VON NEUMANN ALGEBRAS WITH UNIQUE CARTAN
DECOMPOSITION

CYRIL HOUDAYER

ABSTRACT. These are the lectures notes from a minicourse given at
the Masterclass on “Ergodic theory and von Neumann algebras” at the
University of Copenhagen in October 2013.

In the Lectures 2, 3 and 4, we will follow S. Vaes’s exposition for his
mini-course at the “ Intensive Month on Operator Algebra and Harmonic
Analysis” at ICMAT in Madrid in May 2013. The exposition in itself is
very close to the one in the articles by S. Popa and S. Vaes [PV11l [PV12].

In the Lectures 5 and 6, we will follow the exposition of our joint
article with S. Vaes [HV12].

LECTURE 1

In the first lecture, we review some fundamental tools which arise in Popa’s
deformation/rigidity theory. These include for instance Popa’s intertwining
techniques and Connes’s characterization of amenability. We state Popa-
Vaes’s dichotomy result for tracial actions of the free groups.

Popa’s intertwining techniques in tracial von Neumann algebras.
Let (M, 7) be a tracial von Neumann algebra. Let A C 14M14 and B C
1pM1p be any von Neumann subalgebras. We denote by 14 (resp. 1p)
the unit of A (resp. B). Popa discovered a very useful method to unitarily
conjugate A into B inside M.

Theorem 1 (Popa). The following are equivalent:

(1) There ezist projections p € A, q € B, a nonzero partial isometry
v € pMq and a unital normal x-homomorphism 6 : pAp — qBq such
that zv = 0(z)v for every x € pAp.

(2) There is no net wy, € U(A) such that limy || Eg(z*wiy)|l2 = 0 for
every x,y € 1aM1p.
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If one of the equivalent conditions of Theorem [I] is satisfied, we say that
A embeds into B inside M and denote A <j; B. Otherwise, we denote
A 4um B.

When dealing with tracial crossed product von Neumann algebras, we can
give another useful characterization of the intertwining criterion. Let I' ~
(B, T) be a trace preserving action of a countable discrete group on a tracial
von Neumann algebra. Put M = B xI" and let Eg : M — B be the unique
trace preserving conditional expectation. Write z = 3 ger(x)g“g for the
Fourier expansion of x € M where (z), = Ep(xuy).

Corollary 1. The following are equivalent:

(1) A=y B
(2) There is no net wy € U(A) such that limy, ||(wg)gll2 = 0 for every
gel.

The following is a central concept in these lectures.

Definition 1. Let (M, 7) be a tracial von Neumann algebra. We say that
A C M is a Cartan subalgebra if A satisfies the following:

e A is maximal abelian in M, that is, A’ N M = A.
e The group Ny (A) = {u e U(M) : uAu* = A} generates M.

When I' ~ (X, p) is a free pmp action, L*°(X) C L*(X) x I' is a Cartan
subalgebra. In the case when A, B C M are Cartan subalgebras of a IIy
factor, one can upgrade the previous intertwining result in order to obtain
a genuine conjugation by a unitary.

Theorem 2 (Popa). Let A, B C M be Cartan subalgebras in a 11y factor.
The following conditions are equivalent:

(1) A=m B.
(2) There exists u € U(M) such that uAu* = B.

Connes’s characterization of amenability.

Definition 2. Let (M, 7) be a tracial von Neumann algebra. We say that
M is amenable if there exists an M-central state ¢ € B(L?(M)) such that
|y = 7. We say that M is hyperfinite if there exists an increasing sequence
of unital finite dimensional *-subalgebras @, C M such that M =/, Q.

Theorem 3 (Connes). Let (M, 7) be a tracial von Neumann algebra with
separable predual. The following are equivalent:

(1) M is amenable.

(2) There exists a norm one projection ® : B(L?(M)) — M.

(3) There exists a net of unit vectors &, € L*(M) ® L>(M) such that
e lim, ||(x ® 1)§, — & (1 ®@ z)||2 = 0 for every x € M and
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o lim,((z ® 1)&n, &n) = 7(x) for every x € M.
(4) For all aq,...,ak,by,...,bp € M, we have

k k
(3 i)l < 13 00 © B e
=1 =1

(5) M is hyperfinite.

Whenever M = L(I') is the von Neumann algebra of a countable discrete
group, the previous conditions are equivalent to:

(6) T is amenable.

We will also need the notion of relative amenability. Recall that if Q C
(M, ) is an inclusion of tracial von Neumann algebras, the basic construc-
tion (M, eq) is the von Neumann algebra defined on L?(M) and generated by
M and the orthogonal projection eg : L?(M) — L?(Q). The basic construc-
tion (M, eq) is endowed with a canonical semifinite faithful normal trace Tr
defined by

Tr(zeqy) = 7(zy), Yo,y € M.

Definition 3 (Ozawa-Popa). Let (M, 7) be a tracial von Neumann algebra
and P,QQ C M von Neumann subalgebras. We say that P is amenable
relative to @ inside M if there exists a P-central state ¢ on (M, eq) such
that o|M = 7.

We have a similar characterization of relative amenability for tracial von
Neumann algebras.

Theorem 4 (Ozawa-Popa). Let (M, 7) be a tracial von Neumann algebra
and P,Q) C M von Neumann subalgebras. The following are equivalent:

(1) P is amenable relative to Q inside M.
(2) There exists a norm one projection ® : (M,eq) — P such that
®|y = Ep.
(3) There exists a net of vectors &, € L*((M, eq), Tr) such that
o lim, (x&,, &) = 7(x) for every x € M and
o lim, ||[y&, — &uyllo e = 0 for every y € P.

We simply say that @ is co-amenable inside M if M is amenable relative to
@ inside M. Observe that when I' ~ (@, 7) is a trace preserving action, @
is co-amenable inside ) x I if and only if I" is amenable.

We will be using the fact that when @ is amenable, then P is amenable
relative to @ inside M if and only if P is amenable.
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Popa-Vaes’s dichotomy result. The first part of these lecture series will
be devoted to proving the following theorem due to Popa and Vaes (2011).
Denote by F,, the free group on n generators.

