

(id⊗mn ⊗ id⊗mn)(S) ∈ D0.

Claim. For every S ∈ D, we have

Φ(πH(S)) = lim
n

Φ (πH((id⊗mn ⊗ id⊗mn)(S))) , ∀S ∈ D.

Proof of the Claim. Let S = yop ⊗ x1 ⊗ z ⊗ xop
2 ∈ D for some x1, x2 ∈ M

and y, z ∈ P . Using Proposition 2 (2), we have

lim sup
n
|Φ (πH(yop ⊗ (x1 −mn(x1))⊗ z ⊗mn(xop

2 )))|

≤ lim sup
n
‖πH (yop ⊗ 1⊗ z ⊗mn(xop

2 ))‖ ‖x1 −mn(x1)‖2

≤ lim sup
n
‖mn(xop

2 )‖ ‖y‖ ‖z‖ lim
n
‖x1 −mn(x1)‖2 = 0.

Likewise, we show that

lim
n

Φ (πH(yop ⊗ x1 ⊗ z ⊗ (xop
2 −mn(xop

2 )))) = 0.

The claim now follows by linearity. �

Observe that for every S ∈ D and every n ∈ N, we have

πK((id⊗mn ⊗ id⊗mn)(S)) = (id⊗mn ⊗mn)(πK(S)).
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It follows that for every S ∈ D, we get

|Φ(πH(S))| = lim
n
|Φ (πH((id⊗mn ⊗ id⊗mn)(S)))|

≤ lim sup
n
‖πK((id⊗mn ⊗ id⊗mn)(S))‖

≤ lim sup
n
‖(id⊗mn ⊗mn)(πK(S))‖

≤ lim sup
n
‖fn‖2cb ‖πK(S)‖

= ‖πK(S)‖.

This finishes the proof of the lemma. �

We can then uniquely define a bounded linear functional Ψ : πK(D) → C
by the formula Ψ(πK(S)) = Φ(πH(S)). Observe that ‖Ψ‖ = 1 = Ψ(1). By
the Hahn-Banach Theorem and since πK(D) ⊂ B(K), we may extend Ψ to
B(K) without increasing the norm. Since B(K) is a unital C∗-algebra and
‖Ψ‖ = 1 = Ψ(1), it follows that Ψ is a state on B(K). Observe that

Ψ(πK(u⊗ u⊗ u⊗ u)) = Φ(πH(u⊗ u⊗ u⊗ u)) = 1, ∀u ∈ NM (A).

Put Ω(S) = Ψ(1 ⊗ S ⊗ 1) for every S ∈ B(`2(Γ)) and observe that Ω is a
state on B(`2(Γ)). For every x ∈M , we have

Ω(x) = Ψ(1⊗ x⊗ 1)

= Ψ(πK(1op ⊗ x⊗ 1⊗ 1op))

= Φ(πH(1op ⊗ x⊗ 1⊗ 1op))

= Φ(1⊗ x) = τ(x).

Moreover, using Lemma 1, for every T ∈ B(`2(Γ)) and every u ∈ NM (A),
we have

Ω(uT ) = Ψ(1⊗ uT ⊗ 1)

= Ψ (πK(u⊗ u⊗ u⊗ u) (uopJP opuopJP op ⊗ T ⊗ JMu∗JM ))

= Ψ ((uopJP opuopJP op ⊗ T ⊗ JMu∗JM )πK(u⊗ u⊗ u⊗ u))

= Ψ(1⊗ Tu⊗ 1) = Ω(Tu).

Since Ω|M = τ , it follows from the Cauchy-Schwarz Inequality that

|Ω(Sx)| ≤ ‖S‖ ‖x‖2 and |Ω(xS)| ≤ ‖S‖ ‖x‖2, ∀S ∈ B(`2(Γ)),∀x ∈M.

Since Ω(xS) = Ω(Sx) for every S ∈ B(`2(Γ)) and every x in the unital
∗-algebra generated by NM (A), it follows that Ω is P -central. Therefore P
is amenable. This concludes the proof of Theorem 9.
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Lecture 5

In this lecture, we review some basic tools which arise in the study of type
III von Neumann algebras. We then present a useful strategy to prove
structural results for type III von Neumann algebras.

Connes-Takesaki’s flow of weights. Let (M,ϕ) be a von Neumann al-
gebra together with a faithful normal state. Denote by Mϕ the centralizer
of ϕ and by cϕ(M) = M oϕ R the continuous core of M , that is, the
crossed product of M with the modular automorphism group (σϕt )t∈R asso-
ciated with the faithful normal state ϕ. We have a canonical ∗-embedding
πϕ : M →MoϕR and a canonical group of unitaries (λϕ(s))s∈R in MoϕR
such that

πϕ(σϕs (x)) = λϕ(s)πϕ(x)λϕ(s)∗, ∀x ∈M, s ∈ R.

The unitaries (λϕ(s))s∈R generate a copy of L(R) inside M oϕ R.

We denote by ϕ̂ the dual weight on M oϕ R, which is a semifinite faithful

normal weight on M oϕ R whose modular automorphism group (σϕ̂t )t∈R
satisfies

σϕ̂t (πϕ(x)) = πϕ(σϕt (x)), ∀x ∈M and σϕ̂t (λϕ(s)) = λϕ(s), ∀s ∈ R.

We denote by (θϕt )t∈R the dual action on M oϕ R, given by

θϕt (πϕ(x)) = πϕ(x) for all x ∈M and θϕt (λϕ(s)) = exp(its)λϕ(s), s ∈ R.

Denote by hϕ the unique nonsingular positive selfadjoint operator affiliated
with L(R) ⊂ M oϕ R such that his

ϕ = λϕ(s) for all s ∈ R. Then Trϕ =

ϕ̂(h−1
ϕ ·) is a semifinite faithful normal trace on M oϕR and the dual action

θϕ scales the trace Trϕ:

Trϕ ◦ θϕt = exp(t)Trϕ,∀t ∈ R.

Note that Trϕ is semifinite on L(R) ⊂ M oϕ R. Moreover, the canonical
faithful normal conditional expectation EL(R) : M oϕR→ L(R) defined by
EL(R)(xλϕ(s)) = ϕ(x)λϕ(s) preserves the trace Trϕ, that is,

Trϕ ◦ EL(R) = Trϕ.

Thanks to Connes’s Radon-Nikodym cocycle theorem, the semifinite von
Neumann algebra cϕ(M), together with its trace Trϕ and trace-scaling action
θϕ, “does not depend” on the choice of ϕ in the following precise sense. If
ψ is another faithful normal state on M , there is a canonical surjective ∗-
isomorphism Πψ,ϕ : cϕ(M)→ cψ(M) such that Πψ,ϕ◦πϕ = πψ, Trψ ◦Πψ,ϕ =

Trϕ and Πψ,ϕ ◦ θϕ = θψ ◦ Πψ,ϕ. Note however that Πψ,ϕ does not map the
subalgebra L(R) ⊂ M oϕ R onto the subalgebra L(R) ⊂ M oψ R. We
will sometimes simply denote by (c(M),Tr, θ) the triple consisting in the
continous core of M together with its canonical trace and canonical trace
scaling dual action.
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We summarize what we have explained above in the following proposition
that we will use later.

Proposition 3. Let A,B ⊂ M be von Neumann subalgebras with expecta-
tion. Let ϕA (resp. ϕB) be a faithful normal state on M such that A (resp.
B) is globally invariant under (σϕA

t ) (resp. (σϕB
t )). Put c(M) = M oϕB R,

c(B) = B oϕB R and c(A) = ΠϕB ,ϕA(AoϕA R).

Then c(A) ⊂ c(M) and c(B) ⊂ c(M) are trace preserving inclusions of
semifinite von Neumann algebras.

Definition 6. The restriction of the dual action θ : R y Z(c(M)) to the
center of the continuous core c(M) is called the flow of weights. If M is a
factor, then the flow of weights is ergodic.