Theorem 5 (Popa-Vaes). Let n > 2 and F,, ~ (X, u) be any free ergodic
pmp action on a standard probability space. Then L*°(X) is the unique
Cartan subalgebra of the 111 factor L™ (X) x Fy,, up to unitary conjugacy.

Combining this theorem with Gaboriau’s results on cost (2000), we obtain
the following.

Corollary 2. Let F,, ~ (X,p) and F, ~ (Y,n) be any free ergodic pmp
actions. If n # p, then

L™(X) x F,, 2 L®(Y) x F,.

Proof. Let m : L (X)xF,, — L*(Y") xF), be a surjective *-isomorphism. By
Theorem 5] up to composing by an inner automorphism, we may assume that
m(L>*(X)) = L>(Y). By a classical result of Singer, this implies that the
pmp equivalence relations R(F, ~ X) and R(F, ~ Y') are orbit equivalent.
Hence, by Gaboriau’s result, we get

n = cost(R(F, ~ X)) = cost(R(F, ~Y)) =p. O

In fact, Theorem 5] will be a consequence of the following more general result.

Theorem 6 (Popa-Vaes). Let (B,7) be any tracial von Neumann algebra
and ¥,, ~ (B,T) any trace preserving action. Put M = B x F,. Let
A C M be any amenable von Neumann subalgebra. At least one of the
following holds:

o A=< B.
e Ny (A)" is amenable relative to B.

The proof of Theorem [6] will entirely occupy Lectures 2, 3 and 4. Let us
explain why Theorem [6] implies Theorem [5]

Proof of Theorem [§ using Theorem[6 Put B = L>°(X) and M = B x F,,.
Let A C M be another Cartan subalgebra. Since Nj(A)” = M is not
amenable and B is amenable, we have that Njs(A)” is not amenable relative
to B inside M. Therefore A <;; B by Theorem [6] Since A and B are both
Cartan subalgebras in the II; factor M, there exists u € U(M) such that
uAu* = B by Corollary O

We mention that Theorem [5| holds for a more general class of countable
discrete groups I'. Such groups are called Cartan-rigid.
Example 1. Here are examples of Cartan-rigid groups.

(1) Weakly amenable groups with a positive first £2-Betti number (Popa-
Vaes 2011).
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(2) Non-elementary hyperbolic groups and non-amenable discrete sub-
groups of connected simple Lie groups with finite center and real
rank one (Popa-Vaes 2012).

(3) Free product groups I'y * 'y with |T';| > 2 and |T's| > 3 (Ioana 2012).

(4) Central quotients of braid groups B, /Z(By) with n > 3 (Chifan-
Ioana-Kida 2013).

LECTURE 2

In the second lecture, we show that the complete metric approximation
property (CMAP) implies the existence of almost invariant states.

Definition 4 (Haagerup). Let I' be a countable discrete group. We say that
I" has the complete metric approzimation property (CMAP) if there exists
a sequence f, : I' — C of finitely supported functions such that f, — 1
pointwise and such that the corresponding multipliers mg, : L(I") — L(I")
defined by my, (ug) = fn(g)ug satisfy lim,, |myg, ||, = 1.

For every f : I' = C, we will write ||f|c, = ||my|lcr whenever it is well-
defined. We will need the following well-known result due to Haagerup.

Theorem 7 (Haagerup). The free groups ¥, have the CMAP.

We will be using the following notation throughout this lecture. Let I' be
a countable discrete group with the CMAP. Let o : I’ ~ (B, 7) be a trace
preserving action of I' on a tracial von Neumann algebra. We still denote
by o : I' = U(L%(B)) the corresponding Koopman unitary representation.
Put M = BxT C B(L?(B) ® ¢*(T")) and regard M as generated by b ® 1
for b€ B and uy = 04 ® Ay for g € I'. We will identify b with b® 1 for every
b € B. Recall that we have the following covariance relation:

ugbuy = a4(b),Vg € T',Vb € B.

Let A C M be an amenable von Neumann subalgebra. Write .J : L2(M) —
L2(M) for the canonical conjugation.

Definition 5 (Popa-Vaes). Define the link algebra £ = BVJAJ C B(L?(M)).

Define the action a : I' ~ £ by oy = Ad(uy) for every g € I'. In particular,
we have

ay(b) = 04(b) and ay(JaJ) = JaJ, Ya € A,Vb € B.

Observe that I' ~ £ need not be trace preserving. Put M = L x T C
B(L?(M) ® ¢*(T)) and regard M as generated by Ja*J ® 1 for every a € A,
b® 1 for every b € B and uy ® A4 for every g € I'. Define the *-embedding
m: M — M by n(b) =b®1 for every b € B and 7(uy) = uy @ Ay for every
g € I'. Define the *-embedding p : A°® — M by p(a°?) = Ja*J®1. Observe
that 7(M) and p(A°P) commute and together they generate M.
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Put G = Ny (A). We will regard G as a discrete group. Define the action

B:G~ Mby B, =Ad(JuJ ® 1) for every u € G. In particular, we have
Bu(m(x)) = 7(z) and Bu(p(a?)) = p((uau*)°?), Va € A,Vx € M.

We will moreover use the notation @ = (a°?)* for every a € A. The main
technical result of this lecture is the following.

Theorem 8 (Popa-Vaes). There exists a sequence w, € M, of normal
states with the following properties:

o lim, wy(7(x)) = 7(x) for every z € M.
e lim, wy(7(a)p(@)) =1 for every a € U(A).
e lim, ||wy, o (Ad(7(u)) o Bu) — wn|| = 0 for every u € G.

We will need the following two lemmas. For every C*-algebra A, every a € A
and every w € A*, define aw and wa € A* by

(aw)(z) = w(za) and (wa)(z) =w(ax),Vx € A.

Lemma 1. Let A be a unital C*-algebra, u € A with |ul| <1 and w € A*
a state. Then we have

max{|lw — uw|], |w — wul|} < /2|1 —w(u)|.

Proof of Lemma(ll Let (my, My, &) be the GNS representation associated
with the state w on A. Then w(a) = (m,(a)éw, &) for all a € A. We have

o — uwl|| < [léw — mu(w)éull < V201 — Rw(w)) < V21— w(u)].