A somewhat more concrete description of the flow of weights can be given
when M = L∞(X) o Γ arises from a free ergodic nonsingular action Γ y
(X,µ) of a countable discrete group on a standard measure space. Indeed,
define the Radon-Nikodym cocycle ω : Γ×X → R by

ω(g, x) = log

(
dg∗µ

dµ
(x)

)
.

Then ω satisfies the 1-cocycle relation ω(gh, x) = ω(g, hx)ω(h, x) for every
g, h ∈ Γ and almost every x ∈ X. Endow X ×R with the σ-finite measure
m = µ⊗ exp(t)dt. Define the Maharam extension Γ y (X ×R,m) by

g · (x, t) = (gx, t+ ω(g, x)).

The action of R by translation on the second variable induces an ergodic
action on the standard measure space (Y, η) of the ergodic components of
Γ y (X ×R,m). This flow R y (Y, η) is called the Radon-Nikodym flow.
Observe that c(L∞(X)oΓ) ∼= L∞(X×R)oΓ and the Radon-Nikodym flow
R y (Y, η) coincides with the flow of weights R y Z(c(L∞(X)o Γ)).

By Takesaki’s duality theorem, we have that c(M)oθ R ∼= M ⊗B(L2(R)).
In particular, M is amenable if and only if c(M) is amenable.

Definition 7. Let M be any von Neumann algebra. We say that A ⊂ M
is a Cartan subalgebra if A satisfies the following properties:

• There exists a faithful normal conditional expectation EA : M → A.
• A is maximal abelian in M , that is, A′ ∩M = A.
• The group NM (A) = {u ∈ U(M) : uAu∗ = A} generates M .

We next show that Cartan inclusions behave well when passing to the con-
tinuous core.

Proposition 4. Let A ⊂M be a Cartan subalgebra. Then c(A) ⊂ c(M) is
still a Cartan subalgebra.
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Proof. Let EA : M → A be the (unique) faithful normal conditional ex-
pectation. Fix any faithful normal state τ on A and put ϕ = τ ◦ EA. We
will simply write c(M) = cϕ(M) and c(A) = cϕ(A). There exists a trace
preserving faithful normal conditional expectation E : c(M)→ c(A)

Regard c(M) ⊂ M ⊗ B(L2(R)) and observe that c(A) = A ⊗ L(R). Since
both A ⊂M and L(R) ⊂ B(L2(R)) are masas, A⊗ L(R) ⊂M ⊗B(L2(R))
is a masa and so is c(A) ⊂ c(M).

It remains to show that c(A) ⊂ c(M) is regular. It suffices to show that
uc(A)u∗ = c(A) for every u ∈ NM (A). Let u ∈ NM (A) and t ∈ R. For
every a ∈ A, using the fact that A ⊂Mϕ, we have

uλtu
∗λ∗t a = uλtu

∗aλ∗t

= uλt(u
∗au)u∗λ∗t

= u(u∗au)λtu
∗λ∗t

= a uλtu
∗λ∗t .

It follows that uλtu
∗λ∗t ∈ A′ ∩M = A and so uλtu

∗ ∈ Aλt ⊂ c(A). �

Intertwining techniques in arbitrary von Neumann algebras. We
will need the following generalization of Popa’s intertwining techniques to
arbitrary von Neumann algebras.

Theorem 10 (H-Vaes). Let M be any σ-finite von Neumann algebra. Let
A ⊂ 1AM1A and B ⊂ 1BM1B be von Neumann subalgebras such that B is
finite and with expectation EB : 1BM1B → B. The following are equivalent.

(1) There exist projections p ∈ A, q ∈ B, a nonzero partial isometry
v ∈ pMq and a unital normal ∗-homomorphism θ : pAp→ qBq such
that xv = θ(x)v for every x ∈ pAp.

(2) There is no net of unitaries (wi) in U(A) such that EB(x∗wiy)→ 0
∗-strongly for all x, y ∈ 1AM1B.

If moreover A,B ⊂M are Cartan subalgebras and M is a factor, the above
conditions are equivalent to:

(3) There exists u ∈ U(M) such that uAu∗ = B.