Likewise, we get [|w — wu|| < /2|1 — w(u)]. O

Lemma [1] implies in particular that when w(u) = 1, then

W= uw = Wu.

Lemma 2. Let Q C (M, 1) be an amenable von Neumann subalgebra and
u € Ny(Q). Then (Q,u) is amenable.

Proof of Lemma[d We may choose a Q-central state 2 on B(L?(M)) such
that Q|y = 7. Choose a nonprincipal ultrafilter & € S(IN) \ N and define
the state ® € B(L?(M)) by the formula

n—1

®(T) = lim % > QuFTu™*), vT € B(L*(M)).
k=0

It is clear that ® is (QU{u?})-central and ®|;; = 7. By the Cauchy-Schwarz
Inequality, we have

|@(T2)| < |T| |||z and [@(2T)| < |T| |lzl2, YT € B(L*(M)), ¥z € M.
This implies that ® is a (@, u)-central state and so (Q,u) is amenable. [J
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Proof of Theorem[§ Since I' has CMAP, let f, : ' — C be a sequence
of finitely supported functions such that f,, — 1 pointwise and such that
lim, || fn|lcb = 1. For every n € N, define the normal completely bounded
map ¢, : M — M by ¢, (bug) = fn(g)bug. We have lim,, ||, (z) — 2|2 =0
for every x € M and lim, ||¢,|lcb = 1.

Claim. For every n € N, there exists a unique normal linear functional
n € M, such that

tn(m(x)p(a®)) = 7(on(x)a), Ya € A,Vx € M.

Proof of the Claim. The uniqueness of u, follows from the facts that 7(M)
and p(A°P) commute and together generate M.

Define u,, € M, by
in(8) =" D, [a(h){S(1@ &), 1® ), VS € M.
hesupp(fn)
Hence for every a € A, every b € B and every g € I', we have
in(r(bug)p(@®) = S Fulh)lbuy Ja*J1 @ b,,1 5 6y)
hesupp(fn)

= 5g€supp(fn) fn(g)T(bug CL)
= 7—(65;€supp(fn)fn (g)bug CL)

= 7(pn(buy) a).
Since ¢, and p, are normal, we get u,(m(z)p(a’?)) = 7(pn(x)a) for every
a € A and every x € M. This finishes the proof of the Claim. O

For the moment, we have little control on the norm [u,||. Using the
amenability of A, we will show now that lim, ||u,| = 1 and that w, =
MI tn| € M, is a sequence of normal states which satisfies the conclusion

of Theorem [§
Put P = G”. Let Q C P be any amenable von Neumann algebra. Using
Theorem [3(4), the functional Qg : M Quin QP — C : x @y — 7(Eg(x)y)
is a well-defined state on the C*-algebra M ®i, Q°P. Moreover, the linear
map ¢, @ Egor : M Qmin PP — M Q@min Q°P is completely bounded. Put
pé = Qg o (¢n @ Egor) : M @min PP — C and observe that lim,, 48] =1
since limy, ||¢nllen = 1.
Define the *-homomorphisms
TR p: M Qmax A® = M 12 ® a’® — 7(z)p(aP)

and

A M Qmax A® = M Qmin A% 1 2 ® a°P — 2 ® a°P.
Since i 0 A = fin 0 (1 ® p), we have 4] = nll and 5o Timp ] =
1. Indeed, on the one hand, since X is surjective, we have ||u5|| < ||pnl|.
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On the other hand, we have ||nll(r@p)(M@maxdor) < [pztll.  Since gy, is
normal and since (7 ® p)(M @max A°P) is ultraweakly dense in M, we have
10l = [0l (rep) (M@maxaor) Dy Kaplansky’s Density Theorem. Altogether,

we obtain ||| = [
By construction, we also have p,(1) = 7(¢n(1)) — 1 since ¢ (1) — 1. Write
fn = Up || for the polar decomposition of p,,. We have |||un||| = ||1n|| and
SO Wy, = m\ Un| € M, is a normal state. Moreover, thanks to Lemma
we have

[wn = pnl = llwn = [|ptn || tnwnl| — 0
since ||pn|| — 1 and wy(uy) = mmn‘(un) = HTlnH'u"(l) — 1.

By construction, we have p,(mw(x)) = 7(on(z)) — 7(z) for every z € M
and pn(m(a)p(@)) = 7(pn(a)a*) — 7(aa*) = 1 for every a € U(A). Since
|lwn — pn]| — 0, the same applies to wy, and so the sequence wy, satisfies the
first two items of Theorem [

Fix v € G. By Lemma 2| we know that ) = (A, u) is amenable and so
we can define puS € (M ®min P°P)*. We then have limsup,, || ,ugH =1 and
lim,, ,u,?(l) = 1 since lim, ¢, (1) = 1. Moreover,

P (u @) = 7(pp(u)u) — 1.
Another application of Lemma [I] yields

Hug o Ad(u®u) — ugH — 0.
But then we also have

|49 0 Ad(u® ) o (id ® Eaor) — p& o (id ® Eop)|| — 0.

Since u € Nps(A), we have Ad(u*) o Eq4 = E4 o Ad(u*). Since moreover
p = puQ o (id ® E4o0), it follows that

H,u;? o Ad(u®u) — uﬁH — 0.
Observing that

pn © Ad(u ®T) 0 A = 1 0 (Ad(m(u)) 0 Bu) o (1 @ p)
we obtain that
(4t o Ad(u© ) — i) 0 A = (sin 0 (Ad(T(w)) 0 ) — fin) © (7 ® p)

and so limy, ||, 0 (Ad(7(u)) 0 Bu) — pn || = 0 by the same reasoning as before.
Since limy, ||wy, — pn|| = 0, the same applies to w, and we get lim, ||w, o
(Ad(m(u)) o By) — wy|l = 0. This finishes the proof of Theorem O

In order to prepare for the third lecture, we prove the following useful prop-
erty of the free groups. Put I' = F,,. Denote by A : T' — U(¢%(T")) (resp.
p : T — UP(T))) the left (resp. right) regular representation. Denote
by Sgn the directed set of finite subsets of I'. For every F C I', write
Pz : (2(T') — 2(F) for the canonical orthogonal projection.
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Proposition 1 (Akemann-Ostrand). There exists an isometry W : £2(T') —
2(T) ® *(T) such that
lim [|(\g ® pn)W — Wgpp) Pr\z|| =0, Vg, h € T.
.FESﬁn

Proof. For every g € T', denote by (go, - . ., gn) the unique geodesic path from
go = e to g, = g in the free group I'. Put ¢(g) = ﬁ S 14y, € 3(T) and
observe that ||c(g)||2 = 1. By construction, we have

lim |lc(gzh) — Age(z)|l2 =0, Vg, h € T.