Definition 8. Let M be any σ-finite von Neumann algebra. Let A ⊂
1AM1A and B ⊂ 1BM1B be von Neumann subalgebras such that B is finite
and with expectation. We say that A embeds into B inside M and denote
A �M B if one of the equivalent conditions of Theorem 10 is satisfied. Note
that this forces A to have a finite direct summand.

Intertwining techniques, crossed products and the core. Let Γ be
any countable discrete group, B any tracial von Neumann algebra and Γ y
B any action. We do not assume that the action Γ y B is trace preserving.
Put M = B o Γ.
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Let A ⊂ M be any other tracial subalgebra with expectation. We keep the
notation of Proposition 3. We moreover regard c(M) = c(B)o Γ where the
action Γ y c(B) is trace preserving. We simply denote by Tr the faithful
normal trace on c(M).

Proposition 5 (H-Vaes). Assume that A �M B. There exists a net of
unitaries wk ∈ U(c(A)) such that

lim
k
‖Ec(B)(xwky)‖2,Tr = 0, ∀x, y ∈ c(M) ∩ L2(c(M),Tr).

In particular, let p ∈ Z(c(A)) and q ∈ c(B) be any nonzero projections with
finite trace. Then c(A)p �(p∨q)c(M)(p∨q) qc(B)q in the usual sense for finite
von Neumann algebras.

Proof. Since A �M B, there exists a net of unitaries wk ∈ U(A) such that
EB(x∗vky) → 0 ∗-strongly for every x, y ∈ M . Regard wk ∈ U(c(A)). We
have Ec(B)(wku

∗
g) = EB(wku

∗
g) → 0 ∗-strongly for every g ∈ Γ. We will

denote by (wk)g = Ec(B)(wku
∗
g) the gth Fourier coefficient of wk.

Denote by W = span{bug : b ∈ c(B) ∩ L2(c(B),Tr), g ∈ Γ}. Then W is a
‖ · ‖2,Tr-dense subspace of L2(c(M),Tr).

Claim. We have limk ‖Ec(B)(xwky)‖1,Tr = 0 for every x, y ∈ W.

Proof of the Claim. It suffices to take x = aug and y = uhb with a, b ∈
c(B) ∩ L2(c(B),Tr) and g, h ∈ Γ. In that case, we have

Ec(B)(xwky) = aEc(B)(ugwkuh)b = a σg((wk)g−1h−1) b.

Using the Cauchy-Schwarz Inequality, we get

‖Ec(B)(xwky)‖1,Tr ≤ ‖a‖2,Tr ‖σg((wk)g−1h−1)b‖2,Tr

= ‖a‖2,Tr ‖(wk)g−1h−1σg−1(b)‖2,Tr.

Since (wk)g−1h−1 → 0 strongly as a bounded net of operators on L2(c(B),Tr),
we get limk ‖Ec(B)(xwky)‖1,Tr = 0. �

Next, let x, y ∈ c(M) ∩ L2(c(M),Tr) and ε > 0. We may choose x1, y1 ∈ W
such that ‖x− x1‖2,Tr‖y‖2,Tr < ε and ‖y − y1‖2,Tr‖x1‖2,Tr < ε. We get

lim sup
k
‖Ec(B)(xwky)‖1,Tr ≤ lim sup

k
‖Ec(B)(x1wky1)‖1,Tr + 2ε.

Since ε > 0 is arbitrary, we get limk ‖Ec(B)(xwky)‖1,Tr = 0. Since the net
(Ec(B)(xwky))k is uniformly bounded in c(B), we have

lim
k
‖Ec(B)(xwky)‖2,Tr = 0.

This finishes the proof of the proposition. �
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Lecture 6

In the last lecture, we will prove the result which generalizes Popa-Vaes’s
unique Cartan decomposition result to arbitrary nonsingular actions of the
free groups. This is our joint work with S. Vaes (2012).

Definition 9. We will use the following terminology.

• We say that a von Neumann M ⊂ B(H) is amenable if there exists
a norm one projection Φ : B(H)→M .
• Let Γ y (X,µ) be any nonsingular action of a countable discrete

group on a standard measure space. We say that the action Γ y
(X,µ) is amenable if there exists a Γ-equivariant norm one projection
Φ : L∞(Γ×X)→ L∞(X).