T—00

Define the isometry V : (2(I') — ¢2(T') ® ¢*(T) by Vi, = c(z) ® 6. By

construction, we have

lim H(()‘g ® Agpn)V =V Agpn) PF\J—‘H =0, Vg,h eT.
FeSan
Define U € U(*(T') ® £3(T)) by U(6, ® 6y) = 65 ® 6,-1,. We have that
U(Ag @ Agpn)U* = Ay @ pp, for every g,h € I'. Letting W = UV, we are
done. O

LECTURE 3

In Lectures 3 and 4, we prove Theorem [0] in the special case when B = C.
This is only a technical simplification and conceptually the proof remains
the same. In that particular case, the result is due to Ozawa-Popa.

Theorem 9 (Ozawa-Popa). Let A C L(F,,) be a diffuse amenable von Neu-
mann subalgebra. Then Ny, (A)" is amenable.

A tracial von Neumann algebra satisfying the conclusion of Theorem [J] is
called strongly solid. Put I' = F,, and M = L(F,,). Since we assumed that
B = C, the link algebra is simply £ = JAJ = A°° C B(¢*(T")). Recall that
we have a sequence w, € L'(A°% ® M), which satisfies the conclusion of
Theorem If we take &, = wi/? € L2(A° @ M), we have ||&,]|2 = 1 for

every n € N and

o lim, ((1 ® x)&n, &n) = 7(x) for every z € M.
o lim, [|(@ ® a)&, — &, ||2 = 0 for every a € U(A).
o lim, || Ad(u ® u)&, — &,||2 = 0 for every u € G.

The third item is obtained by applying the Powers-Stgrmer Inequality.
Step 1. For every finite subset 7 C I, we have lim,, ||(1 ® Pr)&,|l2 = 0.
We prove Step [I] by contradiction and assume that there exists a finite

subset Fyp C I' such that limsup,, ||(1 ® Pr,)&nll2 > 0. Up to replacing &, by
a subsequence, we may assume that there exists 0 > 0 such that

limninf (1 ® Pry)énll2 > 9.
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Using the fact that A is diffuse, we will construct by induction an increasing
sequence of finite subsets F; C I' such that
liminf ||(1® Pr, )&z > 28/26.
n

This will lead to a contradiction. We only need to construct a finite subset
Fi C I' such that Fy € Fy and liminf, ||(1® Pr,)&|2 > 21/26.

Claim. For every x € M, we have

limsup [|(1 ® 2)(1 ® Pr,)&ll2 < |Fol |22

Proof of the Claim. Observe that in order to prove the claim, it suffices to
show that for every g € I' and every x € M we have

limsup [|(1® 2)(1 ® Py)énll2 < [lz]l2-
n

We simply write Py = Pgy. Observe that ugPeuy = Py. With y = uga*zug,
we have

11 ®2)(1® Pyl

(1@ P)(1®y)(1 e FPe)(1® ug)n, (1®uy)én)
T()((1 @ Pe)(1 @ ug)én, (1 @ ug)én)
T P.)(1 @ ug)éall3.

It follows that
limsup [|(1® 2)(1® Py)énll2 < 7(y) limsup [[(1 @ u))éalls = [l]f3-
n n

This finishes the proof of the Claim. U

By assumption, we can take € > 0 such that
limsup ||§n - (1 ® P]—'o)&nHQ <Vv1- 62 —e.
n

Write z = 3 r(z)guq for the Fourier expansion of x € M where (z), =

7(zuy).

Claim. There exists a € U(A) and v € C[I'] such that

 and (v)y =0, Vg € FoFy .

a—vl2 <
la—vll < =

Proof of the Claim. Since A is diffuse, we can find a € U(A) such that
€
1| £ =——=, Vg, h € Fo.
|(a)gh 1| = 3|f0|33 g, € o

This implies that ||P]_-0]_-0—1(a)|]2 < ¢/(3|Fo|). Take o’ € C[I] such that
la —d||2 < e/(3]Fo|) and put v =a’ — P]_-OJ_-O_l(a’). Then we have (v)y =0

for every g € .7:0.7-"0_1, HPfof(;l(a')Hz < 2¢/(3|Fo|) and

/ / €
a—vls=|a—alz+ |la —v| < —. O
| 2 = |l 2+ |l | o
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Since lim,, ||&, — (@ ® a)&,||2 = 0, it follows that
limsup || — (@ ® a)(1 ® Pr,)&nllz = limsup [|(a®® ® a*)& — (1 ® Pr,)énll2
n n

= limsup ||&, — (1 ® Pr,)énll2

<V1-62—c¢.

Combining the two Claims, we get

limsup ||&, — (@@ v)(1 ® Pr,)énlla < V1 — 02

Define the finite subset S = {g € I' : (v), # 0}. By assumption, we have
SNFoFy ' =10, that is, SFo N Fo = 0. We have that

(@®v)(1® Pry)én = (1@ vPr)(a® 1)&,
lies in the range of 1 ® Psx,. This implies that

limsup [|§, — (1 ® Psr,)nllz < V1 — 62
n
and hence
limninf |(1 ® Psr,)énll2 > 0.

If we put F1 = SFp U Fo, since the vectors (1 ® Pr)&, and (1 ® Psr,)én
are orthogonal, we get

lim inf [[(1® Pr)ullz > V25

This proves the induction and leads to a contradiction. This finishes the
proof of Step

LECTURE 4

We continue the proof of Theorem [9]
Step 2. We have that Njs(A)” is amenable.