Proposition 6. Let Γ y (X,µ) be any nonsingular action of a countable
discrete group on a standard measure space. The following conditions are
equivalent.

(1) The action Γ y (X,µ) is amenable.
(2) The crossed product von Neumann algebra L∞(X)o Γ is amenable.

Proof. We will only use (2)⇒ (1).

(1) ⇒ (2) Let Φ : L∞(X × Γ) → L∞(X) be a Γ-equivariant norm one
projection. Regard the crossed product von Neumann algebra L∞(X)oΓ ⊂
L∞(X)⊗B(`2(Γ)). Now we regard B(`2(Γ)) ∼= `∞(Γ)o Γ and so we have

L∞(X)⊗B(`2(Γ)) ∼= L∞(X × Γ)o Γ.

Since Φ : L∞(X × Γ) → L∞(X) is Γ-equivariant, we may extend Φ to a
norm one projection Φ : L∞(X × Γ) o Γ → L∞(X) o Γ (this fact is not
entirely trivial since Φ is a priori not normal). Since L∞(X) ⊗ B(`2(Γ))
is amenable, there exists a norm one projection E : B(L2(X) ⊗ `2(Γ)) →
L∞(X)⊗B(`2(Γ)). Then Φ◦E : B(L2(X)⊗ `2(Γ))→ L∞(X)oΓ is a norm
one projection, hence L∞(X)o Γ is amenable.

(2)⇒ (1) Let Φ : B(L2(X)⊗`2(Γ))→ L∞(X)oΓ be a norm one projection.
Put Ψ = EL∞(X) ◦ Φ|L∞(X×Γ). Then Ψ : L∞(X × Γ) → L∞(X) is a Γ-
equivariant norm one projection. �

Theorem 11 (H-Vaes). Let Fn y (X,µ) be a nonamenable free ergodic
nonsingular action on a standard measure space. Then L∞(X) is the unique
Cartan subalgebra of L∞(X)o Fn, up to unitary conjugacy.

Proof. Put B = L∞(X) and M = B o Γ. Denote by E : M → B the
canonical faithful normal conditional expectation. Let A ⊂ M be another
Cartan subalgebra such that A �M B. We will show that M is amenable,
hence Γ y (X,µ) is amenable by Proposition 6. Together with Theorem
10, this will prove Theorem 11.
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Using Propositions 3 and 4, we get that c(A) and c(B) are both Cartan
subalgebras in c(M) with trace preserving expectation. Fix nonzero finite
trace projections p ∈ c(A) and q ∈ c(B). Since c(B) ⊂ c(M) is a masa, we
may moreover assume that there exists a partial isometry v ∈ c(M) such
that p = v∗v and q = vv∗.

Define the trace preserving dual coaction ∆ : qc(M)q → qc(M)q ⊗ L(Γ) by

∆(qbugq) = qbugq ⊗ ug.
We regardM = qc(M)q⊗L(Γ) as the tracial crossed product von Neumann
algebra qc(M)qoΓ with respect to the trivial action. Put A = ∆(vc(A)v∗)
and observe that A is regular inside ∆(qc(M)q).

Since A �M B, Proposition 5 yields a net of unitaries wk ∈ U(A) such

that limk ‖Ec(B)(xwky)‖2,Tr = 0 for every x, y ∈ c(M) ∩ L2(c(M),Tr).
Put vk = vwkv

∗ ∈ U(vc(A)v∗). Proposition 5 yields limk ‖(vk)g‖2,Tr =
limk ‖Ec(B)(vwkv

∗u∗g)‖2,Tr = 0 for every g ∈ Γ. We next prove the following.

Claim. For every x, y ∈M, we have

lim
k
‖Eqc(M)q⊗1(x∆(wk)y)‖2,Tr⊗τ = 0.

Proof of the Claim. It suffices to take x = 1 ⊗ ug and y = 1 ⊗ uh with
g, h ∈ Γ. In that case, we have

Eqc(M)q⊗1((1⊗ ug)∆(vk)(1⊗ uh)) =
∑
s∈Γ

Eqc(M)q⊗1((vk)sus ⊗ ugsh)

= (vk)g−1h−1ug−1h−1 .

Therefore, we obtain

lim
k
‖Eqc(M)q⊗1((1⊗ug)∆(vk)(1⊗uh))‖2,Tr⊗τ = lim

k
‖(vk)g−1h−1‖2,Tr = 0. �

We have that A is amenable and A �M qc(M)q. By Theorem 6, we get that
∆(qc(M)q) is amenable relative to qc(M)q inside M. There exists a norm
one projection 〈M, eqc(M)q〉 → ∆(qc(M)q). Since ∆ ◦Ec(B)q = Eqc(M)q ◦∆,
the ∗-homomorphism ∆ : qc(M)q →M extends to

Ψ : 〈qc(M)q, ec(B)q〉 → 〈M, eqc(M)q〉
by letting Ψ(x) = ∆(x) if x ∈ qc(M)q and Ψ(ec(B)q) = eqc(M)q. Then

∆−1 ◦Ψ : 〈qc(M)q, ec(B)q〉 → qc(M)q

is a norm one projection. Hence qc(M)q is amenable relative to c(B)q and
so qc(M)q is amenable. If z denotes the central support of q in c(M), we get
that c(M)z is amenable. Since the dual action is ergodic, it follows that c(M)
is amenable as well. By Takesaki’s Duality Theorem, M is amenable. �

With the following explicit examples of nonsingular actions of the free group
F2, we obtain factors with unique Cartan subalgebra, having any possible
type and any possible flow of weights in the type III0 case.
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Corollary 3 (H-Vaes). Let F2 = 〈a, b〉. Denote by π : F2 → Z the group
homomorphism given by π(a) = 1 and π(b) = 0. Choose a free probability
measure preserving action F2 y (X,µ) such that kerπ acts ergodically.

Choose an arbitrary properly ergodic nonsingular action Z y (Y, η) on a
standard measure space. Define the action Γ y X × Y given by g · (x, y) =
(g · x, π(g) · y) and put M = L∞(X × Y )o F2.

Then M is a nonamenable factor and L∞(X × Y ) is the unique Cartan
subalgebra of M , up to unitary conjugacy. The factor M has the same type
and the same flow of weights as the amenable factor L∞(Y )o Z.

Proof of Corollary 3. Put Γ = F2. We first claim that M = L∞(X×Y )oΓ
is nonamenable. Indeed, M contains N = L∞(X × Y )o kerπ ∼= (L∞(X)o
kerπ) ⊗ L∞(Y ) as a von Neumann subalgebra with expectation. Since
kerπ y (X,µ) is probability measure preserving and since kerπ is a non-
amenable group, it follows that N is nonamenable. So, M follows nona-
menable as well.

By Theorem 11, L∞(X × Y ) is the unique Cartan subalgebra of M , up to
unitary conjugacy.

It remains to determine the type and the flow of weights of M . Put P =
L∞(Y ) o Z. First consider the trivial cases. If Y admits an equivalent Z-
invariant probability measure, both M and P are of type II1. If Y admits
an equivalent Z-invariant infinite measure, both M and P are of type II∞.
So, assume that P is of type III. It remains to prove that M and P have an
isomorphic flow of weights.

Let Z y (Ỹ ,m) be the Maharam extension of Z y (Y, η). Consider the

action Γ y X × Ỹ given by g · (x, y) = (g · x, π(g) · y). Since Γ y X

is measure preserving, the action Γ y X × Ỹ can be identified with the
Maharam extension of Γ y X × Y . So, the flow of weights of M can
be identified with the natural action of R on the von Neumann algebra

L∞(X × Ỹ )Γ of Γ-invariant functions. Since kerπ y X is ergodic, we get
that

L∞(X × Ỹ )Γ = 1⊗ L∞(Ỹ )Z.

Since the flow of weights of P is given by the natural action of R on L∞(Ỹ )Z,
we have found the required isomorphism between the flow of weights of M
and P . �
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