Recall that &, € L2(A° ® M), for every n € N. Put P = Nj;(A)” and
M = PP M. Put H = L*(M) = L*(P°) ® L>(M) endowed with the
identity M-M-bimodule structure:

a8y = xJy JE, Yo,y € M,VE €N,

where J : L%(M) — L*(M) is the canonical conjugation. Denote by my :
M ®a1g MP — B(H) the corresponding unital *-representation. We will
regard &, € H for every n € N.

Likewise, put KX = H ® £*(I') endowed with the following M-M-bimodule
structure. Put

(Y @ ug) - (£ ® 6 @ 1) = Y*PE @ bgn @ O
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and
(@ 6p ®0g) - (Y ®@uy) = Y @ 0p @ Ok
for every y € P, every ¢ € L*(P°) and every g,h,k € T. Denote by
K+ M @4u1g MP — B(K) the corresponding unital *-representation.
We moreover define the following unital *-subalgebras of M ®41; M°P by
D = P°P ®alg M ®alg P ®alg M°P

and
DO = pr ®alg MO ®a1g P ®a1g M(())p
with My = C[T).
Choose a nonprincipal ultrafilter & € S(IN) \ N and define the state ¢ €
B(H)" by
(T) = lig{rl<T§H,£n>, VT € B(H).

Proposition 2. The state ® € B(H)* satisfies the following properties:

1) (1P ®z) = (T (1P @ 2*)T) = 7(x) for every x € M.

2) (TP @) <||T|||x||2 for every T € B(H) and every x € M.

3) P(ry(u@u@u®u)) =1 for every u € Np(A).

4) ®(T) = ¢(T(1 @ Pr\r)) for every T € B(H) and every finite subset
FcT.

(5) |@(m3 ()] < l[mx (S| for every S € Dy.

o~~~ —~

Proof. For (1), observe that for every x € M, we have
2(1© ) = lim((1© 2, ) = 7(x).
Since &, € L2(A°P ® M) is positive, we have J&, = &, and so
T @ 5)T) = lm(T (19 2) 0. &) = (o, (10 27)6) = ().

For (2), apply the Cauchy-Schwarz Inequality. For (3), observe that for
every u € Nys(A), we have
P(ry(TRue@ueu)) = hg{n«ﬂ Ru)p(u®@u)*, &) = 1.

For (4), observe that thanks to Step |1}, for every T' € B(H) and every finite
subset F C I', we have

S(T(1® Prr)) = hLI{n<T(1 ® Pr\7)én,&n)
= (7).
For (5), observe that thanks to Proposition [1} for every S € Dy, we have

flégén [ (S)(1® Pryr) — (1@ W) (S) (1@ W)(1 @ Ppy)|| = 0.
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In particular, using moreover item (3) above, we obtain

| @ (73 (5))] = fim sup @73 (S) (1 © Pr\r))|

6Sﬁn

< timsup | rx(S)(1 © B2
.FESﬁn

< e (9)]]- O

Observe that a priori the last item in Proposition [2] only holds for every
S € Dy. The subtle part of the proof consists in showing that in fact it
holds for every S € D.

Lemma 3. We have |®(my(9))| < ||7xc(S)|| for every S € D.

Proof. Since I' has the CMAP, we may choose a sequence of finitely sup-
ported functions f,, : I' = C such that f,, — 1 pointwise and lim sup,, || f||cb =
1. Denote by m,, : M — M the corresponding Herz-Schur multiplier defined

by my(ug) = fn(g)ug for every g € I'. Likewise, define m,, : M°? — M°P by
my,(Ug) = fn(g)uy for every g € I

Observe that for every x € M, we have lim,, [|[z—my,(z)||2 = 0 and lim,, ||z°P—
m,, (z°P)||2 = 0. Moreover, for every S € D, we have

(id ® my, ® id ® m,)(S) € Dy.
Claim. For every S € D, we have
O(my(S)) = liqllntb (my((id ® m, ® id ® m,)(5))), VS € D.

Proof of the Claim. Let S = y°®* @ 1 ® 2 @ x5” € D for some x1,12 € M
and y, z € P. Using Proposition [2[ (2), we have

lim sup [@ (73 (4" @ (21 — mn(21)) ® 2 ® my,(75")))]

< limnsup 73 (yP @ 1 ® 2 @ my (x3”))]] |21 — mp (1)

< lim sup [ (25°) [l l21] T [l = mp (1) |2 = 0.
Likewise, we show that

lim @ (mu(y? @ 11 ® 2 ® (x5” — my,(z57)))) = 0.

The claim now follows by linearity. O

Observe that for every S € D and every n € N, we have

i ((id ® my, ® id ® m,,)(9)) = (id ® m, ® my, ) (7 (S)).
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It follows that for every S € D, we get
| (724(5))] = Tim [@ (73 ((id © my, @ id @ 1) (5)))]
< lim sup [|mc((id ® my, @ id @ 1, ) (5))
< lim sup [|(id @ my, @) (mc(S))]

< limsup [| ful[2, 17 (S)
n
= ().
This finishes the proof of the lemma. ([

We can then uniquely define a bounded linear functional ¥ : mx (D) — C
by the formula U(mi(S5)) = ®(m4(S)). Observe that | V| =1 = ¥(1). By
the Hahn-Banach Theorem and since mx (D) C B(K), we may extend ¥ to
B(K) without increasing the norm. Since B(K) is a unital C*-algebra and
| W] = 1= (1), it follows that ¥ is a state on B(KC). Observe that

U(me(t@ueueu) =d(rmy(touueu)) =1, Yu e Ny(A).

Put Q(S) = ¥(1 ® S ® 1) for every S € B(¢?*(T)) and observe that Q is a
state on B(¢?(I")). For every € M, we have

Q(z)

UV1lezel)
(rc(1P®@x® 1 1°P))
(mu (1P @z @ 1® 1))
(1®z)="71(x).

v
P
P

Moreover, using Lemma |1} for every T € B(¢?(T")) and every u € Ny (A),
we have

QuT) = V(1@ ul ®1)
(@R u®u®u) (uPJpopu® Jpor @ T & Jypu*Jar))
(uP Jpopu’® Jpop @ T @ Jppu*Jpr) (T @ u @ u @ )
10Tu®l)=Q(Tu).

Since |y = 7, it follows from the Cauchy-Schwarz Inequality that

2(Sz)| < [IS] [lz]l2 and [Q(zS)| < [IS] [lz]l2, VS € B(*(T)), Y € M.

Since Q(zS) = Q(Sx) for every S € B(¢?(I')) and every z in the unital
x-algebra generated by Njs(A), it follows that Q is P-central. Therefore P
is amenable. This concludes the proof of Theorem [9]
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LECTURE 5

In this lecture, we review some basic tools which arise in the study of type
III von Neumann algebras. We then present a useful strategy to prove
structural results for type III von Neumann algebras.

Connes-Takesaki’s flow of weights. Let (M, ¢) be a von Neumann al-
gebra together with a faithful normal state. Denote by M¥ the centralizer
of ¢ and by c,(M) = M x, R the continuous core of M, that is, the
crossed product of M with the modular automorphism group (o} )icr asso-
ciated with the faithful normal state ¢. We have a canonical *-embedding
7y : M — M x, R and a canonical group of unitaries (A, (s))ser in M x,R
such that

(08 (x)) = Ap(8) () Ap(s)*, Vo € M,s € R.
The unitaries (A,(s))scr generate a copy of L(R) inside M x, R.

We denote by @ the dual weight on M x, R, which is a semifinite faithful

normal weight on M x, R whose modular automorphism group (af )teR
satisfies

of (mp(x)) = Tp(0f(2)), Vo € M and o7 (Ay(s)) = Au(s), Vs € R.
We denote by (67 )icr the dual action on M x, R, given by
07 (mp(x)) = my(z) for allz € M and 67 (A,(s)) = exp(its)Ay(s), s € R.

Denote by h, the unique nonsingular positive selfadjoint operator affiliated
with L(R) C M x, R such that hij = Ay(s) for all s € R. Then Tr, =
@(h;l-) is a semifinite faithful normal trace on M x, R and the dual action
0¥ scales the trace Try:

Tr, 0 0 = exp(t)Tr,, Vi € R.

Note that Tr, is semifinite on L(R) C M x, R. Moreover, the canonical
faithful normal conditional expectation Ey,g) : M x, R — L(R) defined by
Err)(wAp(8)) = p(z) A, (s) preserves the trace Try, that is,

TI'S@ @) EL(R) = TI'SO.

Thanks to Connes’s Radon-Nikodym cocycle theorem, the semifinite von
Neumann algebra c, (M), together with its trace Tr, and trace-scaling action
0%, “does not depend” on the choice of ¢ in the following precise sense. If
1 is another faithful normal state on M, there is a canonical surjective *-
isomorphism ILy o, : ¢, (M) — ¢y (M) such that Iy, ,om, = 7y, Tryolly , =
Tr, and Iy, , 0 0% = 0¥ o ITy,,. Note however that II; , does not map the
subalgebra L(R) C M X, R onto the subalgebra L(R) C M x,; R. We
will sometimes simply denote by (c(M),Tr,0) the triple consisting in the
continous core of M together with its canonical trace and canonical trace
scaling dual action.
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We summarize what we have explained above in the following proposition
that we will use later.

Proposition 3. Let A, B C M be von Neumann subalgebras with expecta-
tion. Let 4 (resp. vp) be a faithful normal state on M such that A (resp.
B) is globally invariant under (of*) (resp. (o6f*)). Put ¢(M) =M x,, R,
¢(B) =B X , R and c¢(A) =11, ,,(A x,, R).

Then c(A) C ¢(M) and ¢(B) C c¢(M) are trace preserving inclusions of
semifinite von Neumann algebras.

Definition 6. The restriction of the dual action 6§ : R ~ Z(c(M)) to the
center of the continuous core c(M) is called the flow of weights. If M is a
factor, then the flow of weights is ergodic.

A somewhat more concrete description of the flow of weights can be given
when M = L*°(X) x I' arises from a free ergodic nonsingular action I' ~
(X, p) of a countable discrete group on a standard measure space. Indeed,
define the Radon-Nikodym cocycle w : I' x X — R by

w(g,x) = log (dg;;ﬂ (:c)) :

Then w satisfies the 1-cocycle relation w(gh,z) = w(g, hax)w(h, x) for every
g,h € I' and almost every x € X. Endow X x R with the o-finite measure
m = p ® exp(t)dt. Define the Maharam extension I' ~ (X x R, m) by

g- (l‘,t) = (gx,t—{—w(g,x)).

The action of R by translation on the second variable induces an ergodic
action on the standard measure space (Y,n) of the ergodic components of
I' ~ (X x R,m). This flow R ~ (Y, ) is called the Radon-Nikodym flow.
Observe that ¢(L>(X) xT') 2 L*°(X x R) xI" and the Radon-Nikodym flow
R ~ (Y, n) coincides with the flow of weights R ~ Z(c(L*°(X) x TI)).

By Takesaki’s duality theorem, we have that ¢(M) xg R = M @ B(L?(R)).
In particular, M is amenable if and only if ¢(M) is amenable.

Definition 7. Let M be any von Neumann algebra. We say that A C M
is a Cartan subalgebra if A satisfies the following properties:

e There exists a faithful normal conditional expectation F4 : M — A.
e A is maximal abelian in M, that is, A’ N M = A.
e The group Ny (A) = {u e U(M) : uAu* = A} generates M.

We next show that Cartan inclusions behave well when passing to the con-
tinuous core.

Proposition 4. Let A C M be a Cartan subalgebra. Then c¢(A) C c(M) is
still a Cartan subalgebra.
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Proof. Let E4 : M — A be the (unique) faithful normal conditional ex-
pectation. Fix any faithful normal state 7 on A and put ¢ = 70 F4. We
will simply write ¢(M) = c,(M) and c¢(A) = c,(A). There exists a trace
preserving faithful normal conditional expectation E : ¢(M) — c(A)
Regard ¢(M) ¢ M @ B(L%(R)) and observe that c¢(A) = A® L(R). Since
both A € M and L(R) € B(L?(R)) are masas, A® L(R) ¢ M @ B(L?*(R))
is a masa and so is ¢(A) C ¢(M).

It remains to show that c(A) C ¢(M) is regular. It suffices to show that

uc(A)u* = c¢(A) for every u € Np(A). Let u € Ny(A) and t € R. For
every a € A, using the fact that A C M¥, we have

uMu A a = ulputal]
= uM(u au)u* A}
= u(u*au) \u* A}
= aulu*\}.

It follows that u\u*\f € AN M = A and so u\u* € A\ C c(A). O

Intertwining techniques in arbitrary von Neumann algebras. We
will need the following generalization of Popa’s intertwining techniques to
arbitrary von Neumann algebras.

Theorem 10 (H-Vaes). Let M be any o-finite von Neumann algebra. Let
AC14M14 and B C 1gM1p be von Neumann subalgebras such that B is
finite and with expectation Eg : 1M1 — B. The following are equivalent.

(1) There ezist projections p € A, ¢ € B, a nonzero partial isometry
v € pMq and a unital normal x-homomorphism 0 : pAp — qBq such
that xv = 0(z)v for every x € pAp.

(2) There is no net of unitaries (w;) in U(A) such that Eg(z*w;y) — 0
x-strongly for all x,y € 14M1p.

If moreover A, B C M are Cartan subalgebras and M is a factor, the above
conditions are equivalent to:

(3) There exists u € U(M) such that uvAu* = B.

Definition 8. Let M be any o-finite von Neumann algebra. Let A C
14M14 and B C 15M1p be von Neumann subalgebras such that B is finite
and with expectation. We say that A embeds into B inside M and denote
A < B if one of the equivalent conditions of Theorem [10]is satisfied. Note
that this forces A to have a finite direct summand.

Intertwining techniques, crossed products and the core. Let I' be
any countable discrete group, B any tracial von Neumann algebra and I' ~
B any action. We do not assume that the action I' ~ B is trace preserving.
Put M =B xT.
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Let A C M be any other tracial subalgebra with expectation. We keep the
notation of Proposition 3| We moreover regard ¢(M) = ¢(B) x " where the
action I' ~ ¢(B) is trace preserving. We simply denote by Tr the faithful
normal trace on c(M).

Proposition 5 (H-Vaes). Assume that A Ay B. There exists a net of
unitaries wy, € U(c(A)) such that

lilrfn | Eep)(zwry) |2 = 0, Yo,y € (M) N L2(c(M), Tr).

In particular, let p € Z(c(A)) and q € ¢(B) be any nonzero projections with
finite trace. Then c(A)p ﬁ(qu)c(M)(p\/q) qc(B)q in the usual sense for finite
von Neumann algebras.

Proof. Since A Ap B, there exists a net of unitaries wy, € U(A) such that
Ep(xz*vgy) — 0 =-strongly for every x,y € M. Regard wy € U(c(A)). We
have Eypy(wruy) = Ep(wguy) — 0 *-strongly for every g € I We will
denote by (wg)y = E¢(py(wruy) the gth Fourier coefficient of wy.

Denote by W = span{bu, : b € ¢(B) NL?(c(B),Tr),g € T}. Then W is a
| - |2, e-dense subspace of L%(c(M), Tr).

Claim. We have limy, || E¢(g) (vwry) |11 = 0 for every z,y € W.
Proof of the Claim. It suffices to take x = auy and y = upb with a,b €
¢(B)NL3(c(B), Tr) and g, h € T. In that case, we have

Ey(p)(rwry) = aEyp)(ugwrup)b = aog((wg)g-14-1) b.
Using the Cauchy-Schwarz Inequality, we get

1 Ec(p) (zwry)l[1me < [lall2m llog((wr)g-1p-1)bll2,1x

= llall2m | (wr)g-1p-104-1(b)[|2,1r-

Since (w),-1,-1 — 0 strongly as a bounded net of operators on L*(c(B), Tr),

we get limy, || B gy (zwiy)|1,1e = 0. O

Next, let z,y € ¢(M)NL23(c(M), Tr) and € > 0. We may choose z1,y; € W
such that ||z — 1|2 |yl < € and ||y — vall2,mel|z1 ]2 < €. We get

1imkSUP | Ee(m) (zwry)|l1,me < limksup | Ee(m) (T1wryn)|l1,m + 2¢.

Since ¢ > 0 is arbitrary, we get limy, || E¢p)(zwiy)||1,7c = 0. Since the net
(Ee(By(zwiy))k is uniformly bounded in ¢(B), we have

lim | Ee(B) (xwry)ll2,1e = 0.

This finishes the proof of the proposition. O
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LECTURE 6

In the last lecture, we will prove the result which generalizes Popa-Vaes’s
unique Cartan decomposition result to arbitrary nonsingular actions of the
free groups. This is our joint work with S. Vaes (2012).

Definition 9. We will use the following terminology.

e We say that a von Neumann M C B(H) is amenable if there exists
a norm one projection ® : B(H) — M.

e Let I' ~ (X, ) be any nonsingular action of a countable discrete
group on a standard measure space. We say that the action I" ~

(X, p) is amenable if there exists a I'-equivariant norm one projection
O LT x X) — L>®(X).

Proposition 6. Let I' ~ (X, pu) be any nonsingular action of a countable
discrete group on a standard measure space. The following conditions are
equivalent.

(1) The action T' ~ (X, ) is amenable.
(2) The crossed product von Neumann algebra L°°(X) x T' is amenable.

Proof. We will only use (2) = (1).

(1) = (2) Let @ : L=®°(X xI') —» L*°(X) be a I'-equivariant norm one
projection. Regard the crossed product von Neumann algebra L (X ) xI" C
L®(X) ® B(£?(I')). Now we regard B(¢2(T)) = ¢>°(T") x I and so we have

L®(X)®B(£A(I)) 2 L®(X xT) x T.

Since ® : L™(X x I') — L*°(X) is I'-equivariant, we may extend ® to a
norm one projection ® : L¥(X x I') x I' — L>(X) x I (this fact is not
entirely trivial since ® is a priori not normal). Since L>(X) ® B(£?(I))
is amenable, there exists a norm one projection E : B(L*(X) ® £2(T)) —
L®°(X)®B(/%(T)). Then ®o F : B(L2(X)®(*(T)) — L®°(X) x T is a norm
one projection, hence L°°(X) x I' is amenable.

(2) = (1) Let @ : B(L*(X)®/3(I")) — L°°(X) x T be a norm one projection.
Put ¥ = FEpeo(x) o @|peo(xxr). Then ¥ : L¥(X xT') — L*(X) is a I'-
equivariant norm one projection. U

Theorem 11 (H-Vaes). Let F,, ~ (X,pu) be a nonamenable free ergodic
nonsingular action on a standard measure space. Then L°(X) is the unique
Cartan subalgebra of L°(X) x F,,, up to unitary conjugacy.

Proof. Put B = L*°(X) and M = B xT'. Denote by F : M — B the
canonical faithful normal conditional expectation. Let A C M be another
Cartan subalgebra such that A A3; B. We will show that M is amenable,

hence I' ~ (X, u) is amenable by Proposition @ Together with Theorem
[10] this will prove Theorem
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Using Propositions |3| and [4f we get that c(A) and c¢(B) are both Cartan
subalgebras in ¢(M) with trace preserving expectation. Fix nonzero finite
trace projections p € c¢(A) and ¢ € ¢(B). Since ¢(B) C ¢(M) is a masa, we
may moreover assume that there exists a partial isometry v € ¢(M) such
that p = v*v and g = vo*.

Define the trace preserving dual coaction A : qc(M)q — gc(M)q @ L(T') by

A(gbuyq) = qbugq @ ug.

We regard M = qc(M)q@L(T") as the tracial crossed product von Neumann
algebra gc(M)q x I' with respect to the trivial action. Put A = A(vc(A)v*)
and observe that A is regular inside A(gc(M)q).

Since A £y B, Proposition [5| yields a net of unitaries wy, € U(A) such
that limg || Eep)(zwry)ll2e = 0 for every z,y € c(M) N L2(c(M),T )
Put v, = vwkv* € U(vc(A)v*). Proposition 5| yields limy ||(vk)g
limy, || B gy (vwgv*uy)||2 e = 0 for every g € T'. We next prove the following.

Claim. For every z,y € M, we have

lim | Eqearygo1 (TA(wr)y) |2 mer = 0.

Proof of the Claim. It suffices to take z = 1 ® uy and y = 1 ® up, with
g,h € I'. In that case, we have

Eyeanyget (1@ ug) A(vp) (1@ up)) =Y Ego(aryger (0k)stis © tgsh)
sel’
= (Uk)g—lh—lug—lh—l.
Therefore, we obtain

lim | Eqe(ar)go1 (1@ug) A(vg) (1@ up)) |2, rer = lim (vk)g-1p-1ll2mc = 0. O

We have that A is amenable and A A g¢(M)g. By Theorem @ we get that
A(gce(M)q) is amenable relative to gc(M)q inside M. There exists a norm
one projection (M, eqe(ar)g) — A(ge(M)q). Since Ao E gy, = Ege(aryg © A,
the x-homomorphism A : gc(M)g — M extends to

2 <qC(M)Q7€C( B)q > - <M76qc(M)q>
by letting W(r) = A(z) if © € gc(M)q and ¥(e(p)q) = €qe(ar)g- Then

A_ oW : < (M)Q7 €c B)q> — qC(M)q

is a norm one projection. Hence gc(M)q is amenable relative to ¢(B)q and
so gc(M)q is amenable. If z denotes the central support of ¢ in ¢(M), we get
that c(M)z is amenable. Since the dual action is ergodic, it follows that c(M)
is amenable as well. By Takesaki’s Duality Theorem, M is amenable. ([

With the following explicit examples of nonsingular actions of the free group
Fs, we obtain factors with unique Cartan subalgebra, having any possible
type and any possible flow of weights in the type 11l case.
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Corollary 3 (H-Vaes). Let Fy = (a,b). Denote by w : Fo — Z the group
homomorphism given by m(a) = 1 and w(b) = 0. Choose a free probability
measure preserving action Fo ~ (X, ) such that ker  acts ergodically.

Choose an arbitrary properly ergodic nonsingular action Z ~ (Y,n) on a
standard measure space. Define the action T'~ X XY given by g - (x,y) =
(g-x,7(g9)-y) and put M = L=°(X xY) x Fs.

Then M is a nonamenable factor and L(X x Y) is the unique Cartan
subalgebra of M, up to unitary conjugacy. The factor M has the same type
and the same flow of weights as the amenable factor L>=(Y) x Z.

Proof of Corollary[3. Put I’ = Fy. We first claim that M = L*®(X xY) xT
is nonamenable. Indeed, M contains N = L*(X x Y) x kerm = (L*°(X) %
kerm) ® L>(Y) as a von Neumann subalgebra with expectation. Since
kerm ~ (X, u) is probability measure preserving and since ker 7 is a non-
amenable group, it follows that N is nonamenable. So, M follows nona-
menable as well.

By Theorem L>®(X x Y) is the unique Cartan subalgebra of M, up to
unitary conjugacy.

It remains to determine the type and the flow of weights of M. Put P =
L*>®(Y) x Z. First consider the trivial cases. If Y admits an equivalent Z-
invariant probability measure, both M and P are of type II;. If Y admits
an equivalent Z-invariant infinite measure, both M and P are of type Il..
So, assume that P is of type III. It remains to prove that M and P have an
isomorphic flow of weights.

Let Z ~ (Y,m) be the Maharam extension of Z ~ (Y,7). Consider the
action I ~ X x Y given by g - (z,y) = (¢ - z,7(g) - y). Since ' ~ X
is measure preserving, the action I' ~ X X Y can be identified with the
Maharam extension of I' ~ X x Y. So, the flow of weights of M can
be identified with the natural action of R on the von Neumann algebra
L®(X x Y)T of I-invariant functions. Since kerm ~ X is ergodic, we get
that

L¥(X x V)T =10 L>®(Y)2

Since the flow of weights of P is given by the natural action of R on L*° ()7)27
we have found the required isomorphism between the flow of weights of M
and P. (]
